首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Masson pine (Pinus massoniana L.) trees in the Pearl River Delta have shown growth decline since late 1980s, particularly those around industrially polluted regions. As nitrogen is an important nutritional element composing functional proteins, structural proteins and photosynthetic machinery, investigation on nitrogen allocation is helpful to understand nutrient alteration and its regulation mechanism in response to pollution stress. Current year (C) and 1-year old needles (C + 1) of five mature trees were sampled in industrially polluted site and unpolluted natural reserve for bioassay. Needles of declining trees had significantly higher leaf nitrogen per unit area (NL) but lower photosynthetic capacity (P max), which resulted in lower photosynthetic nitrogen use efficiency (PNUE) than those of healthy trees. Nitrogen fraction to the photosynthetic apparatus in the C and C + 1 needles at polluted site was 27 and 22%, significantly lower than the corresponding healthy needles (48 and 32%). The content of structural proteins was positively correlated with NL in C and C + 1 needles. Moreover, the C and C + 1 needles of declining trees had about 1.8 times structural protein as those of healthy trees, suggesting that more nitrogen allocation to structural protein are needed for stronger structural defenses under polluted stress. Decreases in PNUE of declining pine trees could be partially explained by increases in structural protein nitrogen.  相似文献   

2.
Predicted increases in the frequency and duration of drought are expected to negatively affect tree vitality, but we know little about how water shortage will influence needle anatomy and thereby the trees’ photosynthetic and hydraulic capacity. In this study, we evaluated anatomical changes in sun and shade needles of 20‐year‐old Norway spruce trees exposed to artificial drought stress. Canopy position was found to be important for needle structure, as sun needles had significantly higher values than shade needles for all anatomical traits (i.e., cross‐sectional needle area, number of tracheids in needle, needle hydraulic conductivity, and tracheid lumen area), except proportion of xylem area per cross‐sectional needle area. In sun needles, drought reduced all trait values by 10–40%, whereas in shade needles, only tracheid maximum diameter was reduced by drought. Due to the relatively weaker response of shade needles than sun needles in drought‐stressed trees, the difference between the two needle types was reduced by 25% in the drought‐stressed trees compared to the control trees. The observed changes in needle anatomy provide new understanding of how Norway spruce adapts to drought stress and may improve predictions of how forests will respond to global climate change.  相似文献   

3.
A field experiment primarily designed for simulating the indirect effects of air pollutants for a 25-year-old Norway spruce stand in SW Sweden is presented (The Skogaby project). Treatment include irrigation; artificial drought; ammonium sulphate addition; nitrogen-free-fertilization and irrigation with liquid fertilizers including a complete set of nutrients. The experiment has a randomized block design with four replicates per treatment. Growth response on an areal basis of basal area, height and dry mass of stems, branches and needles after up to four years of treatment are presented. Dry mass is estimated using allometric equations based on destructive samplings of trees.The stand suffered from temporary water stress during all four years investigated despite 970– 1160 mm of annual precipitation. Irrigation resulted in improved above-ground dry mass production (stem, bark, branches, needles, litter fall) by 20% during the first 3 years of treatment, whereas 2 years of drought treatment followed by 1 year of recovery led to 10% reduced dry mass growth. During year 2 of recovery, however, basal area growth was only about half of that of the control.Nitrogen, markedly, was a growth limiting nutrient, although the stand got approx. 20 kg N ha-1 y-1 from deposition. Ammonium sulphate addition (100 kg N ha-1 y-1) resulted in 31% improved dry mass production whereas irrigation with liquid fertilization (100 kg N ha-1 y-1) including all important nutrient elements led to 57% increased dry mass growth after 3 years of treatment. Basal area growth of the latter treatment gradually increased and during year 4 of treatment was 123% larger than the control. Nitrogen-free-fertilization resulted in a small improvement of dry mass production (+10%).After 3 years of treatment, the amount of needles had increased markedly for both treatments including irrigation, whereas drought treated trees instead had decreased their needle amount vs control. The increase in needle amount occurred as a result of both larger formation of needles and higher preservence of old needles, the opposite relations being found for the drought treated trees. At the same point larger needle formation in combination with a higher shedding of older needles was found for trees treated with ammonium sulphate and nitrogen-free-fertilizer.It is concluded that there is no stage of N saturation in the Skogaby site as there is no leaching of N from the control plots and N fertilization results in both increased tree growth and N uptake.  相似文献   

4.
Previous studies show that Masson pine (Pinus massoniana L.) stands grown at the industrially-polluted site have experienced unprecedented growth decline, but the causal mechanisms are poorly understood. In this study, to understand the mechanisms of growth decline of Mason pine strands under pollution stresses, we determined the reactive oxygen species levels and chemical composition of the current-year (C) and one-year-old (C + 1) needles, and calculated the needle construction costs (CCmass) of Masson pine trees grown at an industrially-polluted site and an unpolluted remote site. Pine trees grown at the polluted site had significantly higher levels of hydroxyl radical and superoxide anion in their needles than those grown at the unpolluted site, and the former trees eventually exhibited needle early senescence. The contents of lipids, soluble phenolics and lignins in C and C + 1 needles were significantly higher at the polluted site than at the unpolluted site, but the total amounts of non-construction carbohydrates were lower in non-polluted needles than in polluted needles. Elevated levels of the reactive oxygen species and early senescence in polluted needles together led to significant increases in CCmass and a longer payback time. We infer that the lengthened payback time and needle early senescence under pollution stress may reduce the Masson pine tree growth and consequently accelerate tree decline.  相似文献   

5.
Summary Spruce (Picea abies) damage in the Fichtelgebirge (FRG) occurs as needle bleaching and a depression of CO2 assimilation. Such injury may primarily result from the direct, above-ground effects of air pollution or indirect, below-ground changes in mineral uptake.Typically, the new flush of spruce needles is green and exhibits high photosynthetic capacity. Mies and Zöttl concluded that the older foliage is damaged when nutrients are withdrawn to supply the current year's needles. By removing the terminal buds of single branches in the spring, we produced an experimental set of the previous year's needles with greater mineral reserves than the control needles. During the course of the growing period, the performance of the experimental needles, which lacked competition from the new flush, was compared to that of the control needles of the same age-class on intact branches with the new flush.Throughout the experiment, chloroplast pigments of a healthy control tree were not affected by the elimination of the new flush. However, the chlorophyll and carotenoid content as well as the photosynthetic capacity of the previous year's needles on those branches of a heavily damaged tree where the new flush had been eliminated increased substantially. This increase was associated with an increase in minerals, which seemed to be deficient in the control needles with the new flush. Thus, in contrast to needles of the same age-class on intact branches with undisturbed new growth in the same atmospheric environment, the experimental needles escaped bleaching and a decrease in photosynthesis. It would seem that the bleaching and the loss in photosynthetic capacity typical of trees damaged by forest decline indirectly result from nutrient deficiencies through soil environment changes and/or root damage than directly from atmospheric pollutants.  相似文献   

6.
The development and physiological consequences of ozone-induced visible injury was investigated in native populations of Jeffrey pine (Pinus jeffreyi) that were exposed to chronic levels of anthropogenic ozone. Stand structure analyses demonstrated that the expression of visible ozone injury symptoms within self-regenerating populations of Jeffrey pine was highly variable. Of the 975 trees surveyed, 90% exhibited some degree of visible injury and 10% were classified as resistant to ozone. Needles of the most sensitive trees developed a chlorotic mottle characteristic of ozone injury 1 year after their initiation and prematurely abscised in their third year (normal needle retention is 5–6 years). Average needle retention was not different between diameter size categories but was the most variable within the smallest size category and the least variable in the largest size category. Gas exchange measurements indicated a negative correlation between photosynthetic rate and needle surface area covered by chlorotic mottle. Chlorophyll fluorescence kinetics of the current-year needles did not differ between symptomatic and asymptomatic trees but did differ between the oldest needles, suggesting an uncontrolled physiological decline in needles about to abscise in sensitive trees. The high degree of variability of ozone-induced visible injury coupled with the reduction of physiological capacity associated with visible injury suggest that mixed conifer forests growing in polluted regions could potentially undergo shifts in community structure if sensitive Jeffrey pine individuals were to experience differential mortality as a result of ozone exposure. Intraspecific variation in ozone sensitivity may potentially lead to increased population tolerance to oxidative air pollutants, but long-term population analyses will be required to address genetic changes in response to ozone stress.  相似文献   

7.
Current and previous year needles from three 16 years-old populations of Scots pine (Pinus sylvestris L.) trees were seasonally collected at the three experimental areas: Luboń- close to the phosphate fertiliser factory, Głogów — close to the copper foundry and Kórnik — control site. Głogów is the most polluted site, where at 1998 monthly mean daily concentrations of different pollutants were: SO2 - 17 μg·m−3, NOx - 12 μg·m−3 and dust containing heavy metals as Cu, Pb, Cd - 29 μg·m−3. Trees growing in Luboń were influenced for many years by high concentration of SO2 and fluor compounds. A few years ago emissions were markedly reduced, but low pH of soil and high concentration of aluminium ions still influence the growth of trees. Seasonal changes of ascorbate and thiol content were observed in each needle class and population, with the maximum in the winter and minimum in the summer. In needles from trees growing on polluted sites higher level of ascorbic acid and thiols comparing to control site was observed. Significant differences appeared in each population of Scots pine growing under higher pollution stress in the Głogów site. In needles from trees growing in Luboń significant differences in ascorbic acid and thiols content were evidently less numerous. Needles from polluted sites in some seasons contained significantly more malondialdehyde (MDA) and those was more frequent in Głogów than in Luboń. The results indicated that in the Głogów site trees are more influenced by pollution stress than in Luboń and the defense reaction measured as an increase of the antioxidant level is more evident.  相似文献   

8.
通过比较不同自然降水年份(极端干旱和极端湿润)19年生疏林草地樟子松的针叶δ13C、比叶面积和干物质含量,结合土壤含水量和地下水埋深,探讨了极端降水对樟子松水分利用的影响.结果表明:干旱年份(2009)樟子松林土壤含水量显著低于湿润年份(2010),但樟子松当年生针叶的δ13C在两年间没有显著差异,且两年相同月份间亦无显著差异;干旱年份当年生针叶的比叶面积显著低于湿润年份,而不同年份间干物质含量的差异不显著.在两种极端降水条件下,樟子松的水分利用效率没有明显变化,主要通过改变当年生针叶的比叶面积来适应降水量的变化.对于地下水埋深高于3.0m的疏林草地樟子松人工林生态系统,极端干旱不会严重影响樟子松的存活和生长.  相似文献   

9.
Hydraulic resistance to water flow was measured in branches and stems of Scots pine trees ranging from 7 to 59 years of age in Thetford (East Anglia, UK). On the basis of these measurements, tree above-ground conductance was calculated and related to the amount of leaf area sustained by each tree. Branches at the crown bottom had a lower proportion of sapwood area and a lower total hydraulic conductance than branches of the same diameter at the tree top. Within branches, most of the hydraulic resistance was located near the needles. Tree above-ground conductance was positively related to tree diameter and inversely related to tree height. Compared with young trees, mature trees had about 4 times less above-ground conductance per unit of leaf area. Apparently, the increase in pathway length associated with tree height growth could be only partially compensated for by the increase in conductive capacities resulting from diameter growth. We argue that this reduction may account for reported decreases of stomatal conductance with tree age. It is suggested that the increase in branchiness associated with tree maturation may represent a compensation mechanism to reduce the overall resistance to water flow in the crowns.  相似文献   

10.
通过比较不同自然降水年份(极端干旱和极端湿润)19年生疏林草地樟子松的针叶δ13C、比叶面积和干物质含量,结合土壤含水量和地下水埋深,探讨了极端降水对樟子松水分利用的影响.结果表明: 干旱年份(2009)樟子松林土壤含水量显著低于湿润年份(2010),但樟子松当年生针叶的δ13C在两年间没有显著差异,且两年相同月份间亦无显著差异;干旱年份当年生针叶的比叶面积显著低于湿润年份,而不同年份间干物质含量的差异不显著.在两种极端降水条件下,樟子松的水分利用效率没有明显变化,主要通过改变当年生针叶的比叶面积来适应降水量的变化.对于地下水埋深高于3.0 m的疏林草地樟子松人工林生态系统,极端干旱不会严重影响樟子松的存活和生长.  相似文献   

11.
Red pines Pinus resinosa in Garrett and Allegany counties, Maryland, were examined during 1982-84 to determine distribution of the pinewood nematode, Bursaphelenchus xylophilus, within and among trees. Approximately 25-year-old (younger) and 47-year-old (older) trees were subdivided into the following categories: 1) trees with mostly green needles; 2) trees with mostly reddish-brown needles; 3) trees lacking needles but with bark intact; 4) trees lacking both needles and bark; and 5) trees with chlorotic, bleached-green needles. Bursaphelenchus xylophilus was found infecting 68% of younger red pines and 77% of older red pines. Nematodes were not evenly distributed in trees within any given tree decadence category or in trees of the same age. Nematodes were recovered from 20% of wood samples from trunks and primary and secondary branches in younger pines and from 15 % of older red pines. On the basis of tree decadence category, the highest incidence of infection in younger trees (31%) was in bleached-green needled trees (category 5), whereas in older trees the highest infection (25%) occurred in green needled trees (category 1). At both sites trunks were infected more often than branches.  相似文献   

12.
Contents of ATP, ADP, AMP, inorganic phosphate, and values of ATP/ADP ratio, adenylate energy charge (AEC), phosphorylation potential (PP) and adenylate kinase activity were analysed in needles and fine roots of Scots pine trees grown at the polluted and control (free of acute air pollution) site. Also chemical properties of the soil and mineral elements in needles from both sites were analysed. In comparison with the control, developing needles from the polluted site contained less ATP, the same amount of ADP and more AMP, and had lower values of ATP/ADP, AEC and PP. In one-year-old needles from the polluted site no change or a decrease in ATP was recorded, while ADP decreased, AMP increased, AEC did not change, and ATP/ADP ratio and PP were higher. In fine roots from the polluted site AMP level was higher, while ATP, ADP, ATP/ADP ratio, PP and AEC were lower than in the control.  相似文献   

13.
Red spruce trees (Picea rubens Sarg.) occasionally produce short twigs bearing short needles. The frequency of short needle cohorts is positively correlated with both elevation and defoliation and they are found in greater numbers on trees that regularly experience winter injury. Short needles are smaller, have lower fresh and dry weights, and reduced volumes compared with normal needles. They have reduced cross-sectional areas due to smaller areas of stelar and mesophyll tissue systems. Individual mesophyll cells, however, have the same cross- and longitudinal sectional areas. On a weight or volume basis, both short and normal needles contain similar amounts of chlorophyll and carotenoid pigments. When pigment concentration was calculated on a unit needle or a needle area base, short needles contain more pigment than normal needles. Short needles appear to have a greater photosynthetic efficiency as determined by fluorescence measurements.  相似文献   

14.
Terpenes were analyzed in needles of pollution injured Picea abies (L.) Karst. of the Southern Black Forest (SW Germany) showing symptoms of montane yellowing. Compared to a set of healthy trees, a set of injured trees showed increased terpene hydrocarbon concentrations relative to needle fresh weight. This difference was even more pronounced when the terpene concentrations of green, healthy and yellowing, injured needles from the same internode of individual injured trees were compared. Increased terpene concentrations were observed in the basal parts of injured needles, while their distal parts exhibited a loss of terpenes. In addition, an alteration in the pattern of terpene occurrence was observable. Most striking was the changed ratio of α-pinene to β -pinene. with marked increase of the latter, in injured needles. As indicated by ultratrace analysis of isolated mesophyll. vascular tissue and resin ducts of the needles, mono- and sesquiterpenes were found exclusively in resin ducts. The other tissues were virtually free of terpenes. Isolated resin from a single resin duct contained all terpenes (monoterpene hydrocarbons, alcohols and ketones, and sesquiterpene hydrocarbons) that are typical for the needle. An individual response to air pollution of each separate short resin duct in the needle may be deduced.  相似文献   

15.
Effect of acidic fog on needle surface and water relations of Picea abies   总被引:3,自引:0,他引:3  
Young spruce trees [ Picea abies (L.) Karst.) exposed to acidic fog (pH 3) showed a disintegration of the epicuticular waxes of the current year's needles as compared with trees treated with a fog of pH 5. The fog treatment was followed by a period in which the trees received different water supply. Under water stress conditions, trees that had been exposed to the acidic fog showed significantly higher transpiration rates than control trees that were treated with a fog of pH 5. The water loss of the controls was 0 at the middle of the photoperiod, while the trees pretreated with acidic fog still showed a substantial transpiration rate at this time. Water loss of excised twigs measured in the dry atmosphere of a desiccator also provided evidence that the water holding capacity of needles pretreated with acidic fog was affected. There is evidence that particularly the cuticular transpiration was increased by pretreatment with acidic fog. The xylem water potential of twigs pretreated with acidic fog was significantly lower than that of twigs pretreated with a fog of pH 5, while the osmotic potential was not affected by the different fog treatments. It is suggested that in draught years trees with a damaged cuticle caused by acidic fog will be affected in their resistance against water stress. In this way acidic fog could be involved in forest decline now widely spread in Central Europe.  相似文献   

16.
Effect of SO(2) and O(3) on Production of Antioxidants in Conifers   总被引:3,自引:3,他引:0       下载免费PDF全文
Production of antioxidants was investigated in needles of fir (Abies alba Mill.) and spruce (Picea abies (L.) Karst) after exposure to low concentrations of SO2, O3, and a combination of both pollutants. Glutathione reacted most sensitively to pollutants followed by vitamin E and vitamin C. In spruce needles, the overall increase of antioxidants after exposure to air pollutants was lower than in needles of fir. SO2 was more potent than O3. Maximum increase of antioxidants was found in needles after exposure of trees to SO2 + O3.  相似文献   

17.
Observations that deciduous and evergreen conifers growing in Britain show similar annual growth increments, despite marked differences in short-term growth rates, led to a comparative study of seasonal photosynthetic capacity in established trees of four coniferous species with contrasting growth habits. The photo-synthetic data were compared with seasonal changes in environmental parameters and chloroplast ultrastructure. The maximum net photosynthetic rates (at 20°C) recorded for Larix leptolepis were higher than those for the evergreen conifers when expressed on a leaf weight basis but not when expressed per unit leaf area. The photosynthetic efficiency of new needles in the evergreen species showed an overall decline from just after needle maturity until just before budbreak in their second season, after which photosynthetic rates recovered temporarily, approaching previous maximum levels. There was no obvious correlation between seasonal photosynthetic efficiency (at 20°C) on the one hand, and daily air, and (30 cm) ground temperatures on the other, and there was no obvious winter suppression of evergreen photosynthetic rates. Evergreen needles showed starch loss and some membrane changes with the onset of winter, but there was no evidence for wintertime chloroplast clumping or membrane disruption.  相似文献   

18.
鼎湖山异龄马尾松针叶长度序列元素分布   总被引:2,自引:0,他引:2       下载免费PDF全文
利用植物体元素化学分析结果来诊断环境污染对森林健康影响和监测环境污染程度已成为诸多生态学家和环境学者广为采用的方法之一。该研究选择广东肇庆鼎湖山健康马尾松(Pinus massoniana)前年生针叶和当年生针叶为研究对象, 将相同年龄针叶分为叶尖、叶中、叶基等长3段, 分析了两种针叶全S、全P、K、Mg、Na、Ca、Al、Mn、Zn、Cu、Fe、Pb、Cr、Cd和Ni15种元素及相应Ca/Al值在叶尖、叶中部、叶基部和叶鞘的分布模式。结果表明: 前年生针叶元素平均值除全S、全P、K和Cd外, 其它元素浓度都高于当年生针叶, Ca/Al值则是当年生针叶小于前年生针叶, 表明当年生针叶受Al毒大于前年生针叶; 在针叶长度序列不同部位间, 元素分布不均匀, 全S、Na、Ca、Al和Mn在两种针叶长度序列上没有显著性差异, K、Mg、Zn、Fe、Cr、Cd、Ni和Ca/Al值差异均达显著水平, 而全P、Cu、Cd和Pb仅在前年生针叶不同部位间差异显著; 针叶Al浓度和Ca/Al值都表明马尾松已经处于严重Al毒胁迫下; 两种针叶各部位Fe、Zn和Cu浓度远超出该地区马尾松元素的背景值, 暗示马尾松针叶已受到严重重金属毒害; 马尾松叶鞘Fe、Cu、Zn、Pb、Cd、Ni和Cr含量显著高于针叶其它部位, 表明叶鞘能累积环境重金属, 可以作为马尾松在污染环境下遭受重金属危害指标加以利用, 是一种有广泛应用前景的生物指示物。该研究所采用的技术和方法对环境监测, 尤其是对利用生物化学方法评价环境污染对森林健康影响评价体系的完善和生物监测指标的利用具有指导意义, 可为今后评估相似环境污染地区森林健康和树木正常生长提供参考。  相似文献   

19.
Summary In a forest decline area (Fichtelgebirge, N.E. Bavaria, FRG), annual time courses of chloroplast pigments in both healthy and chlorotic Norway spruce were studied. The seasonal time courses of green and apparently healthy trees did not generally differ from those reported in the literature for spruce trees of other regions. Chlorophyll content increased from May to October, remained relatively constant or declined slightly during the fall and early winter, and finally decreased markedly from March to early May when pigment is at its minimum before bud break. The annual maximal chlorophyll content increased with needle age from the current year's needles to 4-yearold needles. While carotene content reached its highest concentration in August, the xanthophylls did not peak until February or March. Pigment dynamics of chlorotic trees with lower concentrations, corresponded to those of undamaged trees. Chlorophyll deficits resulted from less pigment formation as well as pigment loss during the growing period. Even when the content of total chlorophyll was low, the ratio of chlorophyll a/chlorophyll b remained almost unchanged. In conjunction with the chlorophyll reductions, a decrease in the chlorophyll/carotenoid ratio and an increase in the xanthophyll/carotene ratio occurred. The periods of needle-chlorophyll reduction did not correlate with those periods of highest concentrations of atmospheric sulphur dioxide, the main air pollutant at the stand. However, chlorophyll formation ceased in the older needle age classes of chlorotic trees when the new flush was sprouting, indicating that nutritional deficiencies affect needle yellowing more than possible direct needle damage by air pollutants.  相似文献   

20.
Summary Larvae of the spruce sawfly Gilpinia hercyniae were reared on whole branches of Norway spruce, Picea abies. Top and low branches were selected from flowering and nonflowring stands. Sawfly performance from the larval L2-stage until the fertile egg stage of the next generation was recorded. Growth and development were best on top branches from the flowering stand, poorest on branches from windblown, partly derooted and heavily flowering trees. Analysis of some 30 biochemicals in needles and faeces was performed. New needles had the highest concentrations of some nutrients (total nitrogen, amino acids), however, G. hercyniae larvae only fed on old needles, a 100% mortality being recorded on newly flushed needles, probably because these needles also contained the highest concentrations of the secondary compound, quinic acid. Old needles showed high variability in concentrations of nutrients and secondary compounds. Regression analysis demonstrated that the total amount of carbohydrates (glucose, fructose and sucrose) was significantly correlated with the larval linear growth rate, the maximal larval weight, the cocoon weight and the number of eggs per female. In these performance variables 72–88% of the variation could be explained by five biochemicals. Survival rates of larvae or pupae and the instantaneous growth rate could not be explained by the biochemical variables. Only weak correlations were found between nitrogen or amino acids and performance variables. Assimilation of the various biochemicals was calculated and showed high rates (90–97%) in hexoses and lower rates (38–65%) in total nitrogen and amino acids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号