首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Unique RING finger structure from the human HRD1 protein
Authors:Kazuhide Miyamoto  Yukari Taguchi  Kazuki Saito
Abstract:Artificial RING fingers (ARFs) are created by transplanting active sites of RING fingers onto cross‐brace structures. Human hydroxymethylglutaryl‐coenzyme A reductase degradation protein 1 (HRD1) is involved in the degradation of the endoplasmic reticulum (ER) proteins. HRD1 possesses the RING finger domain (HRD1_RING) that functions as a ubiquitin‐ligating (E3) enzyme. Herein, we determined the solution structure of HRD1_RING using nuclear magnetic resonance (NMR). Moreover, using a metallochromic indicator, we determined the stoichiometry of zinc ions spectrophotometrically and found that HRD1_RING binds to two zinc atoms. The Simple Modular Architecture Research Tool database predicted the structure of HRD1_RING as a typical RING finger. However, it was found that the actual structure of HRD1_RING adopts an atypical RING‐H2 type RING fold. This structural analysis unveiled the position and range of the active site of HRD1_RING that contribute to its specific ubiquitin‐conjugating enzyme (E2)‐binding capability.
Keywords:RING finger  E3 enzyme  NMR structure  artificial RING finger  HRD1  ubiquitination
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号