首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
野生动物在长期的栖息地选择过程中,能判断其生境质量,而趋向于选择既能降低能量消耗,又能获得营养价值和能量净收益较高的有利生境。以往的研究多是从统计学方法或宏观尺度对大熊猫生境进行评价,很少考虑到野生动物自身生物学特性及生境选择过程中的空间利用特征。本研究结合家域模型与景观格局分析技术定量分析大熊猫实际空间利用格局的动态变化特征及其破碎化程度,进而反映不同时期大熊猫生境选择模式及栖息地生境适宜性的动态变化。结果表明:卧龙自然保护区大熊猫在对栖息地的实际利用过程中向更适宜的区域集中,使得高适宜等级区域面积有所增大;而边缘生境区域更容易受到自然灾害和人为因素的干扰,破碎化加剧,需要在保护工作中引起足够的重视。从大熊猫行为模式特征出发,在不同时空尺度上,评估大熊猫对生境选择的空间格局变化特征,丰富了野生动物栖息地适宜性评价的时空尺度选择,为更准确地制定保护区管理政策提供了有效的工具。  相似文献   

2.
长三角中心区生境质量时空变化及其影响机制   总被引:1,自引:0,他引:1  
明晰快速城市化发展背景下生境质量时空变化特征及其影响机制,对区域生态保护修复和一体化高质量可持续发展具有重要的意义。以长三角中心区为研究区,基于1995—2020年土地利用空间数据,运用InVEST模型评估生境质量空间格局,探究生境质量时空变化特征,并揭示其影响机制。结果表明:在时间变化上长三角中心区生境质量呈现下降态势,省(市)域尺度上的差异性逐渐加强,生境质量等级以较差和差的面积变化为主,优、良好和一般等级的面积变化不大;生境质量等级空间变化上,体现为较差与差、优、良好等级之间的相互转移,南京、常州、镇江等城市的生境质量等级向差与向好转移幅度的均衡性较好,宣城、池州、舟山、安庆等城市的恢复潜力较强;在省(市)尺度近5年的生境质量管理和改善上,浙江省效果远好于其他省(市),省(市)间生境质量管理和改善的差异化,凸显出未来长三角中心区跨区域生态环境一体化管理和发展的重要性;自然环境和社会经济发展因素是影响长三角中心区生境质量时空差异化发展的重要原因,高程和坡度决定了生境质量的空间格局,人类活动强度驱动着生境质量格局变化。  相似文献   

3.
动物的生境选择具有空间尺度依赖性, 在不同空间尺度上影响生境选择的环境因素有所不同。研究不同空间尺度下动物生境选择的关键影响因子及其季节性变化, 对于全面了解物种的生境资源需求和开展生境保护具有重要意义。绿尾虹雉(Lophophorus lhuysii)是中国特有的高山雉类, 国家一级重点保护野生动物, 具有极高的保护价值。然而, 目前尚未对其不同尺度和时期的生境选择进行过探究。本研究于2019年10月至2020年10月, 在四川卧龙国家级自然保护区的羊角湾、魏家沟和文扎都3个区域共布设15条样线、303个样方, 并结合红外相机监测(176个红外相机位点), 对保护区内绿尾虹雉种群的生境利用状况进行了调查, 使用主成分分析和逻辑斯蒂回归模型分别从景观和微生境两个尺度对繁殖期(3‒8月)和非繁殖期(9月至翌年2月)的生境选择模式进行了分析。结果显示, 在景观尺度上, 在繁殖期和非繁殖期都显著偏好海拔较高(3,700‒ 4,300 m)、坡度较小(27°‒33°)、靠近阳坡、草甸和流石滩比例较高而森林和灌丛比例较低的生境。在微生境尺度上, 绿尾虹雉在繁殖期显著偏好岩石盖度较高的生境; 而非繁殖期则显著偏好草本盖度较高、灌木盖度和落叶盖度较低的生境。研究表明, 绿尾虹雉在景观和微生境尺度上均对生境有明显的选择性, 并且其微生境选择还存在季节性变化, 反映了该物种在生活史不同阶段具有不同的资源需求。本研究丰富了绿尾虹雉的基础生态学信息, 为卧龙及其他自然保护区绿尾虹雉的生境管理和种群保护工作提供了参考。  相似文献   

4.
曹铭昌  刘高焕  徐海根 《生态学报》2011,31(21):6344-6352
生境在鸟类生活史中发挥着重要的作用,关系到鸟类的生存和繁衍。由于鸟类对环境变化的响应发生在等级序列空间尺度上,基于多尺度的研究更能深入刻画鸟类-环境之间关系。以丹顶鹤(Grus japonensis)为研究对象,以其迁徙和越冬的重要地区-黄河三角洲自然保护区为研究区域,应用等级方差分解法和等级划分法,分析丹顶鹤与微生境、斑块、景观尺度因子之间的关系,探求丹顶鹤生境选择的主要影响因素和尺度。等级方差分解结果表明,在第1等级水平,景观尺度因子与微生境、斑块尺度因子之间的联合效应大于独立效应,景观尺度因子的独立效应大于微生境和斑块尺度因子;在第2等级水平,景观尺度上的景观组成因子重要性大于景观结构因子,微生境尺度上的植被和水分因子为重要影响因素。等级划分结果表明,景观尺度上,翅碱蓬滩涂、水体面积大小是主要影响因素;微生境尺度上,植被盖度和水深为主要限制因子;在斑块尺度上,斑块类型对丹顶鹤生境选择最为重要。研究认为,在黄河三角洲自然保护区,景观尺度是影响丹顶鹤生境选择的主要尺度,景观尺度因子通过与微生境和斑块尺度因子的独立和联合作用制约着丹顶鹤在保护区的生境选择和空间分布格局。建议加强对翅碱蓬滩涂、芦苇沼泽、水体等湿地生境的保护和管理,规范和控制保护区内人类活动强度。  相似文献   

5.
生境分化是群落物种缓解种间竞争压力,实现同域稳定共存的重要途径,是群落生态学领域的重要研究内容。同域动物的生境分化是空间尺度依赖的生态过程,从不同空间尺度分层研究物种的生境分化,对于全面了解同域动物的共存模式和机制,以及实现多物种整合保护都具有重要意义。2018年1月至8月,在四川白水河国家级自然保护区对同域分布的红腹锦鸡(Chrysolophus pictus)和红腹角雉(Tragopan temmminckii)进行了野外调查,基于MaxEnt模型和样方法,从宏生境和微生境两个空间尺度对其生境分化进行了研究。结果显示:1)在宏生境尺度,两种雉类的适宜宏生境重叠面积达44.59 km~2,分别占红腹锦鸡和红腹角雉适宜宏生境面积的58.73%和44.3%,表明二者在宏生境尺度上没有发生明显的种间分化;2)微生境尺度是两种雉类生境分化的关键尺度,海拔、坡位、最近水源距离和乔木层盖度4个特征上的显著差异,使二者的微生境发生显著的种间分化;3)虽然在不同空间尺度下具有不同的分化程度和方式,但两种雉类在海拔适应性、人为干扰耐受性以及对水源的依赖性上的差异在两个尺度下表现出了一定的一致性。此外,基于二者生境需求的异同,提出了控制人为干扰、加强宣传教育、维持自然植被多样性和镶嵌格局等针对该区域雉类物种共同保护的建议。  相似文献   

6.
钟明  侍昊  安树青  冷欣  李宁 《生态科学》2016,35(4):205-209
生境是生物出现的环境空间, 开展野生动物的生境适宜性评价和生境破碎化研究, 有助于濒危动物的保育。随着生态学科的发展, 多元统计分析、景观生态学和3S 技术被用于生境适宜性评价中, 使其研究结果广泛应用于生境质量评估、生境承载力分析、物种潜在分布预测和物种濒危机制评价等方面。然而研究对象基础资料的缺乏和研究时间较短常局限生境适宜性评价研究继续深入。生境破碎化研究常集中在破碎化现状及其对生物的影响。时空尺度的扩展和研究方向的分化应是今后生境破碎化研究的发展趋势。  相似文献   

7.
生境破碎化对动物种群存活的影响   总被引:51,自引:12,他引:39  
武正军  李义明 《生态学报》2003,23(11):2424-2435
生境破碎是生物多样性下降的主要原因之一。通常以岛屿生物地理学、异质种群生物学和景观生态学的理论来解释不同空间尺度中生境破碎化的生态学效应。生境破碎化引起面积效应、隔离效应和边缘效应。这些效应通过影响动物种群的绝灭阈值、分布和多度、种间关系以及生态系统过程,最终影响动物种群的存活。野外研究表明,破碎化对动物的影响,因物种、生境类型和地理区域不同而有所变化,因此,预测物种在破碎生境中的存活比较困难。研究热点集中于:确定生境面积损失和生境斑块的空间格局对破碎景观中物种绝灭的相对影响,破碎景观中物种的适宜生境比例和绝灭阈值,异质种群动态以及生态系统的生态过程。随着3S技术的发展,生境破碎化模型趋于复杂,而发展有效的模型和验证模型将成为一项富有挑战性的任务。  相似文献   

8.
谢富赋  刘红玉  李玉凤  王娟  刘伶 《生态学报》2018,38(15):5584-5594
丹顶鹤作为湿地环境的指示物种,其种群数量逐年下降引起了野生动物保护工作者的广泛关注。近年来,随着研究的深入,鸟类生境选择具有多尺度特征的观点逐渐成为研究者的共识。江苏盐城自然保护区是丹顶鹤大陆西线种群最重要的越冬栖息地,选择该区域进行多尺度越冬生境选择研究对于丹顶鹤保护具有重要的现实意义。基于遥感影像和丹顶鹤越冬分布的调查,本文用极坐标的方法在GIS软件中对丹顶鹤分布定位进行制图。借助Arc GIS 10.2和fragstats 4.2软件,从点缓冲、景观和区域3个尺度系统分析丹顶鹤越冬生境多尺度利用特征。在点缓冲尺度上,通过缓冲分析和叠置分析描述丹顶鹤生境利用的强度,发现丹顶鹤连续利用生境和经常利用生境的植被类型是碱蓬,偶尔在芦苇中活动,偏好生境区植被覆盖度在30%以下,植被高度在60 cm以下。在景观尺度上,丹顶鹤偏好程度较高的前三类生境为芦苇沼泽、碱蓬沼泽、明水,对互花米草沼泽具有负向选择。在区域尺度上,受道路和土地利用干扰影响,丹顶鹤主要分布于保护区核心区的低干扰区域;除了干扰之外还与生境面积、生境破碎程度密切相关。综合三个尺度,研究得出丹顶鹤生境选择具有明显的多尺度利用特征,丹顶鹤保护需要考虑多尺度生境保护问题。  相似文献   

9.
不同生境条件下中国柽柳空间分布点格局分析   总被引:6,自引:0,他引:6  
通过聚类分析方法将黄河三角洲中国柽柳的生境划分为三种类型,即高盐干旱型生境,低盐干旱型生境和低盐湿润型生境;同时运用点格局分析方法,分析了不同生境中中国柽柳在不同尺度下空间分布规律,结果表明,高盐干旱和低盐干旱生境中龄级2的中国柽柳以及低盐湿润生境中龄级3的中国柽柳在所有尺度范围内都呈随机分布,而其它龄级在不同生境的空间分布规律具有较显著差异,说明黄河三角洲低龄级和高龄级中国柽柳能够通过调整空间分布模式来适应适应水盐平衡变化等生态过程;不同生境中的中国柽柳各龄级之间关系在不同尺度内呈正相关概率要大于呈负相关概率,个别尺度上某些龄级之间没有相关性.  相似文献   

10.
大型底栖动物是河流生态系统较好的指示类群,越来越广泛地应用于河流生态状况评价.识别大型底栖动物空间分布的影响因素可以分为宏观尺度因子、中观尺度因子和微观尺度因子.前人的研究较多集中于中观尺度.本研究基于10 m河段微生境因子与大型底栖动物调查,采用地统计学方法,在微观尺度上分析了大型底栖动物空间分布特征及其与微生境的关系.结果表明:不同生境类型中底栖动物指标存在差异性,激流、深潭和急流的Shannon指数平均值分别为2、1.9、1.78;大型底栖动物密度、生物量、丰富度指数及Shannon指数具有空间自相关性,存在一定的扩散效应;微生境因子与大型底栖动物指标及物种的空间关系存在差异性,其中,水深和流速与大型底栖动物关系的拟合度较弱,底质组成与大型底栖动物的拟合关系相对较好,底栖动物密度与粒径<4 mm底质体积百分比呈现正空间自相关,生物量、丰富度指数、Shannon指数与粒径>32 mm底质体积百分比呈现正空间自相关.本研究结果可为底栖动物扩散机制研究、调查样方设置、物理生境修复等提供参考.  相似文献   

11.
Abstract: Although numerous studies have examined habitat use by raccoons (Procyon lotor), information regarding seasonal habitat selection related to resource availability in agricultural landscapes is lacking for this species. Additionally, few studies using radiotelemetry have investigated habitat selection at multiple spatial scales or core-use areas by raccoons. We examined seasonal habitat selection of 55 (31 M, 24 F) adult raccoons at 3 hierarchical orders defined by the movement behavior of this species (second-order home range, second-order core-use area, and third-order home range) in northern Indiana, USA, from May 2003 to June 2005. Using compositional analysis, we assessed whether habitat selection differed from random and ranked habitat types in order of selection during the crop growing period (season 1) and corn maturation period (season 2), which represented substantial shifts in resource availability to raccoons. Habitat rankings differed across hierarchical orders, between seasons within hierarchical orders, and between sexes within seasons; however, seasonal and intersexual patterns of habitat selection were not consistent across hierarchical orders of spatial scale. When nonrandom utilization was detected, both sexes consistently selected forest cover over other available habitats. Seasonal differences in habitat selection were most evident at the core-area scale, where raccoon selection of agricultural lands was highest during the maturation season when corn was available as a direct food source. Habitat use did not differ from availability for either sex in either season at the third-order scale. The selection of forest cover across both seasons and all spatial orders suggested that raccoon distribution and abundance in fragmented landscapes is likely dependent on the availability and distribution of forest cover, or habitats associated with forest (i.e., water), within the landscape. The lack of consistency in habitat selection across hierarchical scales further exemplifies the need to examine multiple biological scales in habitat-selection studies.  相似文献   

12.
Habitat selection is a hierarchical process that may yield various patterns depending on the scales of investigation. We employed satellite radio‐telemetry to examine patterns of habitat selection by female woodland caribou in central Saskatchewan at both coarse (seasonal range) and fine (daily area) scales. At each scale, we converted spatial data describing compositions of available and used habitat to standardised resource selection indices and examined them with multivariate analyses of variance. Seasonal ranges generally showed preferential inclusion of peatlands and black spruce dominated stands relative to recently disturbed stands and early seral stage forests. In all populations, caribou preferred peatlands and black spruce forests to all other habitat types at the daily area scale, in general, these patterns may reveal the effective avoidance of wolves, the primary factor limiting caribou throughout the boreal forest. In three populations where seasonal ranges showed the selective inclusion of either young jack pine stands or clearcuts along with peatlands and black spruce forests, we found a relative avoidance of the clearcuts and young jack pine stands at the daily area scale. As all caribou populations in the area are thought to be relics of a once more continuous distribution, the seasonal range selection by animals in disturbed areas may better describe historic rather than current habitat selection. We found inter‐annual variation in selection at the coarser spatial scale in one population, and inter‐seasonal variation in selection at the finer spatial scale in three populations, indicating that the relative grains of the spatial and temporal scales coincide. We were better able to explain the seasonal variations in finer scale selection by considering available forage, a factor less likely than predation to limit woodland caribou populations. The data agree with the theory that the spatial and temporal hierarchy of habitat selection reflects the hierarchy of factors potentially limiting individual fitness.  相似文献   

13.
Habitat selection can be considered as a hierarchical process in which animals satisfy their habitat requirements at different ecological scales. Theory predicts that spatial and temporal scales should co‐vary in most ecological processes and that the most limiting factors should drive habitat selection at coarse ecological scales, but be less influential at finer scales. Using detailed location data on roe deer Capreolus capreolus inhabiting the Bavarian Forest National Park, Germany, we investigated habitat selection at several spatial and temporal scales. We tested 1) whether time‐varying patterns were governed by factors reported as having the largest effects on fitness, 2) whether the trade‐off between forage and predation risks differed among spatial and temporal scales and 3) if spatial and temporal scales are positively associated. We analysed the variation in habitat selection within the landscape and within home ranges at monthly intervals, with respect to land‐cover type and proxys of food and cover over seasonal and diurnal temporal scales. The fine‐scale temporal variation follows a nycthemeral cycle linked to diurnal variation in human disturbance. The large‐scale variation matches seasonal plant phenology, suggesting food resources being a greater limiting factor than lynx predation risk. The trade‐off between selection for food and cover was similar on seasonal and diurnal scale. Habitat selection at the different scales may be the consequence of the temporal variation and predictability of the limiting factors as much as its association with fitness. The landscape of fear might have less importance at the studied scale of habitat selection than generally accepted because of the predator hunting strategy. Finally, seasonal variation in habitat selection was similar at the large and small spatial scales, which may arise because of the marked philopatry of roe deer. The difference is supposed to be greater for wider ranging herbivores.  相似文献   

14.
Scale for resource selection functions   总被引:3,自引:0,他引:3  
Resource selection functions (RSFs) are statistical models defined to be proportional to the probability of use of a resource unit. My objective with this review is to identify how RSFs can be used to unravel the influence of scale in habitat selection. In wildlife habitat studies, including radiotelemetry, RSFs can be estimated using a variety of statistical methods, all of which can be used to explore the role of scale. All RSFs are bounded by the resolution of data and the spatial extent of the study area, but also allow predictor covariates to be measured at a variety of scales. Conditional logistic regression permits designs (e.g. matched case) that relate the process of habitat selection to a limited domain of resource units that might better characterize what is truly ‘available’ to the animal. Scale influences the process of habitat selection, e.g. food resources are often selected at fine spatial scales, whereas landscape patterns at much larger scales typically influence the location of home ranges. Scale also influences appropriate sampling in many ways: (1) heterogeneity might be obliterated (transmutation) if resolution or grain size is too large, (2) variance of habitat characteristics might be undersampled if extent or domain is too small, (3) timing and duration of observations can influence RSF models, and (d) both spatial and temporal autocorrelations can vary directly with the intensity of sampling. Using RSFs, researchers can examine habitat selection at multiple scales, and predictive models that bridge scales can be estimated. Using Geographical Information Systems, predictor covariates in RSF models can be measured at different scales easily so that the predictive ability of models at alternative spatial and temporal domains can be explored by the investigator. Identification of the scale that best explains the data can be evaluated by comparing alternative models using information‐theoretic metrics such as Akaike Information Criteria, and predictive capability of the models can be assessed using k‐fold cross validation.  相似文献   

15.
Small-scale temporal variation in abundances of fauna in marine soft sediments has long been recognised. Many studies on rocky intertidal shores have, however, focused on larger fauna in single habitats and have primarily examined relatively long time-scales. The implications of small-scale variability are frequently not adequately addressed in the studies of changes in fauna over longer time-scales. Without knowledge of the magnitude of variation at smaller scales, comparisons across longer time-scales may be confounded. In this study, the temporal variability of a number of co-existing species of microgastropods in patches of two different intertidal habitats (coralline turf and sediment) in Botany Bay, New South Wales, Australia, was measured using a nested, hierarchical sampling design incorporating temporal scales of weeks, 1 and 3 months. In addition to habitats, there were also spatial scales of metres between plots and 100s of metres between the locations. There was generally a lack of consistency in the trends of variance for the three temporal scales at the smallest spatial scale of plots. In addition, the different species, including those that were closely related, showed different patterns of variation, depending on the habitat and site. These data show the importance of incorporating adequate scales of sampling in different habitats when analysing the distribution and abundance of microbenthos in intertidal habitats.  相似文献   

16.
Scales and costs of habitat selection in heterogeneous landscapes   总被引:4,自引:0,他引:4  
Summary Two scales of habitat selection are likely to influence patterns of animal density in heterogeneous landscapes. At one scale, habitat selection is determined by the differential use of foraging locations within a home range. At a larger scale, habitat selection is determined by dispersal and the ability to relocate the home range. The limits of both scales must be known for accurate assessments of habitat selection and its role in effecting spatial patterns in abundance. Isodars, which specify the relationships between population density in two habitats such that the expected reproductive success of an individual is the same in both, allow us to distinguish the two scales of habitat selection because each scale has different costs. In a two-habitat environment, the cost of rejecting one of the habitats within a home range can be expressed as a devaluation of the other, because, for example, fine-grained foragers must travel through both. At the dispersal scale, the cost of accepting a new home range in a different habitat has the opposite effect of inflating the value of the original habitat to compensate for lost evolutionary potential associated with relocating the home range. These costs produce isodars at the foraging scale with a lower intercept and slope than those at the dispersal scale.Empirical data on deer mice occupying prairie and badland habitats in southern Alberta confirm the ability of isodar analysis to differentiate between foraging and dispersal scales. The data suggest a foraging range of approximately 60 m, and an effective dispersal distance near 140 m. The relatively short dispersal distance implies that recent theories may have over-emphasized the role of habitat selection on local population dynamics. But the exchange of individuals between habitats sharing irregular borders may be substantial. Dispersal distance may thus give a false impression of the inability of habitat selection to help regulate population density.  相似文献   

17.
Patterns and functioning of communities, which are determined by a set of processes operating at a large variety of spatial and temporal scales, exhibit quite high context-dependency and low predictability at the fine spatial scales at which recent studies have concentrated. More attention to broader scale and across-scale phenomena may be useful to search for general patterns and rules in communities. In this context, it is effective to incorporate hierarchical spatial scale explicitly into the experimental and sampling design of field studies, an approach referred to here as the spatial hierarchical approach, focusing on a particular assemblage in which biological interaction and species life history are well known. The spatial hierarchical approach can provide insight into the effects of scale in operating processes and answers to a number of important questions in community ecology such as: (1) detection of patterns and processes in spatiotemporal variability in communities, including how to explain the partitioning of pattern information of species diversity at a broad scale into finer scales, and the pattern of spatial variability of community properties at the finest spatial scale; (2) evaluation of changes in patterns observed in macroecology at finer scales; (3) testing of models explaining the coexistence of competing species; and (4) detection of latitudinal patterns in spatiotemporal variability in communities and their causal processes.  相似文献   

18.
Factors relevant to resource selection in carnivores may vary across spatial and temporal scales, both in magnitude and rank. Understanding relationships among carnivore occupancy, prey presence, and habitat characteristics, as well as their interactions across multiple scales, is necessary to improve our understanding of resource selection and predict population changes. We used a multi-scale dynamic hierarchical co-occurrence model with camera data to study bobcat and snowshoe hare occupancy in the Upper Peninsula of Michigan during winter 2012–2013. Bobcat presence was influenced at the local scale by snowshoe hare presence, and by road density at the local and larger scale when hare were absent. Hare distribution was related primarily to vegetation cover types, and detectability varied in space and time. Bobcat occupancy dynamics were influenced by different factors depending on the spatial scale considered and the resource availability context. Moreover, considering observed co-occurrence, we suggest that bobcat presence had a greater effect on hare occupancy than hare presence on bobcat occupancy. Our results highlight the importance of studying carnivore distributions in the context of predator-prey relationships and its interactions with environmental covariates at multiple spatial scales. Our approach can be applied to other carnivore species to provide insights beneficial for management and conservation.  相似文献   

19.
Many life-history characteristics of large mammals are scale sensitive. We provide examples where varying temporal and spatial scales can affect interpretation of data concerning life-history characteristics in large herbivores and carnivores and offer recommendations for selecting the most appropriate sampling scale or scales. We also document that some animals make decisions concerning their spatial distribution at scales well beyond the size of the home range. Conversely, other decisions involving sexual segregation of sexes, or where to give birth, may be made at scales below the level of the habitat patch. Such differences in behaviour affect our understanding of habitat selection in large herbivores, and interpreting tradeoffs between acquiring essential resources and avoiding predators. Moreover, some landscape attributes may be selected at one scale, whereas other characteristics of the environment may be selected at another. We argue that even sophisticated models for explaining the ecology and behaviour of mammals benefit from framing specific hypotheses that are related to the to the life-history characteristics of those animals. We also believe that the failure to consider and select the most appropriate scale, or suite of scales, may lead to the mismanagement of critical natural resources. We forge relationships among scale, life-history characteristics of mammals, and biodiversity. Finally, we synthesize the literature on scale for large mammals and make recommendations for future research.  相似文献   

20.
ABSTRACT The decline of many snake populations is attributable to habitat loss, and knowledge of habitat use is critical to their conservation. Resource characteristics (e.g., relative availability of different habitat types, soils, and slopes) within a landscape are scale-dependent and may not be equal across multiple spatial scales. Thus, it is important to identify the relevant spatial scales at which resource selection occurs. We conducted a radiotelemetry study of eastern hognose snake (Heterodon platirhinos) home range size and resource use at different hierarchical spatial scales. We present the results for 8 snakes radiotracked during a 2-year study at New Boston Air Force Station (NBAFS) in southern New Hampshire, USA, where the species is listed by the state as endangered. Mean home range size (minimum convex polygon) at NBAFS (51.7 ± 14.7 ha) was similar to that reported in other parts of the species’ range. Radiotracked snakes exhibited different patterns of resource use at different spatial scales. At the landscape scale (selection of locations within the landscape), snakes overutilized old-field and forest edge habitats and underutilized forested habitats and wetlands relative to availability. At this scale, snakes also overutilized areas containing sandy loam soils and areas with lower slope (mean slope = 5.2% at snake locations vs. 6.7% at random locations). We failed to detect some of these patterns of resource use at the home range scale (i.e., within the home range). Our ability to detect resource selection by the snakes only at the landscape scale is likely the result of greater heterogeneity in macrohabitat features at the broader landscape scale. From a management perspective, future studies of habitat selection for rare species should include measurement of available habitat at spatial scales larger than the home range. We suggest that the maintenance of open early successional habitats as a component of forested landscapes will be critical for the persistence of eastern hognose snake populations in the northeastern United States.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号