首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Under RNA virus infection, retinoic acid-inducible gene I (RIG-I) in host cells recognizes viral RNA and activates the expression of type I IFN. To investigate the roles of protein methyltransferases and demethylases in RIG-I antiviral signaling pathway, we screened all the known related enzymes with a siRNA library and identified LSD1 as a positive regulator for RIG-I signaling. Exogenous expression of LSD1 enhances RIG-I signaling activated by virus stimulation, whereas its deficiency restricts it. LSD1 interacts with RIG-I, promotes its K63-linked polyubiquitination and interaction with VISA/MAVS. Interestingly, LSD1 exerts its function in antiviral response not dependent on its demethylase activity but through enhancing the interaction between RIG-I with E3 ligases, especially TRIM25. Furthermore, we provide in vivo evidence that LSD1 increases antiviral gene expression and inhibits viral replication. Taken together, our findings demonstrate that LSD1 is a positive regulator of signaling pathway triggered by RNA-virus through mediating RIG-I polyubiquitination.  相似文献   

2.
The mitochondrial antiviral signaling (MAVS) protein on the mitochondrial outer membrane acts as a central signaling molecule in the RIG-I-like receptor (RLR) signaling pathway by linking upstream viral RNA recognition to downstream signal activation. We previously reported that mitochondrial E3 ubiquitin ligase, MARCH5, degrades the MAVS protein aggregate and prevents persistent downstream signaling. Since the activated RIG-I oligomer interacts and nucleates the MAVS aggregate, MARCH5 might also target this oligomer. Here, we report that MARCH5 targets and degrades RIG-I, but not its inactive phosphomimetic form (RIG-IS8E). The MARCH5-mediated reduction of RIG-I is restored in the presence of MG132, a proteasome inhibitor. Upon poly(I:C) stimulation, RIG-I forms an oligomer and co-expression of MARCH5 reduces the expression of this oligomer. The RING domain of MARCH5 is necessary for binding to the CARD domain of RIG-I. In an in vivo ubiquitination assay, MARCH5 transfers the Lys 48-linked polyubiquitin to Lys 193 and 203 residues of RIG-I. Thus, dual targeting of active RIG-I and MAVS protein oligomers by MARCH5 is an efficient way to switch-off RLR signaling. We propose that modulation of MARCH5 activity might be beneficial for the treatment of chronic immune diseases.  相似文献   

3.
Antiviral innate immunity pathways   总被引:27,自引:0,他引:27  
Seth RB  Sun L  Chen ZJ 《Cell research》2006,16(2):141-147
  相似文献   

4.
Retinoic acid inducible gene I (RIG-I) and mitochondrial antiviral signaling (MAVS) proteins have recently been found to operate in a pathway for the detection and subsequent elimination of replicating viral genomes. Because of this innate immunity role, RIG-I and MAVS are candidates for studies of disease resistance. The objectives of this work were to (1) radiation hybrid (RH) map bovine RIG-I and MAVS and (2) perform comparative sequence analysis of partial genomic sequence from each gene. Using a bovine 5000(rad) RH panel, RIG-I was localized to BTA08 (LOD > 12) and MAVS was localized to BTA13 (LOD > 12). RIG-I exon 14 and partial MAVS exon five were sequenced in nine breeds and compared with available sequence from the Bovine Genome Project. RIG-I exon 14 and partial MAYS exon five were conserved in all samples examined. One T-A transversion SNP was found in intronic sequence downstream of RIG-I exon 14.  相似文献   

5.
C Wen  Z Yan  X Yang  K Guan  C Xu  T Song  Z Zheng  W Wang  Y Wang  M Zhao  Y Zhang  T Xu  J Dou  J Liu  Q Xu  X He  C Wei  H Zhong 《PloS one》2012,7(7):e41687

Background

Innate immunity to viruses involves receptors such as RIG-I, which senses viral RNA and triggers an IFN-β signaling pathway involving the outer mitochondrial membrane protein MAVS. However, the functional status of MAVS phosphorylation remains elusive.

Methodology/Principal Findings

Here we demonstrate for the first time that MAVS undergoes extensive tyrosine phosphorylation upon viral infection, indicating that MAVS phosphorylation might play an important role in MAVS function. A tyrosine-scanning mutational analysis revealed that MAVS tyrosine-9 (Y9) is a phosphorylation site that is required for IFN-β signaling. Indeed, MAVS Y9F mutation severely impaired TRAF3/TRAF6 recruitment and displayed decreased tyrosine phosphorylation in response to VSV infection compared to wild type MAVS. Functionally, MAVS Y9 phosphorylation contributed to MAVS antiviral function without interfering with its apoptosis property.

Conclusions/Significance

These experiments identify a novel residue of MAVS that is crucially involved in the recruitment of TRAF3/TRAF6 and in downstream propagation of MAVS signaling.  相似文献   

6.
RIG-I pathway signaling of innate immunity against RNA virus infection is organized between the ER and mitochondria on a subdomain of the ER called the mitochondrial-associated ER membrane (MAM). The RIG-I adaptor protein MAVS transmits downstream signaling of antiviral immunity, with signaling complexes assembling on the MAM in association with mitochondria and peroxisomes. To identify components that regulate MAVS signalosome assembly on the MAM, we characterized the proteome of MAM, ER, and cytosol from cells infected with either chronic (hepatitis C) or acute (Sendai) RNA virus infections, as well as mock-infected cells. Comparative analysis of protein trafficking dynamics during both chronic and acute viral infection reveals differential protein profiles in the MAM during RIG-I pathway activation. We identified proteins and biochemical pathways recruited into and out of the MAM in both chronic and acute RNA viral infections, representing proteins that drive immunity and/or regulate viral replication. In addition, by using this comparative proteomics approach, we identified 3 new MAVS-interacting proteins, RAB1B, VTN, and LONP1, and defined LONP1 as a positive regulator of the RIG-I pathway. Our proteomic analysis also reveals a dynamic cross-talk between subcellular compartments during both acute and chronic RNA virus infection, and demonstrates the importance of the MAM as a central platform that coordinates innate immune signaling to initiate immunity against RNA virus infection.  相似文献   

7.
Hepatitis C virus (HCV) infection is sensed in the host cell by the cytosolic pathogen recognition receptor RIG-I. RIG-I signaling is propagated through its signaling adaptor protein MAVS to drive activation of innate immunity. However, HCV blocks RIG-I signaling through viral NS3/4A protease cleavage of MAVS on the mitochondrion-associated endoplasmic reticulum (ER) membrane (MAM). The multifunctional HCV NS3/4A serine protease is associated with intracellular membranes, including the MAM, through membrane-targeting domains within NS4A and also at the amphipathic helix α(0) of NS3. The serine protease domain of NS3 is required for both cleavage of MAVS, a tail-anchored membrane protein, and processing the HCV polyprotein. Here, we show that hydrophobic amino acids in the NS3 helix α(0) are required for selective cleavage of membrane-anchored portions of the HCV polyprotein and for cleavage of MAVS for control of RIG-I pathway signaling of innate immunity. Further, we found that the hydrophobic composition of NS3 helix α(0) is essential to establish HCV replication and infection. Alanine substitution of individual hydrophobic amino acids in the NS3 helix α(0) impaired HCV RNA replication in cells with a functional RIG-I pathway, but viral RNA replication was rescued in cells lacking RIG-I signaling. Therefore, the hydrophobic amphipathic helix α(0) of NS3 is required for NS3/4A control of RIG-I signaling and HCV replication by directing the membrane targeting of both viral and cellular substrates.  相似文献   

8.
9.

Background

RIG-I is a pivotal receptor that detects numerous RNA and DNA viruses. Thus, its defectiveness may strongly impair the host antiviral immunity. Remarkably, very little information is available on RIG-I single-nucleotide polymorphisms (SNPs) presenting a functional impact on the host response.

Methodology/Principal Findings

Here, we studied all non-synonymous SNPs of RIG-I using biochemical and structural modeling approaches. We identified two important variants: (i) a frameshift mutation (P229fs) that generates a truncated, constitutively active receptor and (ii) a serine to isoleucine mutation (S183I), which drastically inhibits antiviral signaling and exerts a down-regulatory effect, due to unintended stable complexes of RIG-I with itself and with MAVS, a key downstream adapter protein.

Conclusions/Significance

Hence, this study characterized P229fs and S183I SNPs as major functional RIG-I variants and potential genetic determinants of viral susceptibility. This work also demonstrated that serine 183 is a residue that critically regulates RIG-I-induced antiviral signaling.  相似文献   

10.
Interferon (IFN) signaling is initiated by the recognition of viral components by host pattern recognition receptors. Dengue virus (DEN) triggers IFN-β induction through a molecular mechanism involving the cellular RIG-I/MAVS signaling pathway. Here we report that the MAVS protein level is reduced in DEN-infected cells and that caspase-1 and caspase-3 cleave MAVS at residue D429. In addition to its well-known function in IFN induction, MAVS is also a proapoptotic molecule that triggers disruption of the mitochondrial membrane potential and activation of caspases. Although different domains are required for the induction of cytotoxicity and IFN, caspase cleavage at residue 429 abolished both functions of MAVS. The apoptotic role of MAVS in viral infection and double-stranded RNA (dsRNA) stimulation was demonstrated in cells with reduced endogenous MAVS expression induced by RNA interference. Even though IFN-β promoter activation was largely suppressed, DEN production was not affected greatly in MAVS knockdown cells. Instead, DEN- and dsRNA-induced cell death and caspase activation were delayed and attenuated in the cells with reduced levels of MAVS. These results reveal a new role of MAVS in the regulation of cell death beyond its well-known function of IFN induction in antiviral innate immunity.In the battle of hosts and microbes, the innate immune system uses pathogen recognition receptors (PRRs) to sense pathogen-associated molecular patterns (23). There are several functionally distinct classes of PRRs, such as the transmembrane (TM) Toll-like receptors (TLRs) and the intracellular retinoic acid-inducible gene I (RIG-I)-like helicase (RLH) receptors (15, 23, 25, 38). RLHs, including RIG-I and melanoma differentiation-associated gene 5 (MDA5), comprise an N-terminal caspase recruitment domain (CARD), a middle DEXD/H box RNA helicase domain, and a C-terminal domain. RLHs sense intracellular viral RNA and initiate an antiviral interferon (IFN) response (1, 43). RIG-I binding to viral RNA triggers conformational changes that expose the CARD for subsequent signaling (42). The adaptor molecule providing a link between RIG-I and downstream events was identified independently by four research groups as a mitochondrial CARD-containing protein, which was named mitochondrial antiviral signaling protein (MAVS) (34), IFN-β promoter stimulator 1 (IPS-1) (12), virus-induced signaling adaptor (VISA) (40), and CARD adaptor-inducing IFN-β (Cardif) (24). We refer to this adaptor as MAVS in this paper. MAVS transduces signals from RIG-I through CARD-CARD interactions, which then lead to interferon regulatory factor 3 (IRF-3) and NF-κB activation of IFN-β induction through a signaling cascade involving IKKα/β/γ, IKKɛ, and TBK1 (15). Recently, a protein termed STING (11) or MITA (47) was identified as a mediator that acts downstream of RIG-I and MAVS and upstream of TBK1.MAVS protein contains an N-terminal CARD required for signaling, a proline-rich domain that interacts with TRAF3, and a C-terminal TM region that targets MAVS to the mitochondrial outer membrane (29). Several cellular and viral proteins target MAVS in the attenuation of the IFN induction pathway. Cleavage of MAVS by hepatitis C virus (HCV) and hepatitis A virus (HAV) proteases, at residues C508 (18, 24) and Q428 (41), respectively, results in the loss of MAVS mitochondrial localization, thereby disrupting its function in IFN induction. Another mitochondrial outer membrane protein, NLRX1, can sequester MAVS from its association with RIG-I and act as a negative regulator of the IFN pathway (28). MAVS was recently found to be cleaved and inactivated by caspases during apoptosis (31, 33).The caspases are a well-known family of cysteinyl aspartate-specific proteases. The diverse roles of caspases in the cell cycle, proliferation, differentiation, cytokine production, innate immune regulation, and microbial infection suggest various functions of caspases beyond apoptosis (13, 14). The caspases can be separated into two subfamilies, namely, the cell death and inflammation subfamilies. In response to apoptotic stimuli, the initiators caspase-2, -8, -9, and -10 and effectors caspase-3, -6, and -7 mediate cell death events. Caspase-1, -4, -5, and -12 are known as the inflammatory caspases. Caspase-1 is involved in the cleavage and maturation of cytokines (8, 17). Caspase-8 and -10 were discovered as essential components that mediate antiviral signaling (37). Caspase-1 and -3 are activated in innate immune signaling (32). These findings indicate that caspases are involved in the regulation of innate immunity, in addition to their well-known apoptotic role. However, the details of how caspases are activated, the role of caspase activation, and how caspases manipulate the signaling pathways in innate immunity are still obscure.The family Flaviviridae contains three genera: Hepacivirus, Flavivirus, and Pestivirus. Infections with flaviviruses, such as dengue virus (DEN), Japanese encephalitis virus, and West Nile virus, are emerging worldwide. DEN triggers IFN-β through a molecular mechanism involving the RIG-I/MAVS signaling pathway (5, 20). In this study, we found that MAVS is cleaved during DEN serotype 2 (DEN-2) infection, in a caspase-dependent manner; this contrasts with viral protease-dependent cleavage of MAVS during infection with HCV and HAV. In a cell-free caspase assay system, MAVS was cleaved at residue D429 by caspase-1 and caspase-3. Cleaved MAVS failed to induce IFN production and caspase activation, and overexpression of MAVS also triggered caspase activation, which then negatively regulated its own function. Importantly, the role of MAVS in viral infection was verified by knockdown of MAVS expression. We discuss the possible regulatory mechanisms of MAVS and the biological significance of this cleavage event by caspases in the context of understanding how these apoptosis-related proteases might achieve cross talk with the innate immune pathway during viral infection.  相似文献   

11.
12.
MasterCARD: a priceless link to innate immunity   总被引:1,自引:0,他引:1  
Intracellular viral infection is detected by the cytoplasmic RNA helicase RIG-I, which has an essential role in initiating the host antiviral response. The adaptor molecule that connects RIG-I sensing of incoming viral RNA to downstream signaling and gene activation has recently been elucidated by four independent research groups, and has been ascribed four different names: MAVS, IPS-1, VISA and Cardif. The fact that MAVS/IPS-1/VISA/Cardif localizes to the mitochondrial membrane suggests a link between viral infection, mitochondrial function and development of innate immunity. Furthermore, the hepatitis C virus NS3/4A protease specifically cleaves MAVS/IPS-1/VISA/Cardif as part of its immune-evasion strategy. These studies highlight a novel role for the mitochondria and for caspase activation and recruitment domain (CARD)-containing proteins in coordinating immune and apoptotic responses.  相似文献   

13.
Mitochondria, dynamic organelles that undergo continuous cycles of fusion and fission, are the powerhouses of eukaryotic cells. Recent research indicates that mitochondria also act as platforms for antiviral immunity in vertebrates. Mitochondrial-mediated antiviral immunity depends on activation of the retinoic acid-inducible gene I (RIG-I)-like receptors signal transduction pathway and the participation of the mitochondrial outer membrane adaptor protein “mitochondrial antiviral signaling (MAVS)”. Here we discuss recent findings that suggest how mitochondria contribute to antiviral innate immunity.  相似文献   

14.
RACK1 attenuates RLR antiviral signaling by targeting VISA-TRAF complexes   总被引:1,自引:0,他引:1  
Virus-induced signaling adaptor (VISA), which mediates the production of type I interferon, is crucial for the retinoic acid-inducible gene I (RIG-I)-like receptor (RLR) signaling pathway. Upon viral infection, RIG-I recognizes double-stranded viral RNA and interacts with VISA to mediate antiviral innate immunity. However, the mechanisms underlying RIG/VISA-mediated antiviral regulation remain unclear. In this study, we confirmed that receptor for activated C kinase 1 (RACK1) interacts with VISA and attenuates the RIG/VISA-mediated antiviral innate immune signaling pathway. Overexpression of RACK1 inhibited the interferon-β (IFN-β) promoter; interferon-stimulated response element (ISRE); nuclear factor kappa B (NF-κB) activation; and dimerization of interferon regulatory factor 3 (IRF3) mediated by RIG-I, VISA, and TANK-binding kinase 1 (TBK1). A reduction in RACK1 expression level upon small interfering RNA knockdown increased RIG/VISA-mediated antiviral transduction. Additionally, RACK1 disrupted formation of the VISA-tumor necrosis factor receptor-associated factor 2 (TRAF2), VISA-TRAF3, and VISA-TRAF6 complexes during RIG-I/VISA-mediated signal transduction. Additionally, RACK1 enhanced K48-linked ubiquitination of VISA, attenuated its K63-linked ubiquitination, and decreased VISA-mediated antiviral signal transduction. Together, these results indicate that RACK1 interacts with VISA to repress downstream signaling and downregulates virus-induced IFN-β production in the RIG-I/VISA signaling pathway.  相似文献   

15.
16.
Influenza A virus (IAV) triggers a contagious respiratory disease that produces considerable lethality. Although this lethality is likely due to an excessive host inflammatory response, the negative feedback mechanisms aimed at regulating such a response are unknown. In this study, we investigated the role of the eight "suppressor of cytokine signaling" (SOCS) regulatory proteins in IAV-triggered cytokine expression in human respiratory epithelial cells. SOCS1 to SOCS7, but not cytokine-inducible Src homology 2-containing protein (CIS), are constitutively expressed in these cells and only SOCS1 and SOCS3 expressions are up-regulated upon IAV challenge. Using distinct approaches affecting the expression and/or the function of the IFNalphabeta receptor (IFNAR)1, the viral sensors TLR3 and retinoic acid-inducible gene I (RIG-I) as well as the mitochondrial antiviral signaling protein (MAVS, a RIG-I signaling intermediate), we demonstrated that SOCS1 and SOCS3 up-regulation requires a TLR3-independent, RIG-I/MAVS/IFNAR1-dependent pathway. Importantly, by using vectors overexpressing SOCS1 and SOCS3 we revealed that while both molecules inhibit antiviral responses, they differentially modulate inflammatory signaling pathways.  相似文献   

17.
RIG-I belongs to a type of intracellular pattern recognition receptors involved in the recognition of viral RNA by the innate immune system. A report by Peisley et al. published in Nature provides the crystal structure of human RIG-I revealing a tetrameric architecture of the RIG-I 2-CARD domain bound by three K63-linked ubiquitin chains, uncovering its activation mechanism for downstream signaling.The recognition of microbial-derived nucleic acids and the correct and specific activation of the molecular machinery governing the mammalian immune response are paramount to host survival during viral infection. Viral RNA represents a key trigger for the activation and mobilization of a series of pattern recognition receptors (PRRs) such as the Toll-like receptor (TLR) and retinoic acid-inducible gene 1 (RIG-I)-like receptor (RLR) families. While the TLRs are restricted to the cell surface or inside endosomal compartments, the RLRs are present in the cytosol and act as the key sentinels of actively invading and replicating viruses.The RLR family of receptors, RIG-I and Melanoma Differentiation-Associated protein 5 (MDA-5), are characterised by 3 distinct signaling domains critical for viral RNA recognition and response. The C-terminal repressor domain and the internal ATPase-containing DExD/H-box helicase domain of RIG-I function together to facilitate binding of viral dsRNA which contain either a 5′-ppp motif or 5′ blunt-end base-paired RNA with a triphosphate motif, moieties absent on self-nucleic acids1. Upon viral RNA ligation, two N-terminal caspase activation and recruitment domains (CARD), known as 2-CARD, on RIG-I propagate signal transduction via interactions with mitochondrial antiviral signaling protein (MAVS)2. Recent molecular and structural studies have elucidated the mechanisms by which RLR-activated MAVS mediates the antiviral response. During RIG-I signaling, MAVS forms large multimeric prion-like filaments on the mitochondrial membrane which are essential for RIG-I-mediated type I interferon (IFN) production3. Such functional aggregates are capable of recruiting key downstream signaling components such as members of TNF receptor associated factors (TRAF) family, resulting in the activation of the MAPKs, the NF-κB pathway and interferon regulatory factor 3/7 (IRF3/7) and consequently culminating in the upregulation of protective IFNs and pro-inflammatory cytokines. Viral infection is sufficient to convert nearly all endogenous detectable MAVS to functionally active aggregates, and interestingly this phenomenon can be recapitulated in vitro using only mitochondria, RIG-I and K63-linked ubiquitin chains, underscoring the functional importance of polyubiquitination events during RIG-I signaling4.In contrast to the well-documented and -accepted paradigm of MAVS activation, the model of RIG-I-mediated activation has remained incompletely understood. The classical model holds that RIG-I remains in an auto-repressed state in the absence of ligand. Upon viral recognition, the E3 ubiquitin ligase tripartite motif 25 (TRIM25) binds to the 2-CARD domain of RIG-I, resulting in the covalent conjugation of K63-linked polyubiquitin chains to induce a conformation change in the receptor and facilitate a “release” of the 2-CARD domain for MAVS interaction and activation5. However, this simple release model of the 2-CARD domain does not reconcile with recent compelling reports that RIG-I can act as a receptor for unanchored, non-covalently attached ubiquitin chains and that polyubiquitination of RIG-I induces the oligomerization of a heterotetrameric complex consisting of 4 RIG-I and 4 K63-ubiqutin chain molecules6,7. In addition, although K63-ubiquitination is essential for the signaling potential of isolated 2-CARD molecules, full-length RIG-I can form filaments around the ends of dsRNA molecules, allowing 2-CARD regions of RIG-I molecules to come into close proximity to each other and facilitate MAVS aggregation in an ubiquitin-independent manner8.Although such conflicting reports seem to propose vastly different models of RIG-I activation, an elegent study published in Nature by Peisley et al.9 uses biochemical and structural studies to reconcile the different models and they finally offer a unified understanding of RIG-I receptor activation. They resolved the crystal structure of human RIG-I 2-CARD in complex with K63-ubiquitin at 3.7 Å. The structure revealed the tetrameric architecture of RIG-I 2-CARD bound by three K63 ubiquitin chains (Figure 1). Crystallization and structure determination reveal that four 2-CARD subunits form a tetrameric helical assembly, termed the “lock washer”, with the two ends displaced by half the thickness of 2-CARD.Open in a separate windowFigure 1A model of RIG-I-mediated antiviral response.Two key questions arise from the RIG-I 2-CARD structure. First, how does the tetrameric architecture of RIG-I serve as a platform to activate downstream signaling? The CARD domain belongs to the death domain (DD) superfamily, members of which have a similar three-dimensional fold. The structures of other DD oligomers such as Myddosome, PIDDosome, or FAS-FADD complex have recently been resolved. The assembly of DD oligomers is usually mediated at six surface areas, with the helical oligomeric structure of upstream signaling molecules serving as a scaffold to assemble the downstream DD oligomers through helical extension. In the current study, the authors show that the assembly and stability of the tetramer and its IFN-β signaling potential are dependent on several intermolecular and intramolecular CARD interactions by generating mutants on different interaction surfaces and analyzing their tetramer formation and IFN-β induction abilities. MAVS filament formation assays indicate that the helical tetrameric structure of RIG-I 2-CARD serves as the platform for MAVS-CARD filament assembly, with the top surface of the second CARD as the primary site for MAVS recruitment9.The second pertinent question addressed is how the interaction between ubiquitin and 2-CARD contributes to downstream signaling? Unlike other DD oligomers, tetramer formation of isolated RIG-I 2-CARD requires K63-linked ubiquitin chains. The structure predicts that longer ubiquitin chains might wrap around the 2-CARD tetramer at 1:4 or 2:4 molar ratios to stabilize the 2-CARD tetramerization. Another key problem addressed in this study is the relationship between the covalent conjugation and non-covalent binding of K63-ubiquitin in stabilizing 2-CARD tetramers during RIG-I signaling. The authors challenge previous publications on the significance of 6 lysine (K) residues in both covalent conjugation and non-covalent K63-ubiquitin binding.The authors show that only K6 is covalently conjugated with K63-ubiquitin chains and that non-covalent binding of K63-ubiquitin to 2-CARD can induce a further stabilization of the tetramer complex. RIG-I filament formation on dsRNA with appropriate length can also compensate for the requirement of both covalent and non-covalent K63-ubiquitin binding. Thus they arrive at the conclusion that these three mechanisms might act synergistically for signal activation. This compensatory mechanism could guarantee the detection of foreign pathogen RNA in case of the absence of one or two of the mechanisms or may allow an amplification of the signal potential. One could speculate that such functional redundancy in the initiation stage of signal activation may be a common theme in other innate immunity pathways.The significance of this study lies in the resolution of the structural basis of the activated RIG-I 2-CARD tetramer and its initiation of MAVS aggregation and filament formation — the first elements of the dsRNA sensing signaling cascade that lead to production of type I IFNs and pro-inflammatory cytokines. It provides another detailed example of DD oligomers and adds to the growing realization of a common role of oligomeric molecular scaffolds in mediating innate immune signaling. Such exciting findings will no doubt instigate further study into the exact molecular interactions and mechanisms controlling dsRNA sensing. For example, the authors use a crystallized K115A/R117A 2-CARD double mutant for structural analysis; although it retains the ability to tetramerize with K63-ubiquitin and activate type I IFNs, the structure might still not be consistent with the wild-type 2-CARD and this may warrant further investigation. Furthermore, whether the RIG-I signaling activation mechanism that derived from this structure could be generalized and applied to other CARD domain receptors such as MDA-5, NOD1, NOD2, IPAF and NLRP1 will require further investigation. By utilizing advanced structural determination techniques coupled with sophisticated in vitro assays such as those described in this study, these questions will no doubt be addressed in the near future.  相似文献   

18.
Lysine 63 (K63)-linked ubiquitination of RIG-I plays a critical role in the activation of type I interferon pathway, yet the molecular mechanism responsible for its deubiquitination is still poorly understood. Here we report that the deubiquitination enzyme ubiquitin-specific protease 3 (USP3) negatively regulates the activation of type I interferon signaling by targeting RIG-I. Knockdown of USP3 specifically enhanced K63-linked ubiquitination of RIG-I, upregulated the phosphorylation of IRF3 and augmented the production of type I interferon cytokines and antiviral immunity. We further show that there is no interaction between USP3 and RIG-I-like receptors (RLRs) in unstimulated or uninfected cells, but upon viral infection or ligand stimulation, USP3 binds to the caspase activation recruitment domain of RLRs and then cleaves polyubiquitin chains through cooperation of its zinc-finger Ub-binding domain and USP catalytic domains. Mutation analysis reveals that binding of USP3 to polyubiquitin chains on RIG-I is a prerequisite step for its cleavage of polyubiquitin chains. Our findings identify a previously unrecognized role of USP3 in RIG-I activation and provide insights into the mechanisms by which USP3 inhibits RIG-I signaling and antiviral immunity.  相似文献   

19.
20.
RIG-I is a cytosolic pathogen recognition receptor that initiates immune responses against RNA viruses. Upon viral RNA recognition, antiviral signaling requires RIG-I redistribution from the cytosol to membranes where it binds the adaptor protein, MAVS. Here we identify the mitochondrial targeting chaperone protein, 14-3-3ε, as a RIG-I-binding partner and essential component of a translocation complex or "translocon" containing RIG-I, 14-3-3ε, and the TRIM25 ubiquitin ligase. The RIG-I translocon directs RIG-I redistribution from the cytosol to membranes where it mediates MAVS-dependent innate immune signaling during acute RNA virus infection. 14-3-3ε is essential for the stable interaction of RIG-I with TRIM25, which facilitates RIG-I ubiquitination and initiation of innate immunity against hepatitis C virus and other pathogenic RNA viruses. Our results define 14-3-3ε as a key component of a RIG-I translocon required for innate antiviral immunity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号