首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The C-terminal β-hairpin of NS2B (NS2Bc) in the dengue virus NS2B–NS3 protease is required for full enzymatic activity. In crystal structures without inhibitor and in the complex with bovine pancreatic trypsin inhibitor (BPTI), NS2Bc is displaced from the active site. In contrast, nuclear magnetic resonance (NMR) studies in solution only ever showed NS2Bc in the enzymatically active closed conformation. Here we demonstrate by pseudocontact shifts from a lanthanide tag that NS2Bc remains in the closed conformation also in the complex with BPTI. Therefore, the closed conformation is the best template for drug discovery.  相似文献   

2.
黄病毒NS2-3/NS3蛋白的结构与功能   总被引:2,自引:0,他引:2  
郑杰  赵启祖  赵耘  宁宜宝 《病毒学报》2007,23(3):235-239
猪瘟病毒(Classical swine fever virus,CSFV)、牛病毒性腹泻病病毒(Bovine viral diarrhea virus,BVDV)和羊边界病病毒(Border disease virus,BDV)共同组成黄病毒科(Flaviviridae)的瘟病毒属(Pestivirus)。近年来,对该属病毒的核酸序列、蛋白结构、基因组片段及其表达产物功能  相似文献   

3.
登革病毒的非结构蛋白NS3是一个三功能蛋白,其N端1/3具有丝氨酸样蛋白酶活性。该蛋白酶对聚蛋白前体的切割于关重要,故该蛋白已成为研制登革类疾病治疗试剂的重要靶标。本文对NS3蛋白酶的结构,功能,辅助因子和蛋白酶抑制剂等进行了综述。  相似文献   

4.
Metazoan replication-dependent histone mRNAs are only present in S-phase, due partly to changes in their stability. These mRNAs end in a unique stem–loop (SL) that is required for both translation and cell-cycle regulation. Previous studies showed that histone mRNA degradation occurs through both 5′→3′ and 3′→5′ processes, but the relative contributions are not known. The 3′ end of histone mRNA is oligouridylated during its degradation, although it is not known whether this is an essential step. We introduced firefly luciferase reporter mRNAs containing the histone 3′ UTR SL (Luc-SL) and either a normal or hDcp2-resistant cap into S-phase HeLa cells. Both mRNAs were translated, and translation initially protected the mRNAs from degradation, but there was a lag of ∼40 min with the uncleavable cap compared to ∼8 min for the normal cap before rapid decay. Knockdown of hDcp2 resulted in a similar longer lag for Luc-SL containing a normal cap, indicating that 5′→3′ decay is important in this system. Inhibition of DNA replication with hydroxyurea accelerated the degradation of Luc-SL. Knockdown of terminal uridyltransferase (TUTase) 4 but not TUTase 3 slowed the decay process, but TUTase 4 knockdown had no effect on destabilization of the mRNA by hydroxyurea. Both Luc-SL and its 5′ decay intermediates were oligouridylated. Preventing oligouridylation by 3′-deoxyadenosine (cordycepin) addition to the mRNA slowed degradation, in the presence or absence of hydroxyurea, suggesting oligouridylation initiates degradation. The spectrum of oligouridylated fragments suggests the 3′→5′ degradation machinery stalls during initial degradation, whereupon reuridylation occurs.  相似文献   

5.
登革病毒非结构蛋白NS3是一种多功能蛋白,N端具有Ser蛋白酶活性,C端具有RNA解旋酶及NTP磷酸酶、5'RNA-Z磷酸酶等活性,参与病毒前体的加工和病毒RNA的复制及基因组RNA的5’端加帽。NS3具有良好的免疫原性,存在多个登革病毒特异性CD4^ ,CD8^ T细胞表位,且多具有型间交叉免疫特性。登革病毒非结构蛋白NS3已成为有吸引力的抗病毒靶标。  相似文献   

6.
丙型肝炎病毒NS3蛋白酶的研究进展   总被引:1,自引:0,他引:1  
丙型肝炎病毒感染常呈慢性化,且易使病情进一步发展为肝硬化和肝细胞癌。其基因的多变性使得疫苗研究进展缓慢,鉴于NS3蛋白酶在病毒体的成熟和复制中所起的重要作用,阐明结构和功能,寻找其抑制剂可能对抗病毒治疗有重要意义。  相似文献   

7.
丙型肝炎病毒(HCV)NS3区是HCV的核酶区,编码的NS3蛋白有血清蛋白酶、NTP酶和RNA解旋酶的活性,可影响HCV的复制和增殖过程;而且HCVNS3区还可以激发机体的细胞免疫应答。目前HCVNS3区已成为研制抗HCV药物和疫苗的靶基因区,本文就HCVNS3区的研究现状进行了论述  相似文献   

8.
Tyrosine-based signals fitting the YXXØ motif mediate sorting of transmembrane proteins to endosomes, lysosomes, the basolateral plasma membrane of polarized epithelial cells, and the somatodendritic domain of neurons through interactions with the homologous μ1, μ2, μ3, and μ4 subunits of the corresponding AP-1, AP-2, AP-3, and AP-4 complexes. Previous x-ray crystallographic analyses identified distinct binding sites for YXXØ signals on μ2 and μ4, which were located on opposite faces of the proteins. To elucidate the mode of recognition of YXXØ signals by other members of the μ family, we solved the crystal structure at 1.85 Å resolution of the C-terminal domain of the μ3 subunit of AP-3 (isoform A) in complex with a peptide encoding a YXXØ signal (SDYQRL) from the trans-Golgi network protein TGN38. The μ3A C-terminal domain consists of an immunoglobulin-like β-sandwich organized into two subdomains, A and B. The YXXØ signal binds in an extended conformation to a site on μ3A subdomain A, at a location similar to the YXXØ-binding site on μ2 but not μ4. The binding sites on μ3A and μ2 exhibit similarities and differences that account for the ability of both proteins to bind distinct sets of YXXØ signals. Biochemical analyses confirm the identification of the μ3A site and show that this protein binds YXXØ signals with 14–19 μm affinity. The surface electrostatic potential of μ3A is less basic than that of μ2, in part explaining the association of AP-3 with intracellular membranes having less acidic phosphoinositides.  相似文献   

9.
BACKGROUND TO THE DEBATE: The World Health Organization (WHO) and its partners aim to treat 3 million people infected with HIV in poor and middle income countries with antiretroviral treatment by the end of 2005. The ambitious "3 by 5" initiative has had its supporters and its critics since its announcement in 2002.  相似文献   

10.
11.
Hyperphosphorylation of tau protein (tau) causes neurodegenerative diseases such as Alzheimer's disease (AD). Recent studies of the physiological correlation between tau and α-synuclein (α-SN) have demonstrated that: (a) phosphorylated tau is also present in Lewy bodies, which are cytoplasmic inclusions formed by abnormal aggregation of α-SN; and (b) the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) increases the phosphorylation of tau as well as the protein level of α-SN in cultured neuronal cells, and also in mice. However, the molecular mechanism responsible for the α-SN-mediated hyperphosphorylation of tau remains to be elucidated. In this in vitro study, we found that: (a) α-SN directly stimulates the phosphorylation of tau by glycogen synthase kinase-3β (GSK-3β), (b) α-SN forms a heterotrimeric complex with tau and GSK-3β, and (c) the nonamyloid beta component (NAC) domain and an acidic region of α-SN are responsible for the stimulation of GSK-3β-mediated tau phosphorylation. Thus, it is concluded that α-SN functions as a connecting mediator for tau and GSK-3β, resulting in GSK-3β-mediated tau phosphorylation. Because the expression of α-SN is promoted by oxidative stress, the accumulation of α-SN induced by such stress may directly induce the hyperphosphorylation of tau by GSK-3β. Furthermore, we found that heat shock protein 70 (Hsp70) suppresses the α-SN-induced phosphorylation of tau by GSK-3β through its direct binding to α-SN, suggesting that Hsp70 acts as a physiological suppressor of α-SN-mediated tau hyperphosphorylation. These results suggest that the cellular level of Hsp70 may be a novel therapeutic target to counteract α-SN-mediated tau phosphorylation in the initial stage of neurodegenerative disease.  相似文献   

12.
The cholesterol metabolism pathway in Mycobacterium tuberculosis (M. tb) is a potential source of energy as well as secondary metabolite production that is important for survival of M. tb in the host macrophage. Oxidation and isomerization of 3β-hydroxysterols to 4-en-3-ones is requisite for sterol metabolism and the reaction is catalyzed by 3β-hydroxysteroid dehydrogenase (Rv1106c). Three series of 6-azasteroids and 4-azasteroids were employed to define the substrate preferences of M. tb 3β-hydroxysteroid dehydrogenase. 6-Azasteroids with large, hydrophobic side chains at the C17 position are the most effective inhibitors. Substitutions at C1, C2, C4 and N6 were poorly tolerated. Our structure-activity studies indicate that the 6-aza version of cholesterol is the best and tightest binding competitive inhibitor (Ki = 100 nM) of the steroid substrate and are consistent with cholesterol being the preferred substrate of M. tb 3β-hydroxysteroid dehydrogenase.  相似文献   

13.
The mating type locus (MAT) determines the three yeast cell types, a, α, and a/α. It has been proposed that alleles of this locus, MATa and MATα, encode regulators that control expression of unlinked genes necessary for mating and sporulation. Specifically, the α1 product of MATα is proposed to be a positive regulator of α-specific genes. To test this view, we have assayed RNA production from the α-specific STE3 gene in the three cell types and in mutants defective in MATα. The STE3 gene was cloned by screening a yeast genomic clone bank for plasmids that complement the mating defect of ste3 mutants. Using the cloned STE3 gene as a probe, we find that a cells produce STE3 RNA, whereas a and a/a cells do not. Furthermore, matα 1 mutants do not produce STE3 RNA, whereas matα 2 mutants do. These results show that the STE3 gene, required for mating only by α cells, is expressed only in α cells. They show also that production of RNA from the STE3 gene requires the α1 product of MATα. Thus α1 positively regulates at least one α-specific gene by increasing the level of that gene's RNA product.  相似文献   

14.
Hepatitis C represents a serious worldwide health-care problem. Recently, we have disclosed a novel class of P2–P4 macrocyclic inhibitors of NS3/4A protease containing a carbamate functionality as capping group at the P3 N-terminus. Herein we report our work aimed at further depeptidizing the P3 region by replacement of the urethane function with a succinamide motif. This peptidomimetic approach has led to the discovery of novel P2–P4 macrocyclic inhibitors of HCV NS3/4A protease with sub-nanomolar enzyme affinities. In addition to being potent inhibitors of HCV subgenomic replication, optimized analogues within this series have also presented attractive PK properties and showed promising liver levels in rat following oral administration.  相似文献   

15.
16.
17.
蜱传脑炎病毒是引起严重的中枢神经系统疾病蜱传脑炎的病原体,每年在欧洲、俄罗斯远东地区、日本和中国北部报道的蜱传脑炎病例数约为10000-12000例,且在我国和多个欧洲国家的发病率逐渐增高,正成为人类健康的潜在危害。主动免疫是预防蜱传脑炎的有效措施,包括我国在内的多个国家已研制出安全性较高的疫苗,但在我国流行省份的疫苗接种较为有限,特异性抗病毒药物的研发或许是治疗蜱传脑炎病毒感染的研究方向之一。蜱传脑炎病毒非结构蛋白NS2B-NS3与NS5因为在病毒基因组复制、加帽和宿主免疫调节中的重要作用,成为关键的抗病毒药物研发靶点。本文综述了蜱传脑炎病毒非结构蛋白NS2B-NS3与NS5的三维结构和抑制剂研发工作,为深入探究该病毒感染的分子机制和抗病毒药物研发提供参考。  相似文献   

18.
19.
RNA modification plays an important role in modulating host-pathogen interaction. Flavivirus NS5 protein encodes N-7 and 2′-O methyltransferase activities that are required for the formation of 5′ type I cap (m7GpppAm) of viral RNA genome. Here we reported, for the first time, that flavivirus NS5 has a novel internal RNA methylation activity. Recombinant NS5 proteins of West Nile virus and Dengue virus (serotype 4; DENV-4) specifically methylates polyA, but not polyG, polyC, or polyU, indicating that the methylation occurs at adenosine residue. RNAs with internal adenosines substituted with 2′-O-methyladenosines are not active substrates for internal methylation, whereas RNAs with adenosines substituted with N6-methyladenosines can be efficiently methylated, suggesting that the internal methylation occurs at the 2′-OH position of adenosine. Mass spectroscopic analysis further demonstrated that the internal methylation product is 2′-O-methyladenosine. Importantly, genomic RNA purified from DENV virion contains 2′-O-methyladenosine. The 2′-O methylation of internal adenosine does not require specific RNA sequence since recombinant methyltransferase of DENV-4 can efficiently methylate RNAs spanning different regions of viral genome, host ribosomal RNAs, and polyA. Structure-based mutagenesis results indicate that K61-D146-K181-E217 tetrad of DENV-4 methyltransferase forms the active site of internal methylation activity; in addition, distinct residues within the methyl donor (S-adenosyl-L-methionine) pocket, GTP pocket, and RNA-binding site are critical for the internal methylation activity. Functional analysis using flavivirus replicon and genome-length RNAs showed that internal methylation attenuated viral RNA translation and replication. Polymerase assay revealed that internal 2′-O-methyladenosine reduces the efficiency of RNA elongation. Collectively, our results demonstrate that flavivirus NS5 performs 2′-O methylation of internal adenosine of viral RNA in vivo and host ribosomal RNAs in vitro.  相似文献   

20.
Abstract

The interplay of enthalpy of the gauche effect (ΔH°GE) of the [X3′-C3′-C4′-O4′] fragment in various 3′-substituted (X) 2′,3′-dideoxythymidine derivatives 1–7 and the inherent anomeric effect drives the two-state North ? South equilibrium in the constituent sugar moiety. The group electronegativity of 3′-OCF3 substituent in Marriott's, Inamoto's and Mullay's scales has been determined from simple calibration graphs correlating the group electronegativity of various 3′-substituents (X) in 2′,3′-dideoxythymidine derivatives 1–7 with the experimental strength (ΔH°GE) of the [X3′-C3′-C4′-O4′] gauche effect. ΔH°GE has been experimentally determined from pseudorotational analyses of temperature-dependent 3JHH coupling constants, and can be used as an unambiguous tool for direct experimental estimation of the group electronegativity of a specific substituent covalently attached to 3′-carbon of 2′,3′-dideoxythymidine, which can be compared, in turn, with the theoretical estimation carried out according to Marriott's or Inamoto's procedure. Inconsistency found between theoretical values in Marriott's and Inamoto's scales, on the one hand, and between our experimental estimate and the theoretical value in Marriott's scale, on the other, have been solved by refining the electronegativity scale using our experimental data for 1–7.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号