首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
远缘杂交形成的二倍体鱼和多倍体鱼生殖细胞染色体研究   总被引:3,自引:0,他引:3  
本文采用性腺染色体制片及组织学切片方法,系统地研究了不同发育时期的鲫鲤杂交第二代(F2) (2n=100)、异源四倍体鲫鲤(4n=200)、三倍体鲫鱼(3n=150))、雌核发育二倍体鲫鲤第二代(G2)(2n=100)及鲤鱼(Cypninus carpio L)(2n=100)(对照组)生殖细胞的染色体特征.研究结果表明,对照组中鲤鱼精原细胞染色体数与体细胞染色体数一致,为二倍体精原细胞(2n=100),而远缘杂交形成的二倍体鱼和多倍体鱼的生殖细胞中则观察到明显的染色体数加倍现象,其中,鲫鲤杂交第二代(F2)精巢生殖细胞染色体数加倍现象特别丰富,占检测的染色体分裂相的21.6%,为其产生不减半的二倍体配子提供了直接的细胞学证据,同时也说明远缘杂交是导致生殖细胞染色体数加倍的一个重要因素.该研究在探讨多倍体鱼的发生及鱼类遗传育种方面具有重要意义.  相似文献   

2.
二倍体雌核发育鱼产生二倍体卵子的证据   总被引:14,自引:1,他引:13  
张纯  孙远东  刘少军  刘筠 《遗传学报》2005,32(2):136-144
二倍体雌核发育第 1代 (G1)产生的二倍体卵子经紫外线灭活的散鳞镜鲤精子诱导 ,无需染色体加倍处理 ,发育成二倍体雌核发育第 2代 (G2 ) ;G1 产生的二倍体卵子与雄性异源四倍体鲫鲤 (AT)产生的二倍体精子结合 ,形成新型两性可育的异源四倍体鲫鲤 (G1 ×AT)。对G2 和新四倍体 (G1 ×AT)的体细胞染色体数目、生殖细胞染色体行为及性腺结构、外形、生长速度等生物学特征进行了研究。结果表明 :G2 体细胞染色体数目为 2n =1 0 0。在 6~ 1 2月龄G2 中 ,没有发现性成熟的个体 ,组织学切片结果表明 ,G2 性腺处于卵原细胞增殖阶段 ,与 1龄G1 的性腺发育相似 ,性腺发育迟缓。对 6~ 8个月龄G2 性腺染色体制片进行观察 ,结果表明 ,G2 生殖细胞的染色体没有二价体的形成 ,只有有丝分裂的迹象 ,其有丝分裂中期不但有 2n =1 0 0的染色体分裂相 ,还有 4n =2 0 0的染色体分裂相 ,甚至有接近 8n(380 )的分裂相 ,说明 1龄G2 的性腺中存在 2n、4n等多种类型的生殖细胞 ,其中 4n的生殖细胞经正常的减数分裂后可产生二倍体卵子。核内复制 (pre meioticendoreduplication)学说可以较好地解释这种不减半配子产生的现象。新四倍体 (G1 ×AT)体细胞染色体数目为 4n =2 0 0 ,雌雄新四倍体 (G1 ×AT)具有正常的性腺发育 ,在繁殖季  相似文献   

3.
异源四倍体鲫鲤是湖南师范大学鱼类发育生物学实验室和湖南湘阴县东湖渔场在红鲫(♀)和湘江野鲤(♂)的杂交后代中选育出来的四倍体鱼,目前已连续繁殖14代(F3-F16),已形成一个四倍体性能代代相传、遗传性状稳定的四倍体鱼群体,这是世界上唯一人工培育的两性可育的异源四倍体鱼[1—2]。利用四倍体鱼与二倍体白鲫、二倍体鲤鱼杂交,可获得生长快、肉质鲜美、抗病力强等优良性状的不育三倍体湘云鲫、三倍体湘云鲤[3],并已在全国28个省市推广养殖,取得了显著的经济和社会效益。异源四倍体鲫鲤雌性个体产生的二倍体卵子具有两套染色体,在没有染色…  相似文献   

4.
二倍体鲫鲤F2产生不同倍性卵子的证据   总被引:4,自引:0,他引:4  
在检测到鲫鲤F2产生3种不同大小(直径分别为0.13 cm,0.17cm和0.2 cm)类型的卵子基础上,进行了F2(♀)×红鲫(♂)及F2(♀)×四倍体鲫鲤(♂)的交配实验.通过染色体计数和流式细胞仪分析,在F2(♀)×红鲫(♂)后代中获得了四倍体、三倍体、二倍体鱼;在F2(♀)×四倍体鲫鲤(♂)后代中获得了四倍体和三倍体鱼.这两个交配组合后代中出现的不同倍性的鱼类为证明鲫鲤F2能产生三倍体、二倍体和单倍体卵子提供了进一步证据.F2(♀)×红鲫(♂)中雄性四倍体鱼的存在说明在四倍体后代中存在基因型为XXXY的个体.对上述两个交配组合后代的四倍体鱼和三倍体鱼的性腺结构观察表明四倍体鱼是可育的,而三倍体鱼是不育的.作者认为鲫鲤F2能够产生二倍体和三倍体卵子与核内复制机制和生殖细胞的融合有关.  相似文献   

5.
不同倍性鱼的血细胞和精子DNA含量比较   总被引:8,自引:0,他引:8  
我们以前的研究表明, 以红鲫 (2n=100) 为母本及湘江野鲤 (2n=100) 为父本的杂交后代的F1-F2 为二倍体 (2n= 100)。在二倍体 F2 个体中, 存在能分别产生二倍体卵子和二倍体精子的雌、雄个体, 二倍体卵子和二倍体精子结合, 形成了两性可育的四倍体鱼 (F3)。目前四倍体鲫鲤已连续繁殖了 12 代 (F3-F14), 形成了一个遗传性状稳定的四倍体鱼群体 (4n= 200) (Liu et al.,2001; 孙远东等, 2003)。雌性四倍体鲫鲤产生的二倍体卵子经紫外线照射的散鳞镜鲤精子激活后,无须染色体加倍处理, 可发育为全雌性二倍体雌核发育后代 (G1) (2n=10…  相似文献   

6.
四倍体鲫鲤、三倍体湘云鲫染色体减数分裂观察   总被引:10,自引:0,他引:10  
用精巢细胞直接制片法观察了异源四倍体鲫鲤、三倍体湘云鲫和二倍体红鲫、湘江野鲤精母细胞染色体第一次减数分裂中期配对情况 ;作为对照 ,观察了上述四种鱼肾细胞的有丝分裂中期染色体。在精母细胞第一次减数分裂中 ,异源四倍体鲫鲤同源染色体两两配对 ,形成 10 0个二价体 ,没有观察到单价体、三价体和四价体 ;三倍体湘云鲫精母细胞形成 5 0个二价体和 5 0个单价体 ;红鲫和湘江野鲤精母细胞分别形成 5 0个二价体。肾细胞检测表明异源四倍体的染色体数目为 4n =2 0 0 ;湘云鲫为 3n =15 0 ;红鲫和湘江野鲤分别为 2n =10 0。减数分裂时染色体分布情况与肾细胞染色体检测结果相吻合。具有四套染色体的异源四倍体鲫鲤在减数分裂中只形成 10 0个二价体 ,而不形成 2 5个四价体或其它形式 ,为产生稳定一致的二倍体配子提供了重要的遗传保障 ,也为人工培育的异源四倍体鲫鲤群体能够世世代代自身繁衍下去提供了重要的遗传学证据。三倍体湘云鲫在减数分裂过程中出现二价体、单价体共存 ,同源染色体在配对和分离中出现紊乱 ,导致非整倍体生殖细胞的产生 ,为湘云鲫的不育性提供了染色体水平上的证据  相似文献   

7.
异源四倍体鲫鲤雌雄差异的RAPD标记   总被引:5,自引:1,他引:4  
异源四倍体鲫鲤是从红鲫和湘江野鲤的杂交后代选育出来的,已经形成了一个遗传性状稳定的四倍体鱼新种群。用异源四倍体鲫鲤(雄性)和二倍体白鲫(雌性)生产的三倍体湘云鲫已经在全国推广应用。因此,如果能够了解异源四倍体鲫鲤的性别分化机制,人为地控制异源四倍体鲫鲤的性别分化,生产出大量的超雄鱼,这对于三倍体湘云鲫的产业化生产有重要的意义。刘少军等对异源四倍体鲫鲤的染色体组型进行了分析,并没有发现异源四倍体鲫鲤有明显的特化的性染色体,这说明通过细胞遗传学研究异源四倍体鲫鲤的性别遗传机制是有困难的。    相似文献   

8.
雌核发育二倍体鲫鲤杂交克隆品系建立   总被引:1,自引:1,他引:0  
研究了雌核发育二倍体鲫鲤第2代(G2)产生的二倍体卵子在无染色体加倍情况下形成第3代(G3)的雌核发育细胞学行为,G3,G2×散鳞镜鲤和G2×四倍体鲫鲤的染色体数目.研究结果表明:(ⅰ)G2产生的二倍体卵子无需染色体加倍处理,仅在灭活散鳞镜鲤精子激活下,形成了大量G3.(ⅱ)G3和雌核发育二倍体鲫鲤第1代(G1)、G2一样,也表现出杂交特征,并且都是二倍体(2n=100);G2与二倍体散鳞镜鲤和四倍体鲫鲤分别交配形成了三倍体(3n=150)和四倍体(4n=200)鱼;(ⅲ)二倍体G2产生的二倍体卵子在雌核发育过程中,有明显第二极体排出,排除了二倍体卵子源于第二极体保留的可能.另外,还对二倍体鲫鲤产生二倍体卵子的机制进行了讨论.雌核发育二倍体鲫鲤杂交克隆品系建立证明二倍体卵子通过雌核发育形式可形成一个能产生二倍体卵子的新型二倍体鲫鲤品系,二倍体鲫鲤产生二倍体卵子的特殊繁殖方式在生物进化和生产应用方面都具有重要意义.  相似文献   

9.
具有天然雌核发育的多倍体杂种鱼可防止杂种优势的分离并保持其后代的杂种优势. 由于假设诱发的多倍体鱼类的生殖模式是天然雌核发育的, 我们进行了鲤鲫杂种的多倍体诱发, 目的是描述经染色体组叠加由有性鲤鲫二倍体转化为异源三倍体及异源四倍体克隆谱系. 鲤鲫杂种产生未减数而具有两亲本染色体组杂种卵子, 未减数的雌核可与入卵的雄核融合叠加形成三倍体合子. 鲤鲫异源三倍体胚胎发育正常, 部分异源三倍体雌性个体可产生未减数的、仍保留母本的三套染色体的成熟卵子. 绝大部分鲤鲫异源人工三倍体个体的成熟卵子的雌核不与入卵的雄核融合, 具有天然雌核发育特性. 异源三倍体卵子在入卵精子的激动下由雌核发育产生全雌后代, 并形成一个单性克隆系, 后代保留异源三倍体母本的形态特征, 并靠雌核发育的生殖方式形成异源三倍体克隆系. 极少数异源三倍体个体的成熟卵子的雌核可与入卵的雄核融合, 再通过染色体组叠加形成鲤鲫异源四倍体. 所有异源四倍体的雌性产生未减数的、含有4个染色体组的成熟卵子. 异源四倍体的成熟卵子保持雌核发育特性, 在近类的精子诱发下产生单性后代, 形成一个异源四倍体单性克隆.  相似文献   

10.
郭新红  刘少军  颜金鹏  刘筠 《遗传》2004,26(6):875-880
采用质粒克隆测序方法,获得了异源四倍体鲫鲤5个个体、异源四倍体鲫鲤雌核发育二倍体后代2个个体、三倍体湘云鲫2个个体及红鲫、湘江野鲤和日本白鲫各1个个体的线粒体DNA 12S rRNA基因的全序列。经对比发现,异源四倍体5个个体共享2种单元型,异源四倍体鲫鲤雌核发育二倍体后代2个个体、三倍体湘云鲫2个个体以及红鲫、湘江野鲤和日本白鲫各1个个体分别共享1种单元型。用MEGA 1.0 软件分析了它们的碱基组成和核苷酸序列差异,用邻接法构建系统进化树。它们间的序列同源性在95%~99%之间,异源四倍体鲫鲤、三倍体湘云鲫和它们母本(分别为红鲫和日本白鲫)之间的序列同源性大于异源四倍体鲫鲤、三倍体湘云鲫和它们父本(分别为湘江野鲤和异源四倍体鲫鲤)之间的序列同源性,结果表明:异源四倍体鲫鲤和三倍体湘云鲫在线粒体DNA 12S rRNA基因上具有母性遗传特征。本研究另一值得注意地方的是异源四倍体鲫鲤经过9代(F3-F11)繁殖后,在5个个体中发现了2种单元型,说明在四倍体基因库中存在遗传多样性,为四倍体基因库的繁殖、保护和种群复壮提供了一些有价值的信息。  相似文献   

11.
用UV照射金鱼的卵子使其卵核的遗传物质失活, 再与异源四倍体鲫鲤(AT)产生的二倍体精子受精, 在无雄核染色体加倍处理情况下, 成功地获得了两性可育的二倍体雄核发育鱼(A0). Ⅱ龄性成熟的A0自交形成了雄核发育鱼自交子一代(A1). 本研究对10月龄A1的染色体数目、性腺的显微和亚显微结构以及外型特征进行了观察, 实验结果表明: (ⅰ) A1中包含有四倍体(A1-4n)、三倍体(A1-3n)以及二倍体后代(A1-2n), 他们所占比例分别为85%, 10%和5%, 其染色体数目分别为4n=200, 3n=150和2n=100. 其中四倍体和三倍体的形成证明二倍体A0能产生二倍体配子. 二倍体雄核发育鲫鲤杂交鱼产生二倍体配子的原因与早期生殖细胞的核内复制机制有关. (ⅱ) A1-4n的性腺为两性型且发育正常. 其中雄性个体能挤出白色精液, 其中的二倍体精子头部明显比红鲫的单倍体精子头部大. 这些二倍体精子具有正常结构, 由头部和尾部组成, 头部与尾部交接处有多个线粒体, 精子尾巴的中央轴有典型的“9+2”微管结构. A1-4n雌性个体的卵巢发育饱满, 其中含有大量Ⅱ, Ⅲ和Ⅳ时相的卵母细胞. 在Ⅳ时相卵母细胞的放射膜上能观察到受精孔. 同时期的A1-2n, A1-3n的性腺发育异常, 均表现为不育. A1-2n的不育性与其为远源杂交二倍体有关, A1-3n的不育性与其为远源杂交三倍体有关. (ⅲ) 与AT相比, A1-4n不仅具有生长速度快、抗逆性强的优点, 而且在外型上具有体背高、尾柄短、头部小等优良性状. 本实验说明运用雄核发育技术不仅能获得两性可育的四倍体鱼, 而且能对异源四倍体鲫鲤进行有效的遗传改良, 这在细胞遗传研究和鱼类育种方面都具有重要意义.  相似文献   

12.
转基因异源四倍体鲫鲤F1的研究   总被引:12,自引:1,他引:11  
采用显微注射法将含有鲁鱼β-actin基因启动子的草鱼生长激素基因“全鱼”基因pCAgcGHc转入异源四倍体鲫鲤,然后使其自交得到转基因异源四倍体鲫鲤F1,对150日龄F1体重和体长进行检测,可明显看见转基因异源四倍体鲫鲤F1的生长优势;取F120尾,提取尾鲤基因组DNA,采用合适的引物,PCR方法检测转基因异源四倍体鲫鲤F1是否含有外源生长激素基因,结果150日龄F1阳性率达到90%,且有些雄性个体可以挤出少量精液,而普通150日龄异源四倍体鲫鲤无此现象,文章阐明了通过近交筛选转基因异源四倍体鲫鲤种系具有重要意义。  相似文献   

13.
生态安全性是转基因鱼走向市场的瓶颈,通过转基因四倍体鱼同转基因二倍体鱼杂交获得不育的转基因三倍体鱼是解决该问题的有效途径之一.本研究构建了青鱼β-actin基因启动子和青鱼生长激素(GH)基因精确连接的"全鱼"基因pbcAbcGHc;并采用显微注射法将pbcAbcGHc导入异源四倍体鲫鲤受精卵.对照养殖结果表明,150日龄的转基因异源四倍体鲫鲤原代(P0)的体重及体长明显大于对照组.选择60尾P0代转基因异源四倍体鲫鲤,采用PCR方法检测出外源青鱼GH基因在P0代转基因四倍体尾鳍基因组DNA中的整合率为90%;对20尾雄性P0代转基因四倍体精液样本的PCR检测发现,13个样本具有外源青鱼GH基因的整合.在一尾生长速度显著的P0代转基因四倍体鲫鲤的肌肉、肝脏、肾脏和卵巢组织中可检测到外源青鱼GH基因的转录.本研究成功获得了具有明显生长优势的P0代转青鱼GH基因异源四倍体鲫鲤,为建立转青鱼GH基因异源四倍体鲫鲤纯系和研制不育的转基因三倍体鱼奠定了基础.  相似文献   

14.
不同倍性鱼肌间骨的比较分析   总被引:1,自引:0,他引:1  
采用常规测量法和解剖法对野生鲫(Carassius auratus,2n=100)、彭泽鲫(Carassius auratus variety pengze,3n=162)、改良三倍体鲫鱼(Triploid crucian carp,即湘云鲫2号,3n=150)及其亲本改良二倍体红鲫(Carassius auratus red var,改良红鲫,♀,2n=100)和改良异源四倍体鲫鲤(Allotetreploid hybrid,四倍体鲫鲤,♂,4n=200)5种不同倍性鱼肌间骨的数目、形态和分布进行研究.结果显示,野生鲫肌间骨数目在78~83之间,平均值为81根,彭泽鲫肌间骨数目在80~86之间,平均值为84,四倍体鲫鲤肌间骨数目在77~84之间,平均值为82,但是湘云鲫2号和改良红鲫的肌间骨数目比较少,湘云鲫2号在77~82之间,平均值为79,改良红鲫在58~77之间,平均值为71.考虑到不同倍性的鱼体大小和肌节数目的不同,进一步统计了每一肌节的平均肌间骨数目,野生鲫最多(0.721),彭泽鲫次之(0.673),改良红鲫最少(0.608),湘云鲫2号次之(0.633),四倍体鲫鲤位于中间(0.653),除了两组湘云鲫2号与四倍体鲫鲤、四倍体鲫鲤和彭泽鲫外,两两间都存在显著差异.5种鱼的各种肌间骨有"I"形、"卜"形、"Y"形、一端多叉形、两端两分叉形、两端多叉形和树枝形7种类型.肌间小骨越靠前端,形态越复杂.每条鱼左右两侧的肌间骨数目不完全相等,但总体上两侧肌间骨的数目接近.在保持鱼的营养、形态和活动等基本生理功能的前提下,湘云鲫2号的肌间刺数目比野生鲫和彭泽鲫都少,所以它的食用价值较高.本研究结果说明,改良二倍体红鲫和改良三倍体鲫鱼等人工培育的杂交鱼比野生鲫的肌间刺少,为鱼类骨骼发育生物学和鱼类遗传育种提供了形态学基础.  相似文献   

15.
异源四倍体鲫鲤群体遗传多样性的RAPD分析   总被引:6,自引:1,他引:5  
湖南师范大学和湘阴县东湖渔场合作,经过10多年的研究,获得了两性可育的异源四倍体鲫鲤群体1—7,目前已经繁殖到了F14。异源四倍体鲫鲤具有4套染色体(4n=200),它们的遗传多样性水平怎么样?这是关系到异源四倍体鲫鲤这一新的种质资源能否生存和进化的问题,有必要从分子水平进行深入的研究。随机扩增多态DNA(Random Am-plified Polymorphic DNA,RAPD)是建立在PCR基础之上的一种DNA分子标记技术8,具有简便、快速、实验成本低等特点,因此被广泛应用于物种的遗传多样性分析、亲缘关系的探讨和系统进化等方面的研究9—15。本研究采用RAPD技术,检测了异源四倍体鲫鲤群体的遗传多样性水平,以期为异源四倍体鲫鲤的人工繁殖、种群复壮以及种质资源保护提供DNA水平上的依据。    相似文献   

16.
远缘杂交导致不同倍性鱼的形成   总被引:5,自引:0,他引:5       下载免费PDF全文
远缘杂交可以使基因组从一个物种转移到另一个物种中,从而导致杂交后代的表现型和基因型都发生改变.本文描述了在红鲫(♀)与鲤鱼(♂)的远缘杂交后代中,形成了F3~F18两性可育异源四倍体鲫鲤群体(4n=200,简称为4nAT).4nAT的雌、雄个体分别产生的二倍体卵子和二倍体精子,经过雌核发育和雄核发育,在没有染色体加倍处理情况下,分别发育成雌核发育二倍体后代和雄核发育二倍体后代.其中雌核发育体系衍生出具有遗传变异的改良四倍体鲫鲤和改良二倍体鱼,二倍体杂交鱼产生不减数的配子的现象与减数分裂前核内复制或者核内有丝分裂或者生殖细胞融合有关.用雄性4nAT与雌性二倍体鱼进行倍间交配大规模制备了不育三倍体鱼.在红鲫(♀)与团头鲂(♂)的远缘杂交后代中,成功地获得两性可育的天然雌核发育红鲫(2n=100),不育的三倍体鲫鲂(3n=124)以及两性可育的四倍体鲫鲂(4n=148),此外,还制备了两种五倍体鲫鲂(5n=172;5n=198).该文在细胞和分子水平上对不同倍性鱼的生物学特点和形成机制进行了比较,揭示了远缘杂交或者将远缘杂交与雌核发育和雄核发育相结合的方法在具有遗传变异的不同倍性鱼的形成中发挥着积极作用,这在生物进化和鱼类遗传育种方面都具有重要意义.  相似文献   

17.
采用热休克调控技术诱导出103尾第一代白鲫(♀)×红鲫()异源四倍体鱼,并对其生殖力进行了研究。1或2龄的四倍体雄鱼能产生精子,而雌鱼不能产生正常的卵。将异源四倍体雄鱼与二倍体白鲫雌鱼交配产生倍间三倍体鱼,染色体检查证明是整三倍体(3N=150),但其受精率很低(11.4—51.3%,平均32.4%).网箱养殖结果表明,倍间三倍体白鲫的生长速度比白鲫快30%以上,雌雄均不育.并用冷休克处理回收异源四倍体4N()×白鲫2N(♀)受精卵的第二极体产生了新的四倍体鱼.文中还对第一代异源四倍体鱼的批量生产、生殖能力以及异源三倍体鱼的生产应用进行了讨论.  相似文献   

18.
酵母菌 Dmc1(disrupted meiotic cDNA)基因是一个在减数分裂前期Ⅰ表达的特异基因, 其产物是减数分裂同源染色体配对所必需的. 根据酵母菌、小鼠以及人的DMC1中保守氨基酸序列合成简并引物, 分别克隆了二倍体红鲫(Carassius auratus red var.)、湘江野鲤(Cyprinus carpio L.)、日本白鲫(Carassius cuvieri)、三倍体湘云鲫和异源四倍体鲫鲤Dmc1基因部分cDNA序列. 通过cDNA末端快速分离法(RACE)进一步获得了以上5种鱼Dmc1的cDNA全长, 其中红鲫Dmc1、湘江野鲤Dmc1和日本白鲫Dmc1全长均为1375 bp, 三倍体湘云鲫Dmc1全长1383 bp, 异源四倍体鲫鲤Dmc1全长1379 bp, 这5种鱼各自都编码342个氨基酸. 结果表明, 红鲫、湘江野鲤和日本白鲫的DMC1蛋白的氨基酸同源性高达97.3%, 说明DMC1蛋白在这3种鱼里具有高度保守性; 而三者与已知序列的人、小鼠和斑马鱼(Danio rerio)DMC1蛋白的氨基酸同源性分别为 86%, 86%和95%. 以分离得到的不同倍性鱼Dmc1基因编码区中完全相同的序列设计特异引物进行表达分析. RT-PCR结果表明, Dmc1只在性腺中表达, 在其他组织中不表达; 通过实时荧光定量PCR(real-time PCR), 对Dmc1基因在繁殖季节的二倍体红鲫, 三倍体湘云鲫, 四倍体鲫鲤性腺中的表达进行分析, 发现Dmc1在不同倍性鱼的性腺表达有差异, 在卵巢和精巢均表现为: 三倍体表达最高, 二倍体次之, 四倍体的表达最弱, 特别是在三倍体卵巢的表达远高于在二倍体和四倍体的表达. 同时, 对这3种鱼的性腺进行组织切片分析, 发现二倍体和四倍体鱼的性腺发育良好, 且四倍体成熟度高于二倍体, 而三倍体鱼性腺发育缓慢未达到性成熟, 特别是卵巢的发育相当不好. 由此可见, 在不同倍性鲫鲤鱼中Dmc1基因也是减数分裂特异的基因, 其表达与倍性无显著的相关性, 而与性成熟相关; 并且在三倍体卵巢中的过量表达可能与其减数分裂异常及其不育有关.  相似文献   

19.
酵母菌 Dmc1(disrupted meiotic cDNA)基因是一个在减数分裂前期Ⅰ表达的特异基因, 其产物是减数分裂同源染色体配对所必需的. 根据酵母菌、小鼠以及人的DMC1中保守氨基酸序列合成简并引物, 分别克隆了二倍体红鲫(Carassius auratus red var.)、湘江野鲤(Cyprinus carpio L.)、日本白鲫(Carassius cuvieri)、三倍体湘云鲫和异源四倍体鲫鲤Dmc1基因部分cDNA序列. 通过cDNA末端快速分离法(RACE)进一步获得了以上5种鱼Dmc1的cDNA全长, 其中红鲫Dmc1、湘江野鲤Dmc1和日本白鲫Dmc1全长均为1375 bp, 三倍体湘云鲫Dmc1全长1383 bp, 异源四倍体鲫鲤Dmc1全长1379 bp, 这5种鱼各自都编码342个氨基酸. 结果表明, 红鲫、湘江野鲤和日本白鲫的DMC1蛋白的氨基酸同源性高达97.3%, 说明DMC1蛋白在这3种鱼里具有高度保守性; 而三者与已知序列的人、小鼠和斑马鱼(Danio rerio)DMC1蛋白的氨基酸同源性分别为 86%, 86%和95%. 以分离得到的不同倍性鱼Dmc1基因编码区中完全相同的序列设计特异引物进行表达分析. RT-PCR结果表明, Dmc1只在性腺中表达, 在其他组织中不表达; 通过实时荧光定量PCR(real-time PCR), 对Dmc1基因在繁殖季节的二倍体红鲫, 三倍体湘云鲫, 四倍体鲫鲤性腺中的表达进行分析, 发现Dmc1在不同倍性鱼的性腺表达有差异, 在卵巢和精巢均表现为: 三倍体表达最高, 二倍体次之, 四倍体的表达最弱, 特别是在三倍体卵巢的表达远高于在二倍体和四倍体的表达. 同时, 对这3种鱼的性腺进行组织切片分析, 发现二倍体和四倍体鱼的性腺发育良好, 且四倍体成熟度高于二倍体, 而三倍体鱼性腺发育缓慢未达到性成熟, 特别是卵巢的发育相当不好. 由此可见, 在不同倍性鲫鲤鱼中Dmc1基因也是减数分裂特异的基因, 其表达与倍性无显著的相关性, 而与性成熟相关; 并且在三倍体卵巢中的过量表达可能与其减数分裂异常及其不育有关.  相似文献   

20.
从ATPase8-6基因研究杂交多倍体鱼线粒体母性遗传   总被引:3,自引:0,他引:3  
郭新红  刘少军  刘筠 《动物学报》2004,50(3):408-413
异源四倍体鲫鲤是世界上首例人工培育的两性可育并形成群体的且能自然繁殖的四倍体鱼。本文采用质粒克隆测序法测定了红鲫、异源四倍体鲫鲤、三倍体湘云鲫和三倍体湘云鲤的ATPase8和ATPase6基因全序列 ,结合鲤鱼、日本白鲫和斑马鱼的同源序列 ,对不同倍性水平鲤科鱼类的ATPase8和ATPase6基因进行了比较 ,分析了碱基组成、变异情况以及核苷酸和氨基酸序列差异。红鲫、鲤鱼、异源四倍体鲫鲤、日本白鲫、三倍体湘云鲫和三倍体湘云鲤之间的序列差异为 0 0 % - 1 3 4 % ,它们与外群斑马鱼之间的序列差异为 2 7 9% -31 0 %。用MEGA软件中的MP法、ME法、NJ法和UPGMA法构建分子系统树 ,得到了相似的拓扑结构。结果分析表明 ,人工杂交多倍体异源四倍体鲫鲤、三倍体湘云鲫和三倍体湘云鲤在线粒体ATPase8和ATPase6基因上具有严格的母性遗传特征。值得注意的是 ,异源四倍体鲫鲤经过 1 1代的繁育后 ,与其原始母本红鲫仍然保持了非常高的同源性 ,说明了新的异源四倍体基因库在线粒体ATPase8和ATPase6基因上拥有稳定的遗传特性。对不同倍性鲤科鱼类线粒体ATPase8和ATPase6基因的研究表明 ,ATPase8和ATPase6基因是杂交鱼后代遗传变异研究的一个很好的分子标记  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号