首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Phenolic compounds are commonly regarded as the main chemical defenses of deciduous woody plants against insects. To examine how indices of leaf maturation (water content, toughness, and sugar/protein ratio) modified larval consumption and growth relative to phenolics and phenolic-related leaf traits, we measured consumption and growth of fourth-instar Epirrita autumnata (Bkh.) (Lepidoptera: Geometridae) larvae on three different days on young, normal, and mature leaves, respectively, from the same mountain birch (Betula pubescens ssp. czerepanovii (Orlova) Hämet-Ahti) trees. The larvae achieved the same growth rates on young and normal leaves, but had to consume 40% more on the latter. On more mature leaves, larval growth was poorer and was positively correlated with sugar/protein ratios (although the ratio peaked at that time). Indices of leaf maturation correlated with several phenolics in data pooled over the three study days, but poorly in any individual day. Similarly, in the pooled data, larval consumption and growth correlated with several leaf traits, but correlations between leaf and insect traits were few on any of the three days, and no trait was significant on each of the three days.We next examined whether variation in the maturation indices modified the associations of phenolics with insect consumption and growth. When interactions between phenolics and leaf maturation indices were taken into account, the number of phenolic compounds displaying significant associations with insect traits more than doubled. The relative importance of interactive versus direct associations increased with leaf maturation: on young leaves five phenolics showed direct and eleven interactive associations with insect traits, while in mature leaves we found two phenolics to display direct and thirteen phenolics interactive associations. Leaf water content, either alone or together with toughness and sugar/protein ratio, generally explained more of the variance in Epirrita growth (up to 59%) than any phenolic or phenolic-related trait alone (highest value 20%). Including interactive effects between phenolics and indices of leaf maturation in the model increased the proportion explained of variance in larval growth between 49 and 73%. Maturation indices explained 0 to 23% of variance in consumption, and the phenolic compound with the highest (positive!) correlation alone up to 28%, but taking into account interactions between phenolics and maturation indices raised the degree of explanation much (namely, 32 to 53%) over that explained by indices of leaf maturation alone. This indicates strong interactive effects on consumption between phenolics and indices of leaf maturation.  相似文献   

2.
  • 1 Two experiments were performed to determine the extent to which ash species (black, green and white) and larval developmental stage (second, third and fourth instar) affect the efficiency of phloem amino acid utilization by emerald ash borer (EAB) Agrilus planipennis Fairmaire (Coleoptera: Buprestidae) larvae.
  • 2 EAB larvae generally utilized green ash amino acids more efficiently than those of the other two species. For example, the concentrations of only six (two essential) and seven (two essential) amino acids were lower in frass from EAB that fed upon black and white ash than in the corresponding phloem, respectively. By contrast, concentrations of 16 (eight essential) amino acids were lower in the frass from EAB that fed upon green ash than in the phloem. In addition, in green ash, the frass : phloem ratios of 13 amino acids were lower than their counterparts in black and white ash.
  • 3 The concentrations of non‐essential amino acids glycine and hydroxylproline were greater in frass than in phloem when EAB fed on black ash, although not when EAB fed on green or white ash.
  • 4 The concentration of total phenolics (a group of putative defensive compounds to EAB, expressed as antioxidant activity of acetone extraction) was high in EAB frass but even higher in the phloem samples when the data were pooled across ash species and EAB larval stages. This suggests EAB larvae may eliminate phenolics through a combination of direct excretion and enzymatic conversion of phenolics to nonphenolics before excretion. Because the ratio of frass total phenolics to phloem total phenolics in white ash was lower than the ratios in black and green ash, the ability to destroy phenolics or convert them to nonphenolics was greater when EAB larvae fed on white ash.
  • 5 Fourth‐instar EAB extracted phloem amino acids, including threonine, more efficiently than third‐instar EAB. The different larval developmental stages of EAB did not differ in their apparent ability to destroy phenolics or convert them to nonphenolics.
  相似文献   

3.
Studies using [3H]chlorogenic acid and [3H]rutin demonstrated that the kinetics of uptake of these plant phenolics into the haemolymph of 5th-instar Heliothis zea (Boddie) following actue oral administration is a first-order process. The total quantity of either phenolic present in the haemolymph within 1 hr amounts to 5% or less of the total ingested dose. Based on TLC analyses, 80% or more of the radioactivity in the haemolymph occurs as the parent phenolic. Retention of [3H]-chlorogenic acid or [3H]-rutin in H. zea following chronic feeding from 1st to 3rd-instar larvae is also linearly related to dietary dose. Chlorogenic acid and rutin are both equitoxic and equivalent in bioavailability to H. zea.Loss of [3H]-rutin from the haemolymph of 5th-instar larvae following injection is biphasic. One half of the injected dose is excreted in the frass in the first 6 hr after injection; the other half is thereafter eliminated at 1/20th of the initial rate. Analyses of extracts of frass by thin-layer chromatography indicate that after either chronic or acute feeding 90% of the ingested phenolic is excreted unchanged. Possible sites and modes of action of phenolics in insects are discussed in light of these findings.  相似文献   

4.
Plant phenolics are generally thought to play significant roles in plant defense against herbivores and pathogens. Many plant taxa, including Solanaceae, are rich in phenolic compounds and some insect herbivores have been shown to acquire phenolics from their hosts to use them as protection against their natural enemies. Here, we demonstrate that larvae of an insect specialist on Solanaceae, the tobacco hornworm, Manduca sexta L. (Lepidoptera: Sphingidae), acquire the plant phenolic chlorogenic acid (CA), and other caffeic acid derivatives as they feed on one of their hosts, Nicotiana attenuata L. (Solanaceae), and on artificial diet supplemented with CA. We test the hypothesis that larvae fed on CA‐supplemented diet would have better resistance against bacterial infection than larvae fed on a standard CA‐free diet by injecting bacteria into the hemocoel of fourth instars. Larvae fed CA‐supplemented diet show significantly higher survival of infection with Enterococcus faecalis (Andrewes & Horder) Schleifer & Kilpper‐Bälz, but not of infection with the more virulent Pseudomonas aeruginosa (Schroeter) Migula. Larvae fed on CA‐supplemented diet possess a constitutively higher number of circulating hemocytes than larvae fed on the standard diet, but we found no other evidence of increased immune system activity, nor were larvae fed on CA‐supplemented diet better able to suppress bacterial proliferation early in the infection. Thus, our data suggest an additional defensive function of CA to the direct toxic inhibition of pathogen proliferation in the gut.  相似文献   

5.
Phytophagous insects must contend with numerous secondary defense compounds that can adversely affect their growth and development. The gypsy moth (Lymantria dispar) is a polyphagous herbivore that encounters an extensive range of hosts and chemicals. We used this folivore and a primary component of aspen chemical defenses, namely, phenolic glycosides, to investigate if bacteria detoxify phytochemicals and benefit larvae. We conducted insect bioassays using bacteria enriched from environmental samples, analyses of the microbial community in the midguts of bioassay larvae, and in vitro phenolic glycoside metabolism assays. Inoculation with bacteria enhanced larval growth in the presence, but not absence, of phenolic glycosides in the artificial diet. This effect of bacteria on growth was observed only in larvae administered bacteria from aspen foliage. The resulting midgut community composition varied among the bacterial treatments. When phenolic glycosides were included in diet, the composition of midguts in larvae fed aspen bacteria was significantly altered. Phenolic glycosides increased population responses by bacteria that we found able to metabolize these compounds in liquid growth cultures. Several aspects of these results suggest that vectoring or pairwise symbiosis models are inadequate for understanding microbial mediation of plant–herbivore interactions in some systems. First, bacteria that most benefitted larvae were initially foliar residents, suggesting that toxin-degrading abilities of phyllosphere inhabitants indirectly benefit herbivores upon ingestion. Second, assays with single bacteria did not confer the benefits to larvae obtained with consortia, suggesting multi- and inter-microbial interactions are also involved. Our results show that bacteria mediate insect interactions with plant defenses but that these interactions are community specific and highly complex.  相似文献   

6.
Abstract The effects of elevated CO2 on foliar chemistry of two tree species (Populus pseudo‐simonii Kitag. and Betula platyphylla) and on growth of gypsy moth (Lymantria dispar L.) larvae were examined. Furthermore, we focused on the comparison of results on the growth responses of larvae obtained from two methods of insect rearing, the no‐choice feeding trial performed in the laboratory or in situ in open‐top chambers. On the whole, both primary and secondary metabolites in the leaves of the two tree species were significantly affected by main effects of time (sampling date), CO2 and species. Elevated CO2 significantly increased the C : N ratio and concentrations of the soluble sugar, starch, total nonstructural carbohydrates, total phenolics and condensed tannins, but significantly decreased the concentration of nitrogen. Higher contents of total phenolics and condensed tannins were detected in the frass of larvae reared in elevated CO2 treatments. Overall, the growth of gypsy moth larvae were significantly inhibited by elevated CO2 and CO2‐induced changes in leaf quality. Our study did not indicate the two methods of insect rearing could influence the direction of effects of elevated CO2 on the growth of individual insects; however, the magnitude of negative effects of elevated CO2 on larval growth did differ between the two insect rearing methods, and it seems that the response magnitude was also mediated by larval age and host plant species.  相似文献   

7.
Heavy damage of the mountain birch foliage, as well as application of small amounts of insect frass to the soil beneath the trees, reduced growth of Epirrita autumnata larvae reared in these trees in the following year. Foliage damage in the previous year decreased larval survival, too. Both foliage damage and insect frass in the soil decreased a fecundity index which combined the effects of size and survival. Because application of small amounts of fertilizers had an effect indistinguishable from that of insect frass, the effect of the frass may base on responses of trees to an increase in soil nutrient concentration in mid-summer. In previously untreated control trees, all performance indices (growth, survival, and egg production) of Epirrita correlated positively with the distance of the birch from the closest birch defoliated in the previous year, indicating communication between adjacent trees. Epirrita egg production in trees that had been both defoliated and treated with frass in the previous summer was at least 70% lower than in previously unmanipulated control trees.  相似文献   

8.
The mechanisms and conditions affecting expression of systemic induced resistance (SIR) in pine are not clearly understood. Two hypotheses were tested here: that SIR against a pathogen induced by either a pathogen or an insect involves coordinated shifts in phloem secondary metabolism; and that fertility affects the production of these compounds. To test these hypotheses, a tripartite system was used comprising Austrian pine (Pinus nigra) grown under three different fertility regimes, the fungal pathogen Diplodia pinea, and the defoliator Neodiprion sertifer. Fungal induction led to systemic accumulation of lignin, phenolic glycosides and stilbenes, whereas insect defoliation led to an increase in germacrene D concentration in branch phloem. Fertility affected the concentrations of only the phenolic glycosides. Multivariate analyses showed coregulation of compounds within at least three consistent groupings: phenolic glycosides, stilbenes and monoterpenes. As groups and as individual compounds, accumulation of phenolic glycosides and stilbenes was negatively correlated with disease susceptibility. The experimental manipulation of the phenolics and terpenoids metabolic networks achieved in this study by biotic induction and changes in nutrient availability suggests that lignin, phenolic glycosides and stilbenes are important biochemical factors in the expression of SIR against the pathogen in this system.  相似文献   

9.
Shading is assumed to reduce allocation to plant phenolics and to defense in general. We here report the results of experimental shading of individual branches or whole canopies in mountain birch on foliar chemistry and on the growth and consumption of a geometrid, Epirritaautumnata. Branch‐wide shading tended to have at least as strong effects on both leaf chemistry and herbivore performance as canopy‐wide shading, indicating local responses of the host to shading. Responses to shading varied among the key leaf traits. Leaf water content was higher and toughness lower in shaded than in non‐shaded leaves. Leaf sugars were lower and protein‐bound and free amino acids higher in shaded than in control leaves. Sucrose and galactose were at high levels in unshaded branches adjacent to shaded ones, suggesting that partial shading enhanced translocation of sugars within canopies. Total phenolics and soluble proanthocyanidins were low in both shading treatments. Of the other phenolic groups, concentrations of gallotannins and cell‐wall‐bound proanthocyanidins did not differ between shaded and non‐shaded leaves. Epirrita larvae grew better in both types of shading treatments compared to either unshaded control trees or to unshaded branches in the branch‐shading trees. By far the most important correlate of larval growth was the amount of water consumed with leaf mass (r=0.94). When variance in water intake was standardized (also largely eliminating parallel variation in proteins), fructose and glucose still had significant positive correlations and proanthocyanidins negative with larval growth on control but not on shade leaves. Concentrations of several phenolic compounds correlated negatively with intake of dry matter and especially water, and different phenolics were important in shaded (gallotannins) and in control (flavonoids) leaves. Our findings strongly suggest that the effects of putatively defensive leaf traits on insect consumption and growth interact with nutritive leaf traits, particularly with water.  相似文献   

10.
Ruuhola T  Yang S  Ossipov V  Haukioja E 《Oecologia》2008,154(4):725-730
Induced resistance of the mountain birch against its main defoliator Epirrita autumnata is a well-characterized phenomenon. The causal mechanism for this induced deterioration, however, has not been unequivocally explained, and no individual compound or group of traditional defensive compounds has been shown to explain the phenomenon. Phenolic compounds are the main secondary metabolites in mountain birch leaves, and the biological activity of phenolics usually depends on their oxidation. In this study, we found that the activity of polyphenoloxidases (PPOs), enzymes that oxidize o-diphenols to o-diquinones, was induced in trees with introduced larvae, and bioassays showed that both growth and consumption rates of larvae were reduced in damaged trees. PPO activity was negatively associated with both larval growth and consumption rates in trees with bagged larvae, but not in control trees. Our results suggest that the oxidation of phenolics by PPOs may be a causal explanation for the rapidly induced resistance of mountain birch against E. autumnata. This finding also helps to explain why correlations between insect performance and phenolics (without measuring indices explaining their oxidation) may not produce consistent results.  相似文献   

11.
Leaves exposed to above-ambient fluxes of ultraviolet-B (UV-B) radiation commonly contain increased concentrations of phenolic compounds which may influence herbivores. However, the hypothesis that elevated UV-B modifies herbivory, whether mediated by phenolics or other plant constituents, has rarely been studied experimentally. We investigated the responses of the mothAutographa gamma L. (Lepidoptera: Noctuidae) to pea (Pisum sativum L.) grown at a range of plant-effective UV-B fluxes. Although total phenolics did increase significantly with increasing UV-B, this change had little deleterious effect on the 5th instar larvae ofA. gamma. However, tissue nitrogen also increased with increasing UV-B. Increased nitrogen was correlated with an increase in the efficiency with which larvae utilized their food and in larval growth rate, but in a reduction in the amount of plant material consumed. The apparently major role of nitrogen in determining herbivore responses to changing UV-B demonstrates the risks in predicting such responses soley on the basis of changes in phenolics and other secondary metabolites.  相似文献   

12.
The metabolic modifications of birch (Betula pubescens Ehrh.) leaf phenolics in the digestive tract of its major defoliator, larvae of the autumnal moth Epirrita autumnata, were studied. The main phenolic acids of birch, i.e. chlorogenic and p-coumaroylquinic acids, were isomerised in the alkaline digestive tract. Moreover, only 16 to 92% of the ingested amounts of chlorogenic acid were found in the faeces of individual larvae; the missing portion is possibly being used in the formation of reactive o-quinones. Water-soluble flavonoid glycosides were mostly excreted unaltered. In contrast, lipophilic flavonoid aglycones were not excreted as such, but as glycosides after being detoxified by E. autumnata via glycosylation. When the larvae were fed with leaf-painted acacetin and kaempferide, i.e. two naturally occurring birch leaf flavonoid aglycones, acacetin-7-O-glucoside and kaempferide-3-O-glucoside appeared in larval faeces as major metabolites. However, the efficiency of aglycone glycosylation varied-, ranging from 17 to 33%, depending on the aglycone and its dietary level. There was also large variation in the efficiency of glycosylation--from 2 to 57%--among individual larvae. These results demonstrate a compound-specific metabolism of phenolic compounds, leading to different phenolic profiles in the insect gut compared to its leaf diet.  相似文献   

13.
二化螟绒茧蜂对二化螟及其寄主植物挥发物的趋性反应   总被引:18,自引:4,他引:14  
利用Y-型嗅觉仪研究了二化螟绒茧蜂Cotesia chilonis对寄主植物(水稻或茭白)、二化螟Chilo suppressalis幼虫、虫粪及虫害苗挥发物的行为反应。健康植株、二化螟幼虫和虫粪的挥发物对二化螟绒茧蜂具有显著引诱作用。在虫害苗与健康苗挥发物之间,二化螟绒茧蜂显著地偏好虫害苗,但当去除虫害苗中的幼虫和虫粪后,寄生蜂对去虫苗与机械损伤苗的选择无显著差异;在虫害苗与有虫健康苗之间,寄生蜂显著趋向虫害苗,表明虫害苗本身释放的挥发物对二化螟绒茧蜂引诱作用与机械损伤苗无显著差异,但与二化螟幼虫或虫粪挥发物之间可能具有协同增效作用。水稻苗经机械损伤或损伤后以二化螟幼虫唾液处理,其挥发物对二化螟绒茧蜂的引诱作用无显著改变。二化螟绒茧蜂对不同为害程度水稻挥发物的选择无显著差异。二化螟绒茧蜂对两种寄主植物的健康苗、虫害苗、取食两种植物的幼虫及虫粪的挥发物的选择无显著差异。结果表明,二化螟绒茧蜂栖境定位和寄主选择过程中所利用的挥发物主要来自寄主植物、二化螟幼虫和虫粪以及虫害苗与幼虫和虫粪的协同作用。  相似文献   

14.
Frass deposition to soil is an important pathway by which herbivorous insects impact decomposition and soil nutrient availability. However, little is known about how frass quality influences ecosystem properties. Here, we examined the effects of frass quality on the decomposition process, soil nitrogen (N) availability, and plant growth, using frass of Mamestra brassicae (L.) that fed on fertilized or unfertilized Brassica rapa L. var. perviridis Bailey. The frass quality was largely dependent on the host plant quality. Frass excreted by larvae that fed on the fertilized plants had higher N than that of larvae that fed on the unfertilized plants. The decomposition rate of the frass did not differ between N-rich and N-poor frass, except during the early decomposition period. The inorganic N concentration decreased during decomposition in both frass types. However, difference in the initial inorganic N concentration led to different consequences regarding soil N availability. Furthermore, addition of frass to the soil differently influenced the growth of B. rapa plants depending on the frass quality: plant biomass was increased by N-rich frass addition but decreased by N-poor frass addition, compared to the biomass without frass addition. These results indicate that frass quality is an important factor in determining the impact of herbivorous insects on nutrient dynamics, and that frass positively or negatively influences soil N availability and plant growth, depending on its quality.  相似文献   

15.
The green scale, Coccus viridis (Green) (Hemiptera: Coccidae), is an insect pest of coffee and several other perennial cultivated plant species. We investigated changes in alkaloid and phenolic contents in coffee plants as a response to herbivory by this insect. Greenhouse‐grown, 11‐month‐old coffee plants were artificially infested with the coccid and compared with control, uninfested plants. Leaf samples were taken at 15, 30, 45, and 60 days after infestation, and high‐performance liquid chromatography was used to identify and quantify alkaloid and phenolic compounds induced by the coccids at each sampling date. Of the compounds investigated, caffeine was the main coffee alkaloid detected in fully developed leaves, and its concentration in infested plants was twice as high as in the control plants. The main coffee phenolics were caffeic and chlorogenic acid, and a significant increase in their concentrations occurred only in plants infested by C. viridis. A positive and significant relationship was found between alkaloid and phenolic concentrations and the infestation level by adults and nymphs of C. viridis. Caffeine and chlorogenic acid applied on coffee leaves stimulated the locomotory activity of the green scale, thus reducing their feeding compared to untreated leaves. This is the first study to show increased levels of coffee alkaloids and phenolics in response to herbivory by scale insects. The elevation of caffeine and chlorogenic acid levels in coffee leaves because of C. viridis infestation seems to affect this generalist insect by stimulating the locomotion of crawlers.  相似文献   

16.
Several hypotheses relate a negative relationship between foliar concentration of phenolic compounds and nitrogen to physiological processes such as leaf development, seasonal variation in allocation priorities, nutrient, light and water related growth limitation, as well as herbivore attack. We sampled four common deciduous woody species of central Tanzania monthly during the growing season to assess changes in this relation and their nutritional value to ruminants. We found a negative relationship between leaf N and phenolic compounds within and among species and sites that weakens during the course of the growing season that was consistent for total phenolics, but not for condensed tannins. Leaf N concentration decreased throughout the season, its withdrawal being positively related with leaf N at first sampling date. Secondary compounds concentration showed no consistent seasonal trend. Concentrations of leaf N and phenolics were correlated with 13C discrimination in the two shrub species and with soil P in the two tree species. Digestibility was positively correlated with foliar N and negatively correlated with secondary compounds. We conclude that phenolic compounds may serve as reliable clues for selecting foliage rich in N at site and species level only during the first months of the growing season.  相似文献   

17.
Plant chemical defenses can negatively affect insect herbivore fitness, but they can also decrease herbivore palatability to predators or decrease parasitoid fitness, potentially changing selective pressures on both plant investment in production of chemical defenses and host feeding behavior. Larvae of the fern moth Herpetogramma theseusalis live in and feed upon leaf shelters of their own construction, and their most abundant parasitoid Alabagrus texanus oviposits in early instar larvae, where parasitoid larvae lay dormant for most of host development before rapidly developing and emerging just prior to host pupation. As such, both might be expected to live in a relatively constant chemical environment. Instead, we find that a correlated set of phenolic compounds shows strong seasonal variation both within shelters and in undamaged fern tissue, and the relative level of these compounds in these two different fern tissue types switches across the summer. Using experimental feeding treatments, in which we exposed fern moth larvae to different chemical trajectories across their development, we show that exposure to this set of phenolic compounds reduces the survival of larvae in early development. However, exposure to this set of compounds just before the beginning of explosive parasitoid growth increased parasitoid survival. Exposure during the period of rapid parasitoid growth and feeding decreased parasitoid survival. These results highlight the spatial and temporal complexity of leaf shelter chemistry, and demonstrate the developmental contingency of associated effects on both host and parasitoid, implying the existence of complex selective pressures on plant investment in chemical defenses, host feeding behavior, and parasitoid life history.  相似文献   

18.
Variegated cutworms were exposed to bean plants in microcosms sprayed with pBR322-carrying strains of Enterobacter cloacae, Klebsiella planticola, and Erwinia herbicola. The three bacterial species exhibited differential survival on leaves, in soil, and in guts and fecal pellets (frass) of the insects. High numbers of Enterobacter cloacae(pBR322) were detected in all samples, while the other species were unable to establish residence in the insect. To assess the impact of this colonization on site-to-site transport of microorganisms, larvae were fed plants that had been sprayed with the bacteria and then were transferred to uninoculated plants. Cutworms were efficient carriers of Enterobacter cloacae(pBR322), as indicated by its rapid appearance on uninoculated leaves and continued persistence in the insects for 3 days after transfer. Few Erwinia herbicola(pBR322) and K. planticola(pBR322) were obtained from larvae after transfer, although up to 10(3) CFU/g were detected in soil and on plants. Differences in bacterial survival and growth were confirmed by incubating frass overnight and observing the change in population numbers. The proportion of total samples showing at least a 25-fold increase during incubation was 68% for Enterobacter cloacae(pBR322), 39% for K. planticola(pBR322), and 0% for Erwinia herbicola(pBR322). Our results emphasize the role that cutworms and possibly other insects have in persistence and growth of microorganisms in the environment.  相似文献   

19.
Variegated cutworms were exposed to bean plants in microcosms sprayed with pBR322-carrying strains of Enterobacter cloacae, Klebsiella planticola, and Erwinia herbicola. The three bacterial species exhibited differential survival on leaves, in soil, and in guts and fecal pellets (frass) of the insects. High numbers of Enterobacter cloacae(pBR322) were detected in all samples, while the other species were unable to establish residence in the insect. To assess the impact of this colonization on site-to-site transport of microorganisms, larvae were fed plants that had been sprayed with the bacteria and then were transferred to uninoculated plants. Cutworms were efficient carriers of Enterobacter cloacae(pBR322), as indicated by its rapid appearance on uninoculated leaves and continued persistence in the insects for 3 days after transfer. Few Erwinia herbicola(pBR322) and K. planticola(pBR322) were obtained from larvae after transfer, although up to 10(3) CFU/g were detected in soil and on plants. Differences in bacterial survival and growth were confirmed by incubating frass overnight and observing the change in population numbers. The proportion of total samples showing at least a 25-fold increase during incubation was 68% for Enterobacter cloacae(pBR322), 39% for K. planticola(pBR322), and 0% for Erwinia herbicola(pBR322). Our results emphasize the role that cutworms and possibly other insects have in persistence and growth of microorganisms in the environment.  相似文献   

20.
Major cell wall-bound phenolic compounds were detected and identified in roots of tomato at different stages of growth. Alkaline hydrolysis of the cell wall material of the root tissues yielded ferulic acid as the major bulk of the phenolic compounds. Other phenolic compounds identified were 4-hydroxybenzoic acid, vanillic acid, 4-hydroxybenzaldehyde, vanillin and 4-coumaric acid. All the six phenolic acids were higher in very early stage of plant growth. Ferulic acid, 4-hydroxybenzoic acid and 4-coumaric acid exhibited a decreasing trend up to 60 days and then the content of these phenolic acids increased somewhat steadily towards the later stage of growth. Total phenolics, phenylalanine ammonia-lyase (PAL) activity and peroxidase (POD) activity were in tandem match with the occurrence pattern of the phenolic acids. Ferulic acid showed highest antifungal activity against tomato wilt pathogen Fusarium oxysporum f. sp. lycopersici. The results of this study may be interpreted to seek an explanation for high susceptibility of tomato plants at flowering stage to Fusarium wilt. It may also be concluded that greater amounts of ferulic acid in combination with other phenolics and higher level of PAL and POD activities after 60 days of growth may have a role in imparting resistance against Fusarium wilt at a late stage of plant growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号