首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Cystatins are cysteine proteinase inhibitors. We found two expression sequence tags (ESTs), CA463109 and AV042522, from a mouse testis library using Digital differential display (DDD). By electrical hybridization, a novel gene, Cymg1 (GenBank accession No. AY600990), which has a full length of 0.78kb, and contains four exons and three introns, was cloned from a mouse testis cDNA library. The gene is located in the 2G3 area of chromosome 2. The full cDNA encompasses the entire open reading frame, encoding 141 amino acid residues. The protein has a cysteine protease inhibitor domain that is related to the family 2 cystatins but lacks critical consensus sites important for cysteine protease inhibition. These characteristics are seen in the CRES subfamily, which are related to the family 2 cystatins and are expressed specifically in the male reproductive tract. CYMG1 has a 44% (48/108) identity with mouse CRES and 30% (42/140) identity with mouse cystatin C. Northern blot analysis showed that the Cymg1 is specifically expressed in adult mouse testes. Cell location studies showed that the GFP-tagged CYMG1 protein was localized in the cytoplasm of HeLa cells. Immunohistochemistry revealed that the CYMG1 protein was expressed in mouse testes spermatogonium, spermatocytes, round spermatids, elongating spermatids and spermatozoa. RT-PCR results also showed that Cymg1 was expressed in mouse testes and spermatogonium. The Cymg1 expression level varied in different developmental stages: it was low 1 week postpartum, steadily increased 2 to 5 weeks postpartum, and was highest 7 weeks postpartum. The expression level at 5 weeks postpartum was maintained during 13 to 57 weeks postpartum. The Cymg1 expression level in the testes over different developmental stages correlates with the mouse spermatogenesis and sexual maturation process. All these indicate that Cymg1 might play an important role in mouse spermatogenesis and sexual maturation.  相似文献   

2.
Xiang Y  Nie DS  Lu GX 《Journal of genetics》2004,83(3):257-263
We have cloned a novel gene,Cymg1 (GenBank accession number AY600990), from a mouse testis cDNA library.Cymg1 is located in 2G3 of mouse chromosome 2. The cDNA includes an open reading frame that encodes 141 amino acid residues. The encoded polypeptide has a cysteine protease inhibitor domain found in the family 2 cystatins but lacks critical consensus sites important for cysteine protease inhibition. These characteristics are seen in the proteins of the CRES subfamily of the family 2 cystatins which are expressed specifically in the reproductive tract. CYMG1 protein shows 44% identity with mouse CRES and 30% identity with mouse cystatin C. Northern blot analysis showed that theCymg1 gene was specifically expressed in adult mouse testis. RT-PCR also showed thatCymg1 was expressed in testis and spermatogonial cells.Cymg1 expression level varied in the different developmental stages of mouse testis, and were coincidental with spermatogenesis and sex maturation. These results indicate thatCymg1 may play important roles in mouse spermatogenesis and sex maturation  相似文献   

3.
Y Xiang  D S Nie  Q J Zhang  W B Zhu  J Du  W Li  G X Lu 《DNA sequence》2008,19(1):13-19
Cystatins are physiological cysteine proteinase inhibitors. We used digital differential display (DDD) to clone two novel splice variants Rcet1-v1 and Rcet1-v2 which were isolated from adult mouse testis cDNA library. Sequence analysis revealed that Rcet1-v1 and Rcet1-v2 cDNAs are 454 and 610 bp in length, respectively, and each has four exons, but the lengths of their second and third exons are different, with the results that these cDNAs encoded two different putative proteins. The deduced proteins were 88 amino acid residues (RCET1-v1) and 140 residues (RCET1-v2) in length and have one potential signal peptide and one cystatin domain, respectively, but lack part critical consensus sites important for cysteine protease inhibition. These characteristics are seen in CRES subgroup, which related to the family 2 cystatains and primarily expressed in reproductive tract. RT-PCR analysis showed that Rcet1-v1 and Rcet1-v2 were specifically expressed in adult mouse testis, epididymis and cerebrum, but higher in testis than in epididymis and cerebrum. RT-PCR analysis also showed that Rcet1-v1 and Rcet1-v2 were specifically expressed in adult mouse pituitary and spermatogonium, but not expressed in spermatozoa. Results of in situ hybridization showed that Rcet1 gene expressed abundantly in mouse spermatogonium, spermatocytes and round spermatids; did not expressed in spermatozoa. At mouse testis different development stages, Rcet1-v1 and Rcet1-v2 were expressed very low from postnatal 1 day to postnatal 3 weeks; after postnatal 4 weeks, expressed steadily increased from postnatal 4 to 7 weeks, highest in postnatal 7 to 8 weeks, then keeping on the expressing level of postnatal 6 weeks in postnatal 13-57 weeks. All these indicated that Rcet1-v1 and Rcet1-v2 primarily expressed in mouse male reproductive tract and may play important roles in mouse spermatocytes and round spermatid development. Rcet1-v1 and Rcet1-v2 may be new members of Cres subgroup of the family 2 cystatins.  相似文献   

4.
5.
In previous studies we identified an epididymal gene that exhibits homology to the cystatin family of cysteine protease inhibitors. The expression of this gene, termed CRES (cystatin-related epididymal and spermatogenic), was shown to be highly restricted to the proximal caput epididymal epithelium with less expression in the testis and no expression in the 24 other tissues examined. In this report, studies were carried out to examine CRES gene expression in the testis as well as to characterize the CRES protein in the testis and epididymis. In situ hybridization experiments revealed that within the testis CRES gene expression is stage-specific during spermatogenesis and is exclusively expressed by the round spermatids of Stages VII-VIII and the early elongating spermatids of Stages IX and X. Immunohistochemical studies demonstrated that CRES protein was transiently expressed in both the testis and epididymis. Within the testis the protein was localized to the elongating spermatids, whereas within the epididymis CRES protein was exclusively synthesized by the proximal caput epithelium and then secreted into the lumen. Surprisingly, the secreted CRES protein had completely disappeared from the epididymal lumen by the distal caput epididymidis. Western blot analysis of testicular and epididymal proteins showed that the CRES antibody specifically recognized a predominant 19 kDa CRES protein and a less abundant 14 kDa form. These observations suggest that the CRES protein performs a specialized role during sperm development and maturation. © 1995 Wiley-Liss, Inc.  相似文献   

6.
The cystatin superfamily of cysteine proteinase inhibitors consists of three major families. In the present study, we report the cloning of the cDNA for mouse cystatin T, which is related to family 2 cystatins. The deduced amino acid sequence of cystatin T contains regions of significant sequence homology including the four highly conserved cysteine residues in exact alignment with all cystatin family 2 members. However, cystatin T lacks some of the conserved motifs believed to be important for inhibition of cysteine proteinase activity. These characteristics are seen in two other recently cloned genes, CRES and Testatin. Thus, cystatin T appears to be the third member of the CRES/Testatin subgroup of family 2 cystatins. The mouse cystatin T gene was mapped on a region of chromosome 2 that contains a cluster of cystatin genes, including cystatin C and CRES. Northern blot analysis demonstrated that expression of mouse cystatin T is highly restricted to the mouse testis. Thus, a shared characteristic of the cystatin family 2 subgroup members is an expression pattern limited primarily to the male reproductive tract.  相似文献   

7.
p38 MAPK在小鼠睾丸不同发育阶段的表达和定位   总被引:1,自引:0,他引:1  
为探讨丝裂原活化蛋白激酶p38 MAPK在小鼠睾丸不同发育阶段的表达,应用蛋白质免疫印迹杂交技术和免疫组织化学SABC法检测1至7周龄小鼠睾丸p38 MAPK的表达、定位及发育变化,并通过图像分析技术对免疫组织化学结果进行统计学分析。免疫印迹杂交发现,p38 MAPK在2~7周龄小鼠睾丸中均有表达。免疫组织化学结果显示,在2周龄小鼠睾丸曲细精管上皮中即可观察到p38 MAPK免疫阳性反应,免疫反应阳性细胞为精原细胞;3、4、5周龄小鼠睾丸仅有个别曲细精管上皮可见p38 MAPK免疫阳性反应;6、7周龄小鼠睾丸中p38 MAPK表达较丰富,免疫反应阳性细胞为精原细胞和初级精母细胞,免疫阳性反应物均主要位于细胞核内。在7周龄小鼠睾丸中还可见到部分间质细胞的细胞质亦呈p38 MAPK阳性。这些结果提示,p38 MAPK可能对生精细胞的增殖分化具有调控作用。  相似文献   

8.
A novel testis-specific gene termed mtLR1 was identified by digital differential display. Sequence analyses revealed that mtLR1 protein contains an amino terminus leucine-rich repeat domain and shows 33% similarities to PIDD which functions in p53-mediated apoptosis. Northern blot analysis showed that mtLR1 mRNA was specifically expressed in adult mouse testis, and RT-PCR results also showed that mtLR1 was exclusively expressed in adult testis and not in spermatogonial cells. The expression of mtLR1 mRNA was developmentally upregulated in the testes during sexual maturation and was, conversely, downregulated by experimental cryptorchidism in vivo. We also showed that the expression of mtLR1 mRNA was relatively highly sensitive to heat stress in vitro. The green fluorescent protein produced by pEGFP-C3/mtLR1 was only detected in the cytoplasm of spermatogonia cell line GC-1 after 24 h posttransfection. Immunohistochemical analysis revealed that the protein is most abundant in the cytoplasm of spermatocytes and round spermatids within seminiferous tubules of the adult testis. The time-dependent expression pattern of mtLR1 in postnatal mouse testes suggested that mtLR1 gene might be involved in the regulation of spermatogenesis and sperm maturation.  相似文献   

9.
10.
11.
Prolyl oligopeptidase (POP) expression in mouse testis during sexual maturation was examined. Northern blot analysis showed that POP mRNA expression was highest at 2 weeks of age, and gradually reduced thereafter. However, enzyme activity was almost constant during the examined period. In situ hybridization study revealed a change in the expression site of POP mRNA in testis during sexual maturation. Positive signals were detected in all types of cells in the seminiferous tubules before maturation, and were restricted to spermatids at the spermatogenesis cycle stages I-VIII in adult mice. POP was detected in the insoluble fraction of sperm by Western blot analysis. Immunohistochemical analyses showed that POP is localized in the spermatids at steps 12-16 of spermiogenesis and in the midpiece of the sperm fragellum. It was also found that specific POP inhibitors, poststatin and benzyloxycarbonyl-proline-prolinal, suppressed sperm motility. These results suggest that POP may be involved in meiosis of spermatocytes, differentiation of spermatids, and sperm motility in the mouse.  相似文献   

12.
13.
We used differential display in combination with complementary DNA (cDNA) cloning approach to isolate a novel rat gene designated as spetex-1, which had an open reading frame of 1,668-length nucleotides encoding a protein of 556 amino acids. Spetex-1 mRNA was highly expressed in testis, and weekly expressed in lung, intestine, and spleen. Spetex-1 expression in the rat testes was detected first at 3 weeks in postnatal development and continued to be detected up to adulthood. A search in the databases showed that the amino acid sequence of spetex-1 was 82% identical to that of its mouse homologue found in the databases. Both rat spetex-1 and the mouse homologue contained Ser-X (X = His, Arg, or Asn) repeats in the middle portion of the proteins. In situ hybridization revealed that spetex-1 mRNA was expressed in haploid spermatids of step 7-18 within the seminiferous epithelium. Immunohistochemical analysis with confocal laser-scanning microscopy demonstrated that spetex-1 protein was not expressed in spermatogonia, spermatocytes, and round spermatids in adult rat testis, but was specifically detected in the residual cytoplasm of elongate spermatids of step 15-18 as well as in residual bodies engulfed by Sertoli cells. We interpreted these data as a potential role of spetex-1 in spermatogenesis, especially in cell differentiation from late elongate spermatids to mature spermatozoa.  相似文献   

14.
15.
16.
17.
With an increasing incidence of male idiopathic infertility, identification of novel genes involved in spermatogenesis is an important aspect for the understanding of human testicular failure. In the present study, we have identified a novel gene Spata33, also called as 4732415M23Rik or C16orf55, which is conserved in mammalian species. Spata33 was predominantly expressed in the postpartum and adult mouse testes at mRNA and protein levels. Its expression was increased during the first wave of the spermatogenesis, indicating that Spata33 may be associated with the meiotic process. Further immunohistochemistry analysis revealed that Spata33 was mainly expressed in the spermatocytes, spermatogonia and round spermatids. Its expression was uniformly distributed in the nucleus and cytosol in these germ cells, which was further confirmed by Spata33-tagged with GFP staining in the GC-1 and TM4 cells. These results indicated that Spata33 was predominantly expressed in the mouse testis and associated with spermatogenesis. Identification and characterization of the novel testis-enriched gene Spata33 may provide a new route for understanding of spermatogenesis failure.  相似文献   

18.
Song H  Su D  Lu P  Yang J  Zhang W  Yang Y  Liu Y  Zhang S 《BMB reports》2008,41(9):664-669
Znf230, the mouse homologue of the human spermatogenesis-related gene, ZNF230, has been cloned by rapid amplification of cDNA ends (RACE). This gene is expressed predominantly in testis, but its expression in different testicular cells and spermatogenic stages has not been previously analyzed in detail. In the present study, the cellular localization of the Znf230 protein in mouse testis and epididymal spermatozoa was determined by RT-PCR, immunoblotting, immunohistochemistry and immunofluorescence. It is primarily expressed in the nuclei of spermatogonia and subsequently in the acrosome system and the entire tail of developing spermatids and spermatozoa. The results indicate that Znf230 may play an important role in mouse spermatogenesis, including spermatogenic cell proliferation and sperm maturation, as well as motility and fertilization.  相似文献   

19.
《Reproductive biology》2020,20(3):321-332
The erythropoietin-producing hepatocellular receptor B (EphB) class and ephrin-B ligand have been implicated in boundary formation in various epithelia. We recently found that ephrin-B1 and EphB2/EphB4 exhibit complementary expression in the epithelia along the excurrent duct system in the adult mouse testis. Moreover, the organisation and integrity of the duct system is indispensable for the transport of spermatozoa. Here, we examined ephrin-B1, EphB2 and EphB4 expression in the mouse testis during postnatal development. RT-PCR analysis revealed that the relative expression levels of these molecules decreased with age in early postnatal development, and were similar to those of adults by four weeks of age. Furthermore, immunostaining revealed that the excurrent duct system compartments exhibiting complementary expression of ephrin-B1 and EphB2/EphB4 were formed by two weeks of age. Meanwhile, ephrin-B1 and EphB4 were effective markers for spermatogonia in the neonatal testis due to their negative expression in gonocytes. Alternatively, EphB2 was a suitable marker for assessing completion of the first wave of spermatogenesis in puberty, due to its strong expression in the elongated spermatids of seminiferous tubules. Lastly, ephrin-B1 and EphB4 proved to be markers of both foetal and adult Leydig cells during postnatal development, as they were expressed in CYP17A1-positive cells. This study is the first to investigate the expression of ephrin-B1, EphB2, and EphB4 in normal mouse testes during postnatal development. The expression patterns of ephrin-B and EphBs may represent suitable tools for examining organisation of the excurrent duct system and monitoring reproductive toxicity during postnatal development.  相似文献   

20.
Normal sexual development and fertility in testatin knockout mice   总被引:2,自引:0,他引:2       下载免费PDF全文
The testatin gene was previously isolated in a screen focused on finding novel signaling molecules involved in sex determination and differentiation. testatin is specifically upregulated in pre-Sertoli cells in early fetal development, immediately after the onset of Sry expression, and was therefore considered a strong candidate for involvement in early testis development. testatin expression is maintained in the adult Sertoli cell, and it can also be found in a small population of germ cells. Testatin shows homology to family 2 cystatins, a group of broadly expressed small secretory proteins that are inhibitors of cysteine proteases in vitro but whose in vivo functions are unclear. testatin belongs to a novel subfamily among the cystatins, comprising genes that all show expression patterns that are strikingly restricted to reproductive tissue. To investigate a possible role of testatin in testis development and male reproduction, we have generated a mouse with targeted disruption of the testatin gene. We found no abnormalities in the testatin knockout mice with regard to fetal and adult testis morphology, cellular ultrastructure, body and testis weight, number of offspring, spermatogenesis, or hormonal parameters (testosterone, luteinizing hormone, and follicle-stimulating hormone).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号