首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Several types of 4-fluorophenylalanine resistant mutants were isolated. In one type of mutant DAHP synthetase (tyr) and prephenate dehydrogenase were coordinately derepressed. The mutation was linked to aroF and tyrA and was cis- dominant by merodiploid analysis, thus confirming that it is an operator constitutive mutation (tyrOc). A second type of mutation showed highly elevated levels of tyrosine pathway enzymes which were not repressed by L-tyrosine. It was unlinked to tyrA and aroF, and was trans-recessive in merodiploids. These properties were attributed to a mutation in a regulator gene, tyrR (linked to pyr F), that resulted in altered or non-functional aporepressor. Hence tyrO, tyrA, and aroF constitute an operon regulated by tyrR. In a third type of mutation chorismate mutase P-prephenate dehydratase was highly elevated. It was not linked to pheA, was located in the 95--100 min region of the Salmonella chromosome, and was recessive to the wild type gene in merodiploids. A mutation was, therefore, indicated in a regulatory gene, pheR, which specified an aporepressor for regulating pheA. DAHP synthetase (phe), specified by aroG, was not regulated by pheR, but was derepressed in one of the tyrR mutants, suggesting that as in Escherichia coli tyrR may regulate DAHP synthetase(phe) and DAHP synthetase (tyr) with the same aporepressor. A novel mutation in chorismate mutase is described.  相似文献   

2.
Repression of aromatic amino acid biosynthesis in Escherichia coli K-12   总被引:24,自引:20,他引:4  
Mutants of Escherichia coli K-12 were isolated in which the synthesis of the following, normally repressible enzymes of aromatic biosynthesis was constitutive: 3-deoxy-d-arabinoheptulosonic acid 7-phosphate (DAHP) synthetases (phe and tyr), chorismate mutase T-prephenate dehydrogenase, and transaminase A. In the wild type, DAHP synthetase (phe) was multivalently repressed by phenylalanine plus tryptophan, whereas DAHP synthetase (tyr), chorismate mutase T-prephenate dehydrogenase, and transaminase A were repressed by tyrosine. DAHP synthetase (tyr) and chorismate mutase T-prephenate dehydrogenase were also repressed by phenylalanine in high concentration (10(-3)m). Besides the constitutive synthesis of DAHP synthetase (phe), the mutants had the same phenotype as strains mutated in the tyrosine regulatory gene tyrR. The mutations causing this phenotype were cotransducible with trpA, trpE, cysB, and pyrF and mapped in the same region as tyrR at approximately 26 min on the chromosome. It is concluded that these mutations may be alleles of the tyrR gene and that synthesis of the enzymes listed above is controlled by this gene. Chorismate mutase P and prephenate dehydratase activities which are carried on a single protein were repressed by phenylalanine alone and were not controlled by tyrR. Formation of this protein is presumed to be controlled by a separate, unknown regulator gene. The heat-stable phenylalanine transaminase and two enzymes of the common aromatic pathway, 5-dehydroquinate synthetase and 5-dehydroquinase, were not repressible under the conditions studied and were not affected by tyrR. DAHP synthetase (trp) and tryptophan synthetase were repressed by tryptophan and have previously been shown to be under the control of the trpR regulatory gene. These enzymes also were unaffected by tyrR.  相似文献   

3.
Candida maltosa synthesizes phenylalanine and tyrosine only via phenylpyruvate and p-hydroxyphenylpyruvate. Tryptophan is absolutely necessary for the enzymatic reaction of chorismate mutase and prephenate dehydrogenase; activity of prephenate dehydratase can be increased 2.5-fold in the presence of tryptophan. Activation of the chorismate mutase, prephenate dehydratase and prephenate dehydrogenase by tryptophan is competitive with respect to chorismate and prephenate with Ka 0.06mM, 0.56mM and 1.7mM. In addition tyrosine is a competitive inhibitor of chorismate mutase (Ki = 0.55mM) and prephenate dehydrogenase (Ki = 5.5mM).  相似文献   

4.
大肠杆菌aroG基因的克隆表达及与pheA、tyrB基因的串联表达   总被引:1,自引:0,他引:1  
3-脱氧-2-阿拉伯庚酮糖-7-磷酸合成酶(DAHP)是苯丙氨酸合成途径中关键酶之一,在大肠杆菌中由aroG基因编码。本文用NTG诱变得到对苯丙氨酸类似物间氟苯丙氨酸(mFP)和对氟苯丙氨酸(pFP)有抗性的大肠杆菌突变株,采用聚合酶链反应(PCR)扩增得到了aroG基因,在大肠杆菌中进行了表达。结果表明,该基因能在λ噬菌体的pR启动子驱动下得到表达,在SDS-聚丙烯酰胺凝胶电泳图上出现清晰的条带,酶的比活提高了1.7倍。在pheA(编码分枝酸变位酶CM和预苯酸脱水酶PD)、tyrB(编码苯丙氨酸转氨酶PAT)基因克隆、串联克隆和表达完成的基础上,将aroG基因和pheA、tyrB基因以aroG-pheA-tyrB的顺序三基因串联到表达载体进行表达,酶活测定结果表明,三个基因都能在λ噬菌体的pR启动子驱动下表达,与对照菌株相比,酶比活分别提高了1.7倍、13.9/7.8倍和2.3倍。  相似文献   

5.
Several regulated enzymes involved in aromatic amino acid synthesis were studied in Bacillus subtilis and B. licheniformis with reference to organization and control mechanisms. B. subtilis has been previously shown (23) to have a single 3-deoxy-d-arabinoheptulosonate 7-phosphate (DAHP) synthetase but to have two isozymic forms of both chorismate mutase and shikimate kinase. Extracts of B. licheniformis chromatographed on diethylaminoethyl (DEAE) cellulose indicated a single DAHP synthetase and two isozymic forms of chorismate mutase, but only a single shikimate kinase activity. The evidence for isozymes has been supported by the inability to find strains mutant in these activities, although strains mutant for the other activities were readily obtained. DAHP synthetase, one of the isozymes of chorismate mutase, and one of the isozymes of shikimate kinase were found in a single complex in B. subtilis. No such complex could be detected in B. licheniformis. DAHP synthetase and shikimate kinase from B. subtilis were feedback-inhibited by chorismate and prephenate. DAHP synthetase from B. licheniformis was also feedback-inhibited by these two intermediates, but shikimate kinase was inhibited only by chorismate. When the cells were grown in limiting tyrosine, the DAHP synthetase, chorismate mutase, and shikimate kinase activities of B. subtilis were derepressed in parallel, but only DAHP synthetase and chorismate mutase were derepressible in B. licheniformis. Implications of the differences as well as the similarities between the control and the pattern of enzyme aggregation in the two related species of bacilli were discussed.  相似文献   

6.
Mutant strains of Escherichia coli have been isolated in which the synthesis of 3-deoxy-d-arabinoheptulosonic acid 7-phosphate (DAHP) synthetase (phe) is derepressed, in addition to those enzymes of tyrosine biosynthesis previously shown to be controlled by the gene tyrR. The major enzyme of the terminal pathway of phenylalanine biosynthesis chorismate mutase-prephenate dehydratase is not derepressed in these strains. Genetic analysis of the mutants shows that the mutation or mutations causing derepression map close to previously reported tyrR mutations. A study of one of the mutations has shown it to be recessive to the wild-type allele in a diploid strain. It is proposed that the tyrR gene product is involved in the regulation of the synthesis of DAHP synthetase (phe) as well as the synthesis of DAHP synthetase (tyr), chorismate mutase-prephenate dehydrogenase, and transaminase A.  相似文献   

7.
The control of the synthesis of certain key enzymes of aromatic amino acid biosynthesis was studied. Tyrosine represses the first enzyme of the 3-deoxy-d-arabino heptulosonic acid 7-phosphate pathway, DAHP synthetase, as well as shikimate kinase and chorismate mutase about fivefold in cultures grown under conditions limiting the synthesis of the aromatic amino acids. A mixture of tyrosine and phenylalanine represses twofold further. Tryptophan does not appear to be involved in the control of these enzymes. The specific activity of at least one early enzyme, dehydroquinase, remains essentially constant under a variety of nutritional supplementations. Two enzymes in the terminal branches are repressed by the amino acids they help to synthesize: prephenate dehydrogenase can be repressed fourfold by tyrosine, and anthranilate synthetase can be repressed over 200-fold by tryptophan. There is no evidence that phenylalanine represses prephenate dehydratase. Regulatory mutants have been isolated in which various enzymes of the pathway are no longer repressible. One class is derepressed for several of the prechorismate enzymes, as well as chorismate mutase and prephenate dehydrogenase. In another mutant, several enzymes of tryptophan biosynthesis are no longer repressible. Thus, the rate of synthesis of enzymes at every stage of the pathway is under control of various aromatic amino acids. Tyrosine and phenylalanine control the synthesis of enzymes involved in the synthesis of the three aromatic amino acids. Each terminal branch is under the control of its end product.  相似文献   

8.
Escherichia coli K12 strains producing l-phenylalanine were converted to l-tyrosine-producing strains using a novel genetic method for gene replacement. We deleted a region of the E. coli K12 chromosome including the pheA gene encoding chorismate mutase/prephenate dehydratase, its leader peptide (pheL), and its promoter using a new polymerase chain reaction-based method that does not leave a chromosomal scar. For high level expression of tyrA, encoding chorismate mutase/prephenate dehydrogenase, its native promoter was replaced with the strong trc promoter. The linked ΔpheLA and Ptrc-tyrA::KanR genetic modifications were moved into l-phenylalanine producing strains by generalized transduction to convert l-phenylalanine-producing strains to l-tyrosine-producing strains. Moreover, introduction of a plasmid carrying genes responsible for sucrose degradation into these strains enabled l-tyrosine-production from sucrose.  相似文献   

9.
N-(Phosphonomethyl) glycine prolongates the lag-phase and inhibits the growth rate of Escherichia coli, Salmonella typhimurium and Pseudomonas aureofaciens. The eucaryotes Saccharomyces cerevisiae and Neurospora crassa are not inhibited. The effect of growth inhibition in an E. coli culture depends on the time of the herbicide addition and no cells showing resistance against it are observed. The inhibitory effect can be overcome completely by a mixture of phenylalanine, tyrosine and tryptophan. N-(Phosphonomethyl)glycine inhibits phospho-2-oxo-3-deoxyheptonate aldolase and 3-dehydroquinate synthase. Both inhibitory effects are removed by addition of CO2. Chorismate mutase, prephenate dehydratase and prephenate dehydrogenase are not influenced by this herbicide. Anthranilate synthase is also inhibited by N-(phosphonomethyl)glycine. This inhibition is removed by addition of Mg2. Phospho-2-oxo-3-deoxyheptonate aldoase is derepressed in E. coli cells grown in minimal medium containing N-(phosphonomethyl)glycine. Under these conditions the tyrosine-sensitive isoenyme is much more strongly derepressed than the phenylalanine-sensitive isoenzyme. 3-Dehydroquinate synthase is not affected. Chorismate mutase, prephenate dehydrogenase, prephenate dehydratase, and anthranilate synthase are derepressed, but to a lesser extent.  相似文献   

10.
11.
The enzyme activities specified by the tyrA and pheA genes were studied in wildtype strain Salmonella typhimurium and in phenylalanine and tyrosine auxotrophs. As in Aerobacter aerogenes and Escherichia coli, the wild-type enzymes of Salmonella catalyze two consecutive reactions: chorismate --> prephenate --> 4-hydroxy-phenylpyruvate (tyrA), and chorismate --> prephenate --> phenylpyruvate (pheA). A group of tyrA mutants capable of interallelic complementation had altered enzymes which retained chorismate mutase T activity but lacked prephenate dehydrogenase. Similarly, pheA mutants (in which interallelic complementation does not occur) had one group with altered enzymes which retained chorismate mutase P but lacked prephenate dehydratase. Tyrosine and phenylalanine auxotrophs outside of these categories showed loss of both activities of their respective bifunctional enzyme. TyrA mutants which had mutase T were considerably derepressed in this activity by tyrosine starvation and consequently excreted prephenate. A new and specific procedure was developed for assaying prephenate dehydrogenase activity.  相似文献   

12.
The effect of pH on chorismate mutase/prephenate dehydratase (chorismate pyruvate mutase/prephenate hydro-lyase (decarboxylating) EC 5.4.99.5/EC 4.2.1.51) from Escherichia coli K12 has been studied. While the maximum velocity of both activities is independent of pH, Km for chorismate or prephenate shows a complex pH dependence. Differences in mutase activity in acetate/phosphate/borate and citrate/phosphate/borate buffers were traced to inhibition by citrate. When a variety of analogues of citrate were tested as possible inhibitors of the enzyme, several were found to inhibit mutase and dehydratase activities to different extents, and by different mechanisms. Thus citrate competitively inhibits mutase activity, but inhibits dehydratase activity by either a non-competitive or an uncompetitive mechanism. Conversely, cis- and trans-aconitate competitively inhibit dehydratase activity, but are partially competitive inhibitors of mutase activity. The differential effects of these inhibitors on the two activities are consistent with the existence of two distinct active sites, but additionally suggest some degree of interconnection between them. The implications of these results for possible mechanisms of catalysis by chorismate mutase/prephenate dehydratase are discussed.  相似文献   

13.
L-tyrosine (L-tyr) overproducing Escherichia coli strain derived from an L-phenylalanine (L-phe) overproducing strain is characterized in 10 L and 200 L scale fermentations. Deletion of the chromosomal region encoding for the pheA gene, chorismate mutase/prephenate dehydratase, its leader peptide (pheL) and its associated promoter resulted in significant increase in L-tyr production (Olson et al., 2007. Appl Microbiol Biotechnol 74(5):1031-1040). Further increase in titer was achieved by overexpressing tyrA, encoding chorismate mutase/prephenate dehydrogenase, from a strong non-native trc promoter (Olson et al., 2007. Appl Microbiol Biotechnol 74(5):1031-1040). Fermentation optimization studies include media component selection; glucose feed optimization, antifoam agent selection, and understanding fermentation parameters affecting foaming. Generational stability of the strain was evaluated along with rate, titer, and yield of tyrosine formation from glucose. L-tyr titer of 55 g/L in 48 h was demonstrated in 200 L batches, is the highest titer published till date. We have also evaluated two primary separations schemes to isolate and purify L-tyr from the fermentation broth. Physical separation of L-tyr crystals from biomass using a decanter type centrifuge, based on the density difference between the solids, is compared and contrasted with a strategy where L-tyr is first dissolved at pH 11.5 and then acid precipitated from clarified supernatants following removal of biomass using membrane filtration. L-tyr product purity of 98% with yields ranging from 90% to 95% is demonstrated.  相似文献   

14.
Chorismate mutase from Streptomyces aureofaciens was purified 12-fold. This enzyme preparation did not show any activity when tested for anthranilate synthetase, prephenate dehydrogenase, or prephenate dehydratase. The catalytic activity of chorismate mutase has a broad optimum between pH 7 and 8. The initial velocity data followed regular Michaelis-Menten kinetics with a K(m) of 5.3 x 10(-4) M, and the molecular weight of the enzyme was determined by sucrose gradient centrifugation to be 50,000. Heat inactivation of chorismate mutase, which occurs above temperatures of 60 C, is reversible. The enzyme activity can be restored even when chorismate mutase is treated at the temperature of a boiling-water bath for 15 min. Heat-denatured and renatured enzymes showed the same Michaelis constant and the same molecular weight as the native enzyme. l-Phenylalanine, l-tyrosine, l-tryptophan, and metabolites of the aromatic amino acid pathway were tested as potential modifiers of chorismate mutase activity. The activity of the enzyme was inhibited by none of these substances. Chorismate mutase of S. aureofaciens was not repressed in cells grown in minimal medium supplemented with l-phenylalanine, l-tyrosine, or l-tryptophan.  相似文献   

15.
aroG基因编码的 3-脱氧-2-阿拉伯庚酮糖-7-磷酸合成酶(DAHP Synthetase DS)和 pheA基因编码的分支酸变位酶/预苯酸脱水酶(Chorimate mutase/ Prephenate dehydratase,CW/PD)都是本丙氨酸合成途径中的关键酶,为了通过基因工程手段来增加本丙氨酸生物的产量,在利用高效的原核表达载体pBV22 0对pheA基因编码的CM/ PD 酶进行了表达的基础上,采用PCR方法扩增了抗反馈抑制的arcG基因,进行克隆表达,并与pheA基因串联,以PRPL-aroG-PL-pheA的形式,实现了2种酶基因在大肠杆菌中的表达, SDSPAGE 图谱显示了新增的43ku及35ku蛋白带,经酶活性测定DS、CM/PD酶的比活分别提高了 4.67倍、805/10.71倍。  相似文献   

16.
Three classes of mutant strains of Escherichia coli K12 defective in pheA, the gene coding for chorismate mutase/prephenate dehydratase, have been isolated: (1) those lacking prephenate dehydratase activity, (2) those lacking chorismate mutase activity, and (3) those lacking both activities. Chorismate mutase/prephenate dehydratase from the second class of mutants was less sensitive to inhibition by phenylalanine than wild-type enzyme and, along with the defective enzyme from the third class of mutants, could not be purified by affinity chromatography on Sepharosyl-phenylalanine. Pure chorismate mutase/prephenate dehydratase protein was prepared from two strains belonging to the first class. The chorismate mutase activity of these enzymes is kinetically similar to that of the wild-type enzyme except for a two- to threefold increase in both the Ka for chorismate and the Kis for inhibition by prephenate. In both cases only one change in the tryptic fingerprint was detected, resulting from a substitution of the threonine residue in the peptide Gln·Asn·Phe·Thr·Arg. This suggests that this residue is catalytically or structurally essential for the dehydratase activity.  相似文献   

17.
The recent placement of major Gram-negative prokaryotes (Superfamily B) on a phylogenetic tree (including, e.g., lineages leading to Escherichia coli, Pseudomonas aeruginosa, and Acinetobacter calcoaceticus) has allowed initial insights into the evolution of the biochemical pathway for aromatic amino acid biosynthesis and its regulation to be obtained. Within this prokaryote grouping, Xanthomonas campestris ATCC 12612 (a representative of the Group V pseudomonads) has played a key role in facilitating deductions about the major evolutionary events that shaped the character of aromatic biosynthesis within this grouping. X. campestris is like P. aeruginosa (and unlike E. coli) in its possession of dual flow routes to both L-phenylalanine and L-tyrosine from prephenate. Like all other members of Superfamily B, X. campestris possesses a bifunctional P-protein bearing the activities of both chorismate mutase and prephenate dehydratase. We have found an unregulated arogenate dehydratase similar to that of P. aeruginosa in X. campestris. We separated the two tyrosine-branch dehydrogenase activities (prephenate dehydrogenase and arogenate dehydrogenase); this marks the first time this has been accomplished in an organism in which these two activities coexist. Superfamily B organisms possess 3-deoxy-D-arabino-heptulosonate 7-P (DAHP) synthase as three isozymes (e.g., in E. coli), as two isozymes (e.g., in P. aeruginosa), or as one enzyme (in X. campestris). The two-isozyme system has been deduced to correspond to the ancestral state of Superfamily B. Thus, E. coli has gained an isozyme, whereas X. campestris has lost one. We conclude that the single, chorismate-sensitive DAHP synthase enzyme of X. campestris is evolutionarily related to the tryptophan-sensitive DAHP synthase present throughout the rest of Superfamily B. In X. campestris, arogenate dehydrogenase, prephenate dehydrogenase, the P-protein, chorismate mutase-F, anthranilate synthase, and DAHP synthase are all allosteric proteins; we compared their regulatory properties with those of enzymes of other Superfamily B members with respect to the evolution of regulatory properties. The network of sequentially operating circuits of allosteric control that exists for feedback regulation of overall carbon flow through the aromatic pathway in X. campestris is thus far unique in nature.  相似文献   

18.
In the biosynthetic pathway of aromatic amino acids of Brevibacterium flavum, ratios of each biosynthetic flow at the chorismate branch point were calculated from the reaction velocities of anthranilate synthetase for tryptophan and chorismate mutase for phenylalanine and tyrosine at steady state concentrations of chorismate. When these aromatic amino acids were absent, the ratio was 61, showing an extremely preferential synthesis of tryptophan. The presence of tryptophan at 0.01 mM decreased the ratio to 0.07, showing a diversion of the preferential synthesis to phenylalanine and tyrosine. Complete recovery by glutamate of the ability to synthesize the Millon-positive substance in dialyzed cell extracts confirmed that tyrosine was synthesized via pretyrosine in this organism. Partially purified prephenate aminotransferase, the first enzyme in the tyrosine-specific branch, had a pH optimum of 8.0 and Km’s of 0.45 and 22 mM for prephenate and glutamate, respectively, and its activity was increased 15-fold by pyridoxal-5-phosphate. Neither its activity nor its synthesis was affected at all by the presence of the end product tyrosine or other aromatic amino acids. The ratio of each biosynthetic flow for tyrosine and phenylalanine at the prephenate branch point was calculated from the kinetic equations of prephenate aminotransferase and prephenate dehydratase, the first enzyme in the phenylalanine-specific branch. It showed that tyrosine was synthesized in preference to phenylalanine when phenylalanine and tyrosine were absent. Furthermore, this preferential synthesis was diverted to a balanced synthesis of phenylalanine and tyrosine through activation of prephenate dehydratase by the tyrosine thus synthesized. The feedback inhibition of prephenate dehydratase by phenylalanine was proposed to play a role in maintaining a balanced synthesis when supply of prephenate was decreased by feedback inhibition of 3-deoxy-D-arabino-heptulosonate 7-phosphate (DAHP*) synthetase, the common key enzyme. Overproduction of the end products in various regulatory mutants was also explained by these results.  相似文献   

19.
大肠杆菌T蛋白含有三个结构域:分支酸变位酶、预苯酸脱氢酶和调节结构域。文章作者分段克隆了T蛋白的分支酸变位酶、预苯酸脱氢酶和调节结构域等片段,并对其进行了活性研究。研究发现,定位于N末端的分支酸变位酶结构域的比活性虽然不高,而稳定性较好;同时拥有调节结构域和预苯酸脱氢酶结构域的C末端片段,其预苯酸脱氢酶比活性的剩余百分率虽然高于分支酸变位酶结构域,但稳定性较差。作者进而表达了C末端切除38个氨基酸的T/1-336片段,发现预苯酸脱氢酶活性彻底丧失,而其分支酸变位酶和调节结构域的活性却基本保留。这说明T蛋白中分支酸变位酶结构域拥有一个相对独立、完整的结构,而预苯酸脱氢酶结构域和调节结构域交织共存,结构松散。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号