首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Erwinia chrysanthemi secretes, by the type II secretory pathway, a large number of enzymes, including cellulases and pectinases. This process requires the products of the out genes, which are widely conserved in Gram-negative bacteria. The Out proteins are thought to form a membrane-associated multiprotein complex. Here, we investigated interaction between OutE, the putative ATP binding component, and OutL, an inner membrane protein. We showed, by limited proteolysis, genetic suppression and the yeast two-hybrid system, that OutE and OutL interact directly. Analysis of truncated forms of OutE demonstrated that the N terminus of OutE (residues 1-97) is important for the OutE/OutL interaction. Moreover, results from the yeast two-hybrid system suggested that OutE and OutL are each able to form homomultimers. The region required for homomultimerisation of OutE is located in its C terminus. Limited proteolysis assay indicated that OutE induces a conformational change in OutL, in both its cytoplasmic and periplasmic domains. Moreover, the secretion process requires a conformational change in OutE which depends on both the interaction with OutL and on the presence of an intact Walker A motif in OutE. Our results support the view that interaction occurring on the cytoplasmic side influences the events occurring in the outer membrane. We discuss a model in which OutE uses ATP to control the assembly of the type II secretion machinery.  相似文献   

2.
Plasma-membrane-specific localization of Gag, an essential step in HIV-1 particle assembly, is regulated by the interaction of the Gag MA domain with PI(4,5)P2 and tRNA-mediated inhibition of non-specific or premature membrane binding. Different tRNAs inhibit PI(4,5)P2-independent membrane binding to varying degrees in vitro; however, the structural determinants for this difference remain unknown. Here we demonstrate that membrane binding of full-length Gag synthesized in vitro using reticulocyte lysates is inhibited when RNAs that contain the anticodon arm of tRNAPro, but not that of tRNALys3, are added exogenously. In contrast, in the context of a liposome binding assay in which the effects of tRNAs on purified MA were tested, full-length tRNALys3 showed greater inhibition of MA membrane binding than full-length tRNAPro. While transplantation of the D loop sequence of tRNALys3 into tRNAPro resulted in a modest increase in the inhibitory effect relative to WT tRNAPro, replacing the entire D arm sequence with that of tRNALys3 was necessary to confer the full inhibitory effects upon tRNAPro. Together, these results demonstrate that the D arm of tRNALys3 is a major determinant of strong inhibition of MA membrane binding and that this inhibitory effect requires not only the D loop, which was recently reported to contact the MA highly basic region, but the loop sequence in the context of the D arm structure.  相似文献   

3.
An enzymatic in vitro alginate polymerization assay was developed by using 14C-labeled GDP-mannuronic acid as a substrate and subcellular fractions of alginate overproducing Pseudomonas aeruginosa FRD1 as a polymerase source. The highest specific alginate polymerase activity was detected in the envelope fraction, suggesting that cytoplasmic and outer membrane proteins constitute the functional alginate polymerase complex. Accordingly, no alginate polymerase activity was detected using cytoplasmic membrane or outer membrane proteins, respectively. To determine the requirement of Alg8, which has been proposed as catalytic subunit of alginate polymerase, nonpolar isogenic alg8 knockout mutants of alginate-overproducing P. aeruginosa FRD1 and P. aeruginosa PDO300 were constructed, respectively. These mutants were deficient in alginate biosynthesis, and alginate production was restored by introducing only the alg8 gene. Surprisingly, this resulted in significant alginate overproduction of the complemented P. aeruginosa Δalg8 mutants compared to nonmutated strains, suggesting that Alg8 is the bottleneck in alginate biosynthesis. 1H-NMR analysis of alginate isolated from these complemented mutants showed that the degree of acetylation increased from 4.7 to 9.3% and the guluronic acid content was reduced from 38 to 19%. Protein topology prediction indicated that Alg8 is a membrane protein. Fusion protein analysis provided evidence that Alg8 is located in the cytoplasmic membrane with a periplasmic C terminus. Subcellular fractionation suggested that the highest specific PhoA activity of Alg8-PhoA is present in the cytoplasmic membrane. A structural model of Alg8 based on the structure of SpsA from Bacillus subtilis was developed.  相似文献   

4.
Erwinia carotovora subsp. betavasculorum Ecb168 produces an antibiotic(s) that suppresses growth of the related bacterium Erwinia carotovora subsp. carotovora in culture and in wounds of potato tubers. Strain Ecb168 also produces and secretes pectolytic enzymes and causes a vascular necrosis and root rot of sugar beet. Genes (out) involved in secretion of pectolytic enzymes by Ecb168 were localized to two HindIII fragments (8.5 and 10.5 kb) of Ecb168 genomic DNA by hybridization to the cloned out region of E. carotovora subsp. carotovora and by complementation of Out- mutants of E. carotovora subsp. carotovora. Out- mutants of Ecb168, which did not secrete pectate lyase into the culture medium, were obtained when deletions internal to either HindIII fragment were introduced into the genome of Ecb168 through marker exchange mutagenesis. Out- mutants of Ecb168 were complemented to the Out+ phenotype by introduction of the corresponding cloned HindIII fragment. Out- mutants of Ecb168 were less virulent than the Out+ parental strain on potato tubers. Strain Ecb168 and Out- derivatives inhibited the growth of E. carotovora subsp. carotovora in culture, indicating that the uncharacterized antibiotic(s) responsible for antagonism was exported through an out-independent mechanism. Strain Ecb168 and Out- derivatives reduced the establishment of large populations of E. carotovora subsp. carotovora in wounds of potato tubers and suppressed tuber soft rot caused by E. carotovora subsp. carotovora.  相似文献   

5.
The elm leaf beetle, Xanthogaleruca luteola, is a serious pest of elm trees in urban areas. Partial biochemical characterization of pectinases and cellulases was conducted using the larval digestive system of the pest. Midgut extracts from larvae showed optimum activity for pectinase and cellulase against pectin and carboxymethyl cellulose, respectively, under acidic conditions (pH 6). Pectinases and cellulases were respectively more stable under acidic conditions (pH 4–7) and slightly acidic conditions (pH 5–7) than under highly acidic and alkaline conditions. However, the enzymes were more stable in slightly acidic conditions (pH 6) when incubation time was increased. Maximum activity for the pectinases and cellulases incubated at different temperatures was observed at 45 and 50 °C, respectively. Mg2+ remarkably increased pectinase activity, and cellulase activity increased significantly in the presence of Ca2+ and Mg2+. Sodium dodecyl sulfate significantly decreased pectinase and cellulase activity. The Michaelis–Menten constant (KM) and the maximal reaction velocity (Vmax) values for pectinase were 2 mg·mL? 1 and 0.017 mmol·min? 1·mg? 1 protein toward pectin, respectively. Zymogram analyses revealed the presence of one and five bands of pectinase and cellulase activity, respectively, in the larval midgut extract.  相似文献   

6.
t is the holin gene for coliphage T4, encoding a 218-amino-acid (aa) protein essential for the inner membrane hole formation that initiates lysis and terminates the phage infection cycle. T is predicted to be an integral membrane protein that adopts an Nin-Cout topology with a single transmembrane domain (TMD). This holin topology is different from those of the well-studied holins S105 (3 TMDs; Nout-Cin) of the coliphage lambda and S68 (2 TMDs; Nin-Cin) of the lambdoid phage 21. Here, we used random mutagenesis to construct a library of lysis-defective alleles of t to discern residues and domains important for holin function and for the inhibition of lysis by the T4 antiholin, RI. The results show that mutations in all 3 topological domains (N-terminal cytoplasmic, TMD, and C-terminal periplasmic) can abrogate holin function. Additionally, several lysis-defective alleles in the C-terminal domain are no longer competent in binding RI. Taken together, these results shed light on the roles of the previously uncharacterized N-terminal and C-terminal domains in lysis and its real-time regulation.  相似文献   

7.
Megumi Hirono 《BBA》2007,1767(7):930-939
The H+-translocating inorganic pyrophosphatase is a proton pump that hydrolyzes inorganic pyrophosphate. It consists of a single polypeptide with 14−17 transmembrane domains, and is found in a range of organisms. We focused on the second quarter region of Streptomyces coelicolor A3(2) H+-pyrophosphatase, which contains long conserved cytoplasmic loops. We prepared a library of 1536 mutants that were assayed for pyrophosphate hydrolysis and proton translocation. Mutant enzymes with low substrate hydrolysis and proton-pump activities were selected and their DNAs sequenced. Of these, 34 were single-residue substitution mutants. We generated 29 site-directed mutant enzymes and assayed their activity. The mutation of 10 residues in the fifth transmembrane domain resulted in low coupling efficiencies, and a mutation of Gly198 showed neither hydrolysis nor pumping activity. Four residues in cytoplasmic loop e were essential for substrate hydrolysis and efficient H+ translocation. Pro189, Asp281, and Val351 in the periplasmic loops were critical for enzyme function. Mutation of Ala357 in periplasmic loop h caused a selective reduction of proton-pump activity. These low-efficiency mutants reflect dysfunction of the energy-conversion and/or proton-translocation activities of H+-pyrophosphatase. Four critical residues were also found in transmembrane domain 6, three in transmembrane domain 7, and five in transmembrane domains 8 and 9. These results suggest that transmembrane domain 5 is involved in enzyme function, and that energy coupling is affected by several residues in the transmembrane domains, as well as in the cytoplasmic and periplasmic loops. H+-pyrophosphatase activity might involve dynamic linkage between the hydrophilic and transmembrane domains.  相似文献   

8.
Buoyant density of mitochondrial DNA from 14 cytoplasmic petite mutants issued from the same grande yeast Saccharomyces cerevisiae was determined. Mutants that have retained the mitochondrial gene conferring resistance to erythromycin displayed higher buoyant density, while mutants that have retained the mitochondrial gene conferring resistance to chloramphenicol displayed lower buoyant density. It is inferred that the segment which carries the ER gene has a higher G + C content than the segment which carries the CR gene. DNA-DNA filter hybridizations were carried out systematically in different reciprocal pair-wise combinations between mtDNAs purified from various mutants and from the grande. All petites were found to be deleted in 42 to 93% of the grande sequence, depending on the mutant studied. Sequence homology between petite mtDNAs was greatest in mutants retaining common genetic markers and was least when different genetic markers were retained. Practically no hybridization was found between some CREO and COER mutants. Correlations established between the extent of DNA-DNA hybridization, kinetic and genetic complexity show that a selective enrichment of gene specific sequences occurs in mtDNA of petites.  相似文献   

9.
Actin with a Val 159 to Asn mutation (V159N) forms actin filaments that depolymerize slowly because of a failure to undergo a conformational change after inorganic phosphate release. Here we demonstrate that expression of this actin results in reduced actin dynamics in vivo, and we make use of this property to study the roles of rapid actin filament turnover. Yeast strains expressing the V159N mutant (act1-159) as their only source of actin have larger cortical actin patches and more actin cables than wild-type yeast. Rapid actin dynamics are not essential for cortical actin patch motility or establishment of cell polarity. However, fluid phase endocytosis is defective in act1-159 strains. act1-159 is synthetically lethal with cofilin and profilin mutants, supporting the conclusion that mutations in all of these genes impair the polymerization/ depolymerization cycle. In contrast, act1-159 partially suppresses the temperature sensitivity of a tropomyosin mutant, and the loss of cytoplasmic cables seen in fimbrin, Mdm20p, and tropomyosin null mutants, suggesting filament stabilizing functions for these actin-binding proteins. Analysis of the cables in these double-mutant cells supports a role for fimbrin in organizing cytoplasmic cables and for Mdm20p and tropomyosin in excluding cofilin from the cables.  相似文献   

10.
Megumi Hirono 《BBA》2007,1767(12):1401-1411
The H+-translocating inorganic pyrophosphatase is a proton pump that hydrolyzes inorganic pyrophosphate. It consists of a single polypeptide with 14-17 transmembrane domains (TMs). We focused on the third quarter region of Streptomyces coelicolor A3(2) H+-pyrophosphatase, which contains a long conserved cytoplasmic loop. We assayed 1520 mutants for pyrophosphate hydrolysis and proton translocation, and selected 34 single-residue substitution mutants with low substrate hydrolysis and proton-pump activities. We also generated 39 site-directed mutant enzymes and assayed their activity. The mutation of 5 residues in TM10 resulted in low energy-coupling efficiencies, and mutation of conserved residues Thr409, Val411, and Gly414 showed neither hydrolysis nor pumping activity. The mutation of six, five, and four residues in TM11, 12, and 13, respectively, gave a negative effect. Phe388, Thr389, and Val396 in cytoplasmic loop i were essential for efficient H+ translocation. Ala436 and Pro560 in the periplasmic loops were critical for coupling efficiency. These low-efficiency mutants showed dysfunction of the energy-conversion and/or proton-translocation activity. The energy efficiency was increased markedly by the mutation of two and six residues in TM9 and 12, respectively. These results suggest that TM10 is involved in enzyme function, and that TM12 regulate the energy-conversion efficiency. H+-pyrophosphatase might involve dynamic linkage between the hydrophilic loops and TMs through the central half region of the enzyme.  相似文献   

11.
The long loop connecting transmembrane α4 and α5 of the Bacillus thuringiensis Cry4Aa toxin possesses a unique feature with Pro-rich sequence (Pro193Pro194_Pro196) which was shown to be crucial for toxicity. Here, the structural role in the intrinsic stability of the Pro-rich sequence toward toxin activity was investigated. Three Val-substituted mutants (P193V, P194V and P196V) and one Phe-substituted mutant (P193F) were generated and over-expressed in Escherichia coli as inclusions at levels equal to the wild-type. Bioassays demonstrated that all mutants, particularly P193V and P193F whose inclusions were hardly soluble in carbonate buffer (pH 9.0), exhibited reduced toxicity, suggesting an essential role in toxin function by the specific cyclic structure of individual Pro residues. Analysis of the 65-kDa Cry4Aa structure from 10-ns molecular dynamics (MD) simulations revealed that the α4–α5 loop is substantially stable as it showed low structural fluctuation with a 1.2-Å RMSF value. When the flexibility of the α4–α5 loop was increased through P193G, P194G and P196G substitutions, decreased toxicity was also observed for all mutants, mostly for the P193G mutant with low alkali-solubility, suggesting a functional importance of loop-rigidity attributed by individual Pro-cyclic side-chains, particularly Pro193. Further MD simulations revealed that the most critical residue−Pro193 for which mutations vastly affect toxin solubility and larval toxicity is in close contact with several surrounding residues, thus playing an additional role in the structural arrangement of the Cry4Aa toxin molecule. Altogether, our data signify that the intrinsic stability of the unique Cry4Aa α4–α5 loop structure comprising the Pro-rich sequence plays an important role in toxin activity.  相似文献   

12.
The enzymatic activity of secreted phosphatidylinositol-specific phospholipase C (PI-PLC) enzymes is associated with bacterial virulence. Although the PI-PLC active site has no obvious lid, molecular-dynamics simulations suggest that correlated loop motions may limit access to the active site, and two Pro residues, Pro245 and Pro254, are associated with these correlated motions. Whereas the region containing both Pro residues is quite variable among PI-PLCs, it shows high conservation in virulence-associated, secreted PI-PLCs that bind to the surface of cells. These regions of the protein are also associated with phosphatidylcholine binding, which enhances PI-PLC activity. In silico mutagenesis of Pro245 disrupts correlated motions between the two halves of Bacillus thuringiensis PI-PLC, and Pro245 variants show significantly reduced enzymatic activity in all assay systems. PC still enhanced activity, but not to the level of wild-type enzyme. Mutagenesis of Pro254 appears to stiffen the PI-PLC structure, but experimental mutations had minor effects on activity and membrane binding. With the exception of P245Y, reduced activity was not associated with reduced membrane affinity. This combination of simulations and experiments suggests that correlated motions between the two halves of PI-PLC may be more important for enzymatic activity than for vesicle binding.  相似文献   

13.
14.
We have earlier characterized Saccharomyces cerevisiae strains with mutations of essential SUP45 and SUP35, which code for translation termination factors eRF1 and eRF3, respectively. In this work, the sup45 and sup35 nonsense mutants were compared with respect to the levels of eight tRNAs: tRNATyr, tRNAGln, tRNATrp, tRNALeu, tRNAArg (described as potential suppressor tRNAs), tRNAPro, tRNAHis, and tRNAGly. The mutants did not display a selective increase in tRNAs, capable of a noncanonical read-through at stop codons. Most of the mutations increased the level of all tRNAs under study. The mechanisms providing for the viability of the sup45 and sup35 nonsense mutants are discussed.  相似文献   

15.
A number of thrombin mutants have been constructed to investigate the role of Trp96 and the β-insertion loop for the specificity of thrombin. Thrombin(60D) consists of the replacement of the β-insertion loop (14 amino acid residues from 59 to 63, including a 9-residue insertion at position 60) with the corresponding four residues in trypsin, Tyr-Lys-Ser-Gly; thrombin(GGG) is a smaller loop mutation in which the residues Tyr60APro60BPro60CTrp60D Asp60ELys60F of the β-insertion loop were replaced by Gly-Gly-Gly; thrombin(96S) consists of a point mutation Trp96→Ser; and thrombin(GGG/96S) is the double mutant incorporating both changes. Thrombin(96S) clots fibrinogen ~3 times more slowly than thrombin, with the two β-insertion loop mutants, thrombin(GGG) and thrombin(GGG/96S), reacting ~3000- and 1300-fold more slowly, respectively. The specificity constant k cat/K m for the cleavage of fibrinopeptide A and fibrinopeptide B by thrombin(96S) was 2.6 and 0.35 μM?1 s?1 respectively, compared to 10 and 2.5 μM?1 s?1 for wild-type recombinant thrombin, respectively. Kinetic constants were determined for the hydrolysis of H-D-phenylalanyl-L-pipecolyl-L-arginine-p-nitroaniline. The Michaelis constant K m increased ~6-fold for thrombin(96S) and >200-fold for thrombin(GGG) and thrombin(GGG/96S) when compared to wild-type recombinant thrombin, while the catalytic constant k cat remained approximately the same. All mutants were more susceptible to inhibition by BPTI than wild-type recombinant thrombin. Clearly, the β-insertion loop is important for thrombin activity. But the mutation of Trp96→Ser can compensate somewhat for the loss of binding at the β-insertion loop. The deletion of the hydrophobic interaction between Trp96 and Pro60BPro60C appears to decrease the stability of the β-insertion loop, thereby causing a decrease in binding efficiency.  相似文献   

16.
If a ribosome shifts to an alternative reading frame during translation, the information in the message is usually lost. We have selected mutants of Salmonella typhimurium with alterations in tRNAcmo5UGGPro that cause increased frameshifting when present in the ribosomal P-site. In 108 such mutants, two parts of the tRNA molecule are altered: the anticodon stem and the D-arm, including its tertiary interactions with the variable arm. Some of these alterations in tRNAcmo5UGGPro are in close proximity to ribosomal components in the P-site. The crystal structure of the 30S subunit suggests that the C-terminal end of ribosomal protein S9 contacts nucleotides 32-34 of peptidyl-tRNA. We have isolated mutants with defects in the C-terminus of S9 that induce + 1 frameshifting. Combinations of changes in tRNAcmo5UGGPro and S9 suggest that an interaction occurs between position 32 of the peptidyl-tRNA and the C-terminal end of S9. Together, our results suggest that the cause of frameshifting is an aberrant interaction between the peptidyl-tRNA and the P-site environment. We suggest that the “ribosomal grip” of the peptidyl-tRNA is pivotal for maintaining the reading frame.  相似文献   

17.
The activation of a high affinity Ca2+ influx system (HACS) in the plasma membrane is required for survival of yeast cells exposed to natural or synthetic inhibitors of essential processes (secretory protein folding or sterol biosynthesis) in the endoplasmic reticulum (ER). The mechanisms linking ER stress to HACS activation are not known. Here we show that Kch1, a recently identified low affinity K+ transporter in the plasma membrane of Saccharomyces cerevisiae, is up-regulated in response to several ER stressors and necessary for HACS activation. The activation of HACS required extracellular K+ and was also dependent on the high affinity K+ transporters Trk1 and Trk2. However, a paralog of Kch1 termed Kch2 was not expressed and not necessary for HACS activation in these conditions. The pathogenic yeast Candida albicans carries only one homolog of Kch1/Kch2, and homozygous knock-out mutants were similarly deficient in the activation of HACS during the responses to tunicamycin. However, the Kch1 homolog was not necessary for HACS activation or cell survival in response to several clinical antifungals (azoles, allylamines, echinocandins) that target the ER or cell wall. Thus, Kch1 family proteins represent a conserved linkage between HACS and only certain classes of ER stress in these yeasts.  相似文献   

18.
Increasing specific activity of cellulase on solid cellulosic materials would be among the top priorities for second-generation biorefineries. However, the complicated relationship among the heterogeneity of solid cellulosic materials and different action mode cellulase components results in great challenges in cellulase engineering. We applied directed evolution to a Clostridium phytofermentans ISDg glycoside hydrolase family 9 processive endoglucanase (CpCel9) for enhanced hydrolytic performance by using Bacillus subtilis as a host for cloning and expression. Several CpCel9 mutants with both increased expression level and enhanced specific activity on the solid cellulosic material were obtained. The most active mutant, which also exhibits an increased expression level, had more than threefold specific activity than that of wild type on regenerated amorphous cellulose. Most mutation sites were located in the family 3 cellulose-binding module near to its catalytic module, which might guide the entrance of glucan into the catalytic module. This study suggested that directed evolution by combining B. subtilis secretory protein expression host and solid cellulosic substrates would be a powerful tool to evolve more active cellulase mutants for cost-effective biosaccharification process.  相似文献   

19.
The pathophysiology of Treponema denticola, an oral pathogen associated with both periodontal and endodontic infections, is poorly understood due to its fastidious growth and recalcitrance to genetic manipulations. Counterselectable markers are instrumental in constructing clean and unmarked mutations in bacteria. Here, we demonstrate that pyrF, a gene encoding orotidine-5′-monophosphate decarboxylase, can be used as a counterselectable marker in T. denticola to construct marker-free mutants. T. denticola is susceptible to 5-fluoroorotic acid (5-FOA). To establish a pyrF-based counterselectable knockout system in T. denticola, the pyrF gene was deleted. The deletion conferred resistance to 5-FOA in T. denticola. Next, a single-crossover mutant was constructed by reintroducing pyrF along with a gentamicin resistance gene (aacC1) back into the chromosome of the pyrF mutant at the locus of choice. In this study, we chose flgE, a flagellar hook gene that is located within a large polycistronic motility gene operon, as our target gene. The obtained single-crossover mutant (named FlgEin) regained the susceptibility to 5-FOA. Finally, FlgEin was plated on solid agar containing 5-FOA. Numerous colonies of the 5-FOA-resistant mutant (named FlgEout) were obtained and characterized by PCR and Southern blotting analyses. The results showed that the flgE gene was deleted and FlgEout was free of selection markers (i.e., pyrF and aacC1). Compared to previously constructed flgE mutants that contain an antibiotic selection marker, the deletion of flgE in FlgEout has no polar effect on its downstream gene expression. The system developed here will provide us with a new tool for investigating the genetics and pathogenicity of T. denticola.  相似文献   

20.
The activation by abscisic acid (ABA) of current through outward-rectifying K+ channels and its dependence on cytoplasmic pH (pHi) was examined in stomatal guard cells of Vicia faba L. Intact guard cells were impaled with multibarrelled and H+-selective microelectrodes to record membrane potentials and pHi during exposures to ABA and the weak acid butyrate. Potassium channel currents were monitored under voltage clamp and, in some experiments, guard cells were loaded with pH buffers by iontophoresis to suppress changes in pHi. Following impalements, stable pHi values ranged between 7.53 and 7.81 (7.67±0.04, n = 17). On adding 20 M ABA, pHi rose over periods of 5–8 min to values 0.27±0.03 pH units above the pHi before ABA addition, and declined slowly thereafter. Concurrent voltage-clamp measurements showed a parallel rise in the outward-rectifying K+ channel current (IK, out) and, once evoked, both pHi and IK, out responses were unaffected by ABA washout. Acid loads, imposed with external butyrate, abolished the ABA-evoked rise in IK, out. Butyrate concentrations of 10 and 30 mM (pH0 6.1) caused pHi to fall to values near 7.0 and below, both before and after adding ABA, consistent with a cytoplasmic buffer capacity of 128±12 mM per pH unit (n = 10) near neutrality. Butyrate washout was characterised by an appreciable alkaline overshoot in pHi and concomitant swell in the steady-state conductance of IK, out. The rise in pHi and iK, out in ABA were also virtually eliminated when guard cells were first loaded with pH buffers to raise the cytoplasmic buffer capacity four- to sixfold; however, buffer loading was without appreciable effect on the ABA-evoked inactivation of a second, inward-rectifying class of K+ channels (IK, in). The pHi dependence of IK, out was consistent with a cooperative binding of at least 2H+ (apparent pKa = 8.3) to achieve a voltage-independent block of the channel. These results establish a causal link previously implicated between cytoplasmic alkalinisation and the activation of IK, out in ABA and, thus, affirm a role for H+ in signalling and transport control in plants distinct from its function as a substrate in H+-coupled transport. Additional evidence implicates a coordinate control of IK, in by cytoplasmic-free [Ca2+] and pHi.Abbreviations ABA abscisic acid - [Ca2+]i cytoplasmic free [Ca2+]i - EK K+ equilibrium potential - IK, out, IK, in outward-, inward-rectifying K+ channel (current) - I-V current-voltage (relation) - Mes 2-(N-morpholino)ethanesulfonic acid - pHi cytoplasmic pH - Tes 2-{[2-hydroxy-1,1-bis(hydroxymethyl)ethyl]-amino}ethanesulfonic acid - Vm membrane potential We are grateful to G. Thiel (Pflanzenphysiologisches Institut, Universität Göttingen, Germany) for helpful discussions. This work was possible with equipment grants-in-aid from the Gatsby Charitable Foundation, the Royal Society and the University of London Central Research Fund. F.A. holds a Sainsbury Studentship.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号