首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The influence of cytosolic pH (pHi) in controlling K+-channel activity and its interaction with cytosolic-free Ca2+ concentration ([Ca2+]i) was examined in stomatal guard cells ofVicia faba L. Intact guard cells were impaled with multibarrelled microelectrodes and K+-channel currents were recorded under voltage clamp while pHi or [Ca2+]i was monitored concurrently by fluorescence ratio photometry using the fluorescent dyes 2,7-bis (2-carboxyethyl)-5(6)-carboxyfluorescein (BCECF) and Fura-2. In 10 mM external K+ concentration, current through inward-rectifying K+ channels (IK,in) was evoked on stepping the membrane from a holding potential of –100 mV to voltages from –120 to –250 mV. Challenge with 0.3-30 mM Na+-butyrate and Na+-acetate outside imposed acid loads, lowering pHi from a mean resting value of 7.64 ± 0.03 (n = 25) to values from 7.5 to 6.7. The effect on pHi was independent of the weak acid used, and indicated a H+-buffering capacity which rose from 90 mM H+/pH unit near 7.5 to 160 mM H+/pH unit near pHi 7.0. With acid-going pHi, (IK,in) was promoted in scalar fashion, the current increasing in magnitude with the acid load, but without significant effect on the current relaxation kinetics at voltages negative of –150 mV or the voltage-dependence for channel gating. Washout of the weak acid was followed by transient rise in pHi lasting 3–5 min and was accompanied by a reduction in (IK,in) before recovery of the initial resting pHi and current amplitude. The pHi-sensitivity of the current was consistent with a single, titratable site for H+ binding with a pKa near 6.3. Acid pHi loads also affected current through the outward-rectifying K+ channels (IK,out) in a manner antiparallel to (IK,in) The effect on IK, out was also scalar, but showed an apparent pKa of 7.4 and was best accommodated by a cooperative binding of two H+. Parallel measurements showed that Na+-butyrate loads were generally without significant effect on [Ca2+]i, except when pHi was reduced to 7.0 and below. Extreme acid loads evoked reversible increases in [Ca2+]i in roughly half the cells measured, although the effect was generally delayed with respect to the time course of pHi changes and K+-channel responses. The action on [Ca2+]i coincided with a greater variability in (IK,in) stimulation evident at pHi values around 7.0 and below, and with negative displacements in the voltage-dependence of (IK,in) gating. These results distinguish the actions of pHi and [Ca2+]i in modulating (IK,in) they delimit the effect of pHi to changes in current amplitude without influence on the voltage-dependence of channel gating; and they support a role for pHi as a second messenger capable of acting in parallel with, but independent of [Ca2+]i in controlling the K+ channels.Abbreviations BCECF 2,7-bis (2-carboxyethyl)-5(6)-carboxy fluorescein - [Ca2+]i cytosolic free Ca2+ concentration - gK ensemble (steady-state) K+-channel conductance - IK,out, IK,in outward-, inward-rectifying K+ channel (current) - IN current-voltage (relation) - Mes 2-(N-morpholinolethanesulfonic acid - pHi cytosolic pH - V membrane potential  相似文献   

2.
The efficacy and mechanism of -dendrotoxin (DTX) block of K+ channel currents in Vicia stomatal guard cells was examined. Currents carried by inward- and outward-rectifying K+ channels were determined under voltage clamp in intact guard cells, and block was characterized as a function of DTX and external K+ (K+) concentrations. Added to the bath, 0.1-30 nM DTX blocked the inward-rectifying K+ current (IK,in), but was ineffective in blocking current through the outward-rectifying K+ channels (IK,out) even at concentrations of 30 nM. DTX block was independent of clamp voltage and had no significant effect on the voltage-dependent kinetics for IK,in, neither altering its activation at voltages negative of –120 mV nor its deactivation at more positive voltages. No evidence was found for a use dependence to DTX action. Block of IK,in followed a simple titration function with an apparent K1/2 for block of 2.2 nM in 3 mm K o + . However, DTX block was dependent on the external K+ concentration. Raising K+ from 3 to 30 mm slowed block and resulted in a 60–70% reduction in its efficacy (apparent K i = 10 mm in 10 nm DTX). The effect of K+ in protecting I K,in was competitive with DTX and specific for permeant cations. A joint analysis of IK,in block with DTX and K+ concentration was consistent with a single class of binding sites with a K d for DTX of 240 pm. A K d of 410 m for extracellular K+ was also indicated. These results complement previous studies implicating a binding site requiring extracellular K+ (K1/2 1 mm) for IK,in activation; they parallel features of K+ channel block by DTX and related peptide toxins in many animal cells, demonstrating the sensitivity of plant plasma membrane K+ channels to nanomolar toxin concentrations under physiological conditions; the data also highlight one main difference: in the guard cells, DTX action appears specific to the K+ inward rectifier.We thank J.O. Dolly (Imperial, London) and S.M. Jarvis (University of Kent, Canterbury) for several helpful discussions. This work was supported by SERC grant GR/H07696 and was aided by equipment grants from the Gatsby Foundation, the Royal Society and the University of London Central Research Fund. G.O. was supported by an Ausbildungsstipendium (OB 85/1-1) from the Deutsche Forschungsgemeinschaft. F.A. holds a Sainsbury Studentship.  相似文献   

3.
ABA stimulation of outward K+ current (I K,out) in Vicia faba guard cells has been correlated with a rise in cytosolic pH (pH i ). However, the underlying mechanism by which I K,out is affected by pH i has remained unknown. Here, we demonstrate that pH i regulates outward K+ current in isolated membrane patches from Vicia faba guard cells. The stimulatory effect of alkalinizing pH i was voltage insensitive and independent of the two free calcium levels tested, 50 nm and 1 μm. The single-channel conductance was only slightly affected by pH i . Based on single-channel measurements, the kinetics of time-activated whole-cell current, and the analysis of current noise in whole-cell recordings, we conclude that alkaline pH i enhances the magnitude of I K,out by increasing the number of channels available for activation. The fact that the pH i effect is seen in excised patches indicates that signal transduction pathways involved in the regulation of I K,out by pH i , and by implication, components of hormonal signal transduction pathways that are downstream of pH i , are membrane-delimited. Received: 5 June 1996/Revised: 1 August 1996  相似文献   

4.
5.
One of the main effects of abscisic acid (ABA) is to induce net loss of potassium salts from guard cells enabling the stomata to close. K+ is released from the vacuole into the cytosol and then to the extracellular space. The effects of increasing cytosolic K+ on the voltage- and time-dependence of the outwardly rectifying K+-current (I K,out) in guard cell protoplasts (GCP) was examined in the whole-cell configuration of the patch-clamp technique. The same quantitative analysis was performed in the presence of ABA at different internal K+ concentrations ([K+] i ). Varying [K+] i in the patch pipette from 100 to 270 mm increased the magnitude of I K,out in a nonlinear manner and caused a negative shift in the midpoint (V 0.5) of its steady-state activation curve. External addition of ABA (10–20 μm) also increased the magnitude of I K,out at all [K+] i , but caused a shift in V 0.5 of the steady-state activation curve only in those GCP loaded with 150 mm internal K+ or less. Indeed, V 0.5 did not shift upon addition of ABA when the [K+] i was above 150 mm and up to 270 mm, i.e., the shift in V 0.5 caused by ABA depended on the [K+] i . Both increase in [K+] i and external addition of ABA, decreased (by ≈ 20%) the activation time constant (τ n ) of I K,out. The small decrease in τ n , in both cases, was found to be independent of the membrane voltage. The results indicate that ABA mimics the effect of increasing cytoplasmic K+, and suggest that ABA may increase I K,out and alter V 0.5 of its steady-state activation curve via an enhancement in cytosolic K+. This report describes for the first time the effects of [K+] i on the voltage- and time-dependence of I K,out in guard cells. It also provides an explanation for the quantitative (total membrane current) and qualitative (current kinetics) differences found between intact guard cells and their protoplasts. Received: 1 December 1995/Revised: 8 May 1996  相似文献   

6.
Summary Isolated early distal tubule cells (EDC) of frog kidney were incubated for 20–28 hr in the presence of aldosterone and then whole-cell K+ currents were measured at constant intracellular pH by the whole-cell voltage-clamp technique. Aldosterone increased barium-inhibitable whole-cell K+ conductance (gK+) threefold. This effect was reduced by amiloride and totally abolished by ouabain. However, aldosterone could still raisegK+ in ouabain-treated cells in the presence of furosemide.We tested whether changes in intracellular pH (pH i ) could be a signal for cells to regulategK+. After removal of aldosterone, the increase ingK+ was preserved by subsequent incubation for 8 hr at pH 7.6 but abolished at pH 6.6. In the complete absence of aldosterone, incubation of cells at pH 8.0 for 20–28 hr raised pH i and doubledgK+.Using the patch-clamp technique, three types of K+-selective channels were identified, which had conductances of 24, 45 and 59 pS.Aldosterone had no effect on the conductance or open probability (P o) of any of the three types of channels. However, the incidence of observing type II channels was increased from 4 to 22%. Type II channels were also found to be pH sensitive,P o was increased by raising pH.These results indicate that prolonged aldosterone treatment raises pH i and increasesgK+ by promoting insertion of K+ channels into the cell membrane. Channel insertion is itself triggered by raising both pH i and increasing the activity of the Na+/K+ pump in early distal cells of frog kidney. Present address: Department of Physiology, The University of Leeds, Leeds, LS2 9NQ, England  相似文献   

7.
The pH-sensitivity of transepithelial K+ transport was studied in vitro in isolated vestibular dark cell epithelium from the gerbil ampulla. The cytosolic pH (pH iwas measured microfluorometrically with the pH-sensitive dye 2,7-bicarboxyethyl-5(6)-carboxyfluorescein (BCECF) and the equivalent short-circuit current (I sc), which is a measure for transepithelial K+ secretion, was calculated from measurements of the transepithelial voltage (V t)and the transepithelial resistance (R t) in a micro-Ussing chamber. All experiments were conducted in virtually HCO 3 -free solutions. Under control conditions, pH iwas 7.01±0.04 (n=18), V twas 9.1±0.5 mV, R t16.7±0.09 cm2, and I sc was 587±30 A/cm2 (n=49). Addition of 20 mm propionate caused a biphasic effect involving an initial acidification of pH i, increase in V tand I sc and decrease in R tand a subsequent alkalinization of pH i, decrease of V tand increase of R t. Removal of propionate caused a transient effect involving an alkalinization of pH i, a decrease of V tand I sc and an increase in R t. pH iin the presence of propionate exceeded pH iunder control conditions. Effects of propionate on V t, R tand I sc were significantly larger when propionate was applied to the basolateral side rather than to the apical side of the epithelium. The pH i-sensitivityof I sc between pH 6.8 and 7.5 was –1089 A/(cm2 · pH-unit) suggesting that K+ secretion ceases at about pH i7.6. Acidification of the extracellular pH (pH o)caused an increase of V tand I sc and a decrease of R tmost likely due to acidification of pH i. Effects were significantly larger when the extracellular acidification was applied to the basolateral side rather than to the apical side of the epithelium. The pH osensitivity of I sc between pH 7.4 and 6.4 was –155 A/(cm2 · pH unit). These results demonstrate that transepithelial K+ transport is sensitive to pH iand pH oand that vestibular dark cells contain propionate uptake mechanism. Further, the data suggest that cytosolic acidification activates and that cytosolic alkalinization inactivates the slowly activating K+ channel (I sK)in the apical membrane. Whether the effect of pH ion the I sK channel is a direct or indirect effect remains to be determined.The authors wish to thank Drs. Daniel C. Marcus, Zhjiun Shen and Hiroshi Sunose for helpful discussions. This work was supported by grants NIH-R29-DC01098 and NIH-R01-DC00212.  相似文献   

8.
Early ABA Signaling Events in Guard Cells   总被引:1,自引:0,他引:1  
The plant hormone abscisic acid (ABA) regulates a wide variety of plant physiological and developmental processes, particularly responses to environmental stress, such as drought. In response to water deficiency, plants redistribute foliar ABA and/or upregulate ABA synthesis in roots, leading to roughly a 30-fold increase in ABA concentration in the apoplast of stomatal guard cells. The elevated ABA triggers a chain of events in guard cells, causing stomatal closure and thus preventing water loss. Although the molecular nature of ABA receptor(s) remains unknown, considerable progress in the identification and characterization of its downstream signaling elements has been made by using combined physiological, biochemical, biophysical, molecular, and genetic approaches. The measurable events associated with ABA-induced stomatal closure in guard cells include, sequentially, the production of reactive oxygen species (ROS), increases in cytosolic free Ca2+ levels ([Ca2+]i), activation of anion channels, membrane potential depolarization, cytosolic alkalinization, inhibition of K+ influx channels, and promotion of K+ efflux channels. This review provides an overview of the cellular and molecular mechanisms underlying these ABA-evoked signaling events, with particular emphasis on how ABA triggers an “electronic circuitry” involving these ionic components.  相似文献   

9.
The influence of the auxins indole-3-acetic acid (IAA) and 1-napthylene acetic acid (NAA) on K+ channels and their control was examined in stomatal guard cells of Vicia faba L. Intact guard cells were impaled with multibarrelled microelectrodes to record membrane potentials and to monitor K+ channel currents under voltage clamp during exposures to 0.1–100 µM IAA and NAA. Following impalements, challenge with either IAA or NAA in the presence of 10 mM KCl resulted in the concerted modulation of at least four different currents with distinct kinetic characteristics and concentration dependencies. Equivalent concentrations of benzoic acid were wholly without effect. Most striking, current carried by inward-rectifying K+ channels (IK,in) exhibited a bimodal response to both IAA and NAA which was reversed on washing the auxins from the bathing medium. The steady-state current was augmented 1.3- to 2-fold at concentrations between 0.1 and 10 µM and antagonized at concentrations near 30 µM and above. Auxin agonism of IK,in was time- and voltage-independent. By contrast, IK,in inactivation at the higher auxin concentrations was marked by a voltage-dependence and slowing of the kinetics for current activation. Inactivation of IK,in by the auxins was relieved when cytoplasmic pH (pHi) was clamped near 7.0 in the presence of 30 mM Na+-butyrate. In addition to the control of IK,in, current carried by a second class of (outward-rectifying) K+ channels rose in a monotonic and largely voltage-independent manner with auxin concentrations about 10 µM and above, and IAA and NAA also activated an inward-going current with a voltage dependence characteristic of guard cell anion channels. Further changes in background current were consistent with a limited activation of the H+-ATPase. Over the concentration range examined, the auxins evoked membrane hyperpolarizations and depolarizations of up to ±12–19 mV, depending on the free-running membrane potential prevailing before auxin additions. Prolonging exposures to 100 µM auxin beyond 3–5 min frequently elicited rapid transitions to voltages near EK as well as regenerative action potentials. However, in every case the voltage response was a predictable consequence of auxin action on the K+ channels and, at 100 µM auxin, on the anion current. These results demonstrate a control of K+ channel activity by auxin, consistent with the roles of these channels in mediating K+ flux for stomatal movements; the data associate a bimodal characteristic with the activity of IK,in, implicating pHi as a putative intermediate in its control, and offer strong evidence for a multiplicity of signal cascades evoked by auxin; finally, they highlight a coordinate modulation of transport activities by auxin, thereby drawing a close analogy to the pattern of stimulus-response coupling in abscisic acid.  相似文献   

10.
The initial response of coleoptile cells to growth hormones and light is a rapid change in plasma-membrane polarization. We have isolated protoplasts from the cortex of maize (Zea mays L.) coleoptiles to study the electrical properties of their plasma membrane by the patch-clamp techniqueUsing the whole-cell configuration and cell-free membrane patches we could identify an H+-ATPase, hyperpolarizing the membrane potential often more negative than -150 mV, and a voltage-dependent, inward-rectifying K+ channel (unit conductance 5–7 pS) as the major membrane conductan-ces Potassium currents through this channel named CKC1in (for Coleoptile K + Channel inward rectifier) were elicited upon voltage steps negative to -80 mV, characterized by a half-activation potential of -112 mV. The kinetics of activation, well described by a double-exponential process, were strongly dependent on the degree of hyperpolarization and the cytoplasmic Ca2+ level. Whereas at nanomolar Ca2+ concentrations K+ currents increased with a t1/2=16 ms (at -180 mV), higher calcium levels slowed the activation process about fourto fivefoldUpon changes in the extracellular K+ concentration the reversal potential of the K+ channel followed the Nernst potential for potassium with a 56-mV shift for a tenfold increaseThe absence of a measurable conductance for Na+, Rb+, Cs+ and a permeability ratio PNH 4 + /PK+ around 0.25 underlines the high selectivity of CKC1in for K+In contrast to Cs+, which at submillimolar concentration blocks the channel in a voltage-dependent manner, Rb+, often used as a tracer for K+, does not permeate this type of K+ channelThe lack of Rb+ permeability is unique with respect to other K+ transporters. Therefore, future molecular analysis of CKC1in, considered as a unique variation of plant inward rectifiers, might help to understand the permeation properties of K+ channels in general.Abbreviations CKC1in Coleoptile K + Channel inward rectifier - U membrane voltage - Iss steady-state currents - Itail tail currents Experiments were conducted in the laboratory of F.G. during the stay of RHas a guest professor sponsored by Special Project RAISA, subproject N2.1, paper N2155.  相似文献   

11.
The activity of the Escherichia coli K+ transport system TrkA was measured as a function of the cytoplasmic pH of the cell. For this purpose, pHin was decreased by the addition of the weak acids acetic acid, benzoic acid or salicylic acid to K+-depleted cells. Under these conditions, the initial rate of K+ uptake decreased strongly with pHin, and was almost independent of the acid used. This inhibition was due to a strong decrease in the Vmax for K+ uptake, which indicates that low cytoplasmic pH inactivates the TrkA K+ uptake system. The relevance of this inhibition for growth and metabolism at low pHin is discussed.  相似文献   

12.
Outward and inward currents, mainly carried by K+, were detected in protoplasts of pollen grains (PG) and pollen tubes (PT) of Lilium longiflorum Thunb. by using the whole-cell configuration of the patch-clamp technique. The outward K+ current (IK+ out) was similar in both protoplast types, while the inward K+ current (IK+ in) was higher in pollen tube protoplasts. In PT but not in PG protoplasts, inward K+ currents were already detectable at negative membrane voltages usually monitored in lily pollen. IK+ in consisted of a slow and a fast current component, as revealed by fitting a sum of two exponential functions to the time-dependent current. The contribution of the fast component to the total inward current was higher in PT than in PG protoplasts, which was even more evident at acidic pH of the external medium. Therefore, based on the measured characteristics, the IK+ in of PT protoplasts may contribute to the endogenous K+ currents surrounding a growing pollen tube. Abbreviations: BS, bath solution; BTP, bis-Tris-propane; MES, 2-N-morpholinoethane sulfonic acid; Vact, activation voltage; VM, membrane voltage; Erev, reversal potential; IK+ in, inward K+ current; IK+ out, outward K+ current; PG, pollen grain; PT, pollen tube; PM, pipette medium  相似文献   

13.
pH i recovery in acid-loaded Ehrlich ascites tumor cells and pH i maintenance at steady-state were studied using the fluorescent probe BCECF.Both in nominally HCO 3 -free media and at 25 mm HCO 3 , the measured pH i (7.26 and 7.82, respectively) was significantly more alkaline than the pH i . value calculated assuming the transmembrane HCO 3 gradient to be equal to the Cl gradient. Thus, pH i in these cells is not determined by the Cl gradient and by Cl/HCO 3 exchange.pH i recovery following acid loading by propionate exposure, NH 4 + withdrawal, or CO2 exposure is mediated by amiloride-sensitive Na+/H+ exchange in HCO3 free media, and in the presence of HCO 3 (25 mm) by DIDS-sensitive, Na+-dependent Cl/HCO 3 exchange. A significant residual pH i recovery in the presence of both amiloride and DIDS suggests an additional role for a primary active H+ pump in pH i regulation. pH i maintenance at steady-state involves both Na+/H+ exchange and Na+-dependent Cl/HCO 3 exchange.Acute removal of external Cl induces a DIDS-sensitive, Na+-dependent alkalinization, taken to represent HCO 3 influx in exchange for cellular Cl. Measurements of 36Cl efflux into Cl-free gluconate media with and without Na+ and/or HCO 3 (10 mm) directly demonstrate a DIDS-sensitive, Na+ dependent Cl/HCO 3 exchange operating at slightly acidic pH i (pHo 6.8), and a DIDS-sensitive, Na+-independent Cl/HCO 3 exchange operating at alkaline pH i (pH o 8.2).The excellent technical assistance of Marianne Schiødt and Birgit B. Jørgensen is gratefully acknowledged. The work was supported by the Carlsberg Foundation (B.K.) and by a grant from the Danish Natural Science Foundation (E.K.H. and L.O.S.).  相似文献   

14.
The functional significance of the apical vacuolar-type proton pump (V-ATPase) in Drosophila Malpighian tubules was studied by measuring the intracellular pH (pHi) and luminal pH (pHlu) with double-barrelled pH-microelectrodes in proximal segments of the larval anterior tubule immersed in nominally bicarbonate-free solutions (pHo 6.9). In proximal segments both pHi (7.43±0.20) and pHlu (7.10±0.24) were significantly lower than in distal segments (pHi 7.70±0.29, pHlu 8.09±0.15). Steady-state pHi of proximal segments was much less sensitive to changes in pHo than pH of the luminal fluid (pHlu/pHo was 0.49 while pHi/pHo was 0.18; pHo 6.50–7.20). Re-alkaliniziation from an NH4Cl-induced intracellular acid load (initial pHi recovery rate 0.55±0.34 pH·min-1) was nearly totally inhibited by 1 mmol·l-1 KCN (96% inhibition) and to a large degree (79%) by 1 mol·l-1 bafilomycin A1. In contrast, both vanadate (1 mmol·l-1) and amiloride (1 mmol·l-1) inhibited pHi recovery by 38% and 33%, respectively. Unlike amiloride, removal of Na+ from the bathing saline had no effect on pHi recovery, indicating that a Na+/H+ exchange is not significantly involved in pHi regulation. Instead pHi regulation apparently depended largely on the availability of ATP and on the activity of the bafilomycin-sensitive proton pump.Abbreviations DMSO dimethylsulphoxide - DNP 2,4-dinitrophenol - NMDG N-methyl-D-glucamine - pHi intracellular pH - pHlu pH of the luminal fluid - pHo pH of the superfusion medium - I intrinsic intracellular buffer capacity  相似文献   

15.
The effect of extracellular cation concentration and membrane voltage on the current carried by outward-rectifying K+ channels was examined in stomatal guard cells of Vicia faba L. Intact guard cells were impaled with double-barrelled microelectrodes and the K+ current was monitored under voltage clamp in 0.1–30 mm K+ and in equivalent concentrations of Rb+, Cs+ and Na+. From a conditioning voltage of −200 mV, clamp steps to voltages between −150 and +50 mV in 0.1 mm K+ activated current through outward-rectifying K+ channels (I K, out) at the plasma membrane in a voltage-dependent fashion. Increasing [K+] o shifted the voltage-sensitivity of I K, out in parallel with the equilibrium potential for K+ across the membrane. A similar effect of [K+] o was evident in the kinetics of I K, out activation and deactivation, as well as the steady-state conductance- (g K ) voltage relations. Linear conductances, determined as a function of the conditioning voltage from instantaneous I-V curves, yielded voltages for half-maximal conductance near −130 mV in 0.1 mm K+, −80 mV in 1.0 mm K+, and −20 mV in 10 mm K+. Similar data were obtained with Rb+ and Cs+, but not with Na+, consistent with the relative efficacy of cation binding under equilibrium conditions (K+≥ Rb+ > Cs+ > > Na+). Changing Ca2+ or Mg2+ concentrations outside between 0.1 and 10 mm was without effect on the voltage-dependence of g K or on I K, out activation kinetics, although 10 mm [Ca2+] o accelerated current deactivation at voltages negative of −75 mV. At any one voltage, increasing [K+] o suppressed g K completely, an action that showed significant cooperativity with a Hill coefficient of 2. The apparent affinity for K+ was sensitive to voltage, varying from 0.5 to 20 mm with clamp voltages near −100 to 0 mV, respectively. These, and additional data indicate that extracellular K+ acts as a ligand and alters the voltage-dependence of I K, out gating; the results implicate K+-binding sites accessible from the external surface of the membrane, deep within the electrical field, but distinct from the channel pore; and they are consistent with a serial 4-state reaction-kinetic model for channel gating in which binding of two K+ ions outside affects the distribution between closed states of the channel. Received: 27 November 1996/Revised: 4 March 1997  相似文献   

16.
We have investigated the involvement of intracellular pH (pHi) in the regulation of P-glycoprotein (P-gp) in K562/DOX cells. The selective Na+/H+ exchanger1 (NHE1) inhibitor cariporide and the “high K+” buffer were used to induce the sustained intracellular acidification of the K562/DOX cells that exhibited more alkaline pHi than the K562 cells. The acidification resulted in the decreased P-gp activity with increased Rhodamine 123 (Rh123) accumulation in K562/DOX cells, which could be blocked by the P-gp inhibitor verapamil. Moreover, the acidification decreased MDR1 mRNA and P-gp expression, and promoted the accumulation and distribution of doxorubicin into the cell nucleus. Interestingly, these processes were all pHi and time-dependent. Furthermore, the change of the P-gp expression was reversible with the pHi recovery. These data indicate that the tumor multidrug resistance (MDR) mediated by P-gp could be reversed by sustained intracellular acidification through down-regulating the P-gp expression and activity, and there is a regulative link between the pHi and P-gp in K562/DOX cells.  相似文献   

17.
Fusicoccin (FC) has long been known to promote K+ uptake in higher plant cells, including stomatal guard cells, yet the precise mechanism behind this enhancement remains uncertain. Membrane hyperpolarization, thought to arise from primary H+ pumping stimulated in FC, could help drive K+ uptake, but the extent to which FC stimulates influx and uptake frequently exceeds any reasonable estimates from Constant Field Theory based on changes in the free-running membrane potential (V m) alone; furthermore, unidirectional flux analyses have shown that in the toxin K+ (86Rb+) exchange plummets to 10% of the control (G.M. Clint and E.A.C. MacRobbie 1984, J. Exp. Bot.35 180–192). Thus, the activities of specific pathways for K+ movement across the membrane could be modified in FC. We have explored a role for K+ channels in mediating these fluxes in guard cells ofVicia faba L. The correspondence between FC-induced changes in chemical (86Rb+) flux and in electrical current under voltage clamp was followed, using the K+ channel blocker tetraethylammonium chloride (TEA) to probe tracer and charge movement through K+-selective channels. Parallel flux and electrical measurements were carried out when cells showed little evidence of primary pump activity, thus simplifying analyses. Under these conditions, outward-directed K+ channel current contributed appreciably to charge balance maintainingV m, and adding 10 mM TEA to block the current depolarized (positive-going)V m; TEA also reduced86Rb+ efflux by 68–80%. Following treatments with 10 M FC, both K+ channel current and86Rb+ efflux decayed, irreversbly and without apparent lag, to 10%–15% of the controls and with equivalent half-times (approx. 4 min). Fusicoccin also enhanced86Rb+ influx by 13.9-fold, but the influx proved largely insensitive to TEA. Overall, FC promotednet cation uptake in 0.1 mM K+ (Rb+), despite membrane potentials which were 30–60 mVpositive of the K+ equilibrium potential. These results tentatively link (chemical) cation efflux to charge movement through the K+ channels. They offer evidence of an energy-coupled mechanism for K+ uptake in guard cells. Finally, the data reaffirm early suspicions that FC alters profoundly the K+ transport capacity of the cells, independent of any changes in membrane potential.Abbreviations and symbols E K equilibrium potential for K+ - FC fusicoccin - Hepes 4-(2-hydroxyethyl)-1-piperazineeth-anesulfonic acid - G m membrane (slope) conductance atV m - I-V current-voltage (relationship) - apparent rate constant for exchange - K i + , K 0 + intracellular, extracellular K+ (concentration) - TEA tetraethylammonium chloride - V m free-running membrane potential (difference)  相似文献   

18.
Summary We have chosen the MDCK cell line to investigate aldosterone action on H+ transport and its role in regulating cell membrane K+ conductance (G m K ). Cells grown in a monolayer respond to aldosterone indicated by the dose-dependent formation of domes and by the alkalinization of the dome fluid. The pH sensitivity of the plasma membrane K+ channels was tested in giant cells fused from individual MDCK cells. Cytoplasmic pH (pH i ) andG m K were measured simultaneously while the cell interior was acidified gradually by an extracellular acid load. We found a steep signoidal relationship between pH i andG m K (Hill coefficient 4.4±0.4), indicating multiple H+ binding sites at a single K+ channel. Application of aldosterone increased pH i within 120 min from 7.22±0.04 to 7.45±0.02 and from 7.15±0.03 to 7.28±0.02 in the absence and presence of the CO2/HCO 3 buffer system, respectively. We conclude that the hormone-induced cytoplasmic alkalinization in the presence of CO2/ HCO 3 is limited by the increased activity of a pH i -regulating HCO 3 extrusion system. SinceG m K is stimulated half-maximally at the pH i of 7.18±0.04, internal H+ ions could serve as an effective intracellular signal for the regulation of transepithelial K+ flux.  相似文献   

19.
Summary The voltage- and time-dependent K+ current,I K + out , elicited by depolarization of corn protoplasts, was inhibited by the addition of calcium channel antagonists (nitrendipine, nifedipine, verapamil, methoxyverapamil, bepridil, but not La3+) to the extracellular medium. These results suggested that the influx of external Ca2+ was necessary for K+ current activation. The IC50, concentration of inhibitor that caused 50% reduction of the current, for nitrendipine was 1 m at a test potential of +60 mV following a 20-min incubation period.In order to test whether intracellular Ca2+ actuated the K+ current, we altered either the Ca2+ buffering capacity or the free Ca2+ concentration of the intracellular medium (pipette filling solution). By these means,I K + out could be varied over a 10-fold range. Increasing the free Ca2+ concentration from 40 to 400nm also shifted the activation of the K+ current toward more negative potentials. Maintaining cytoplasmic Ca2+ at 500nm with 40nm EGTA resulted in a more rapid activation of the K+ current. Thus the normal rate of activation of this current may reflect changes in cytoplasmic Ca2+ on depolarization. Increasing intracellular Ca2+ to 500nm or 1 m also led to inactivation of the K+ current within a few minutes. It is concluded thatI K + out is regulated by cytosolic Ca2+, which is in turn controlled by Ca2+ influx through dihydropyridine-, and phenylalkylamine-sensitive channels.  相似文献   

20.
Gibberellic acid (GA3) stimulates K+ efflux from the barley (Hordeum vulgare L. cv. Himalaya) aleurone. We investigated the mechanism of K+ flux across the plasma membrane of aleurone protoplasts using patch-clamp techniques. Potassium-ion currents, measured over the entire surface of the protoplast plasma membrane, were induced when the electrochemical gradient for K+ was inward (into the cytoplasm). The magnitude and voltage-dependence of this inward current were the same in protoplasts treated with GA3 and in control protoplasts (no GA3). Inward currents activated by negative shifts in the membrane potential (EM) from the Nernst potential for K+ (EK) showed membrane conductance to be a function of the electrochemical gradient (i.e. EM-EK). Single-channel influx currents of K+ were recorded in small patches of the plasma membrane. These channels had a single-channel conductance of 5–10 pS with 100 mM K+ on the inside and 10 mM K+ on the outside of the plasma membrane. Single-channel currents, like whole-cell currents, were the same in protoplasts treated with GA3 and control protoplasts. Voltage-gated efflux currents were found only in protoplasts tha thad been incubated without GA3. We conclude that K+ influx in the aleurone is mediated by channels and these membrane proteins are not greatly effected by GA3.Abbreviations and symbols FK Nernst potential for K+ - EM membrane potential - Erev reversal potential - GA3 gibberellic acid - Ki concentration of K+ inside the cell - Ko concentration of K+ outside the cell - R gas constant - S conductance (siemens) - T temperature (oK) - i ionic activity coefficient for internal (cytoplasmic) solution - o ionic activity coefficient for external medium  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号