首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 140 毫秒
1.
罗旭  梁宇  贺红士  黄超  张庆龙 《生态学报》2019,39(20):7656-7669
气候变化及相应火干扰在不同尺度上影响着我国大兴安岭地区森林动态,且在未来的影响可能继续加剧。为了提高森林生态功能和应对气候变暖,国家在分类经营基础上全面实施抚育采伐和补植造林,效果较好,但抚育采伐对森林主要树种的长期影响知之甚少,其在未来气候下的可持续性也有待进一步评估,同时,探讨造林措施对未来森林的影响也显得尤为重要。本文运用森林景观模型LANDIS PRO,模拟气候变化及火干扰、采伐和造林对大兴安岭地区主要树种的长期影响。结果表明:1)模型初始化、短期和长期模拟结果均得到了有效验证,模拟结果与森林调查数据之间无显著性差异(P0.05),基于火烧迹地数据的林火干扰验证亦能够反映当前火干扰的效果,模型模拟结果的可信度较高;2)与当前气候相比,气候变暖及火干扰明显改变了树种组成、年龄结构和地上生物量,B1气候下研究区森林基本上以针叶树种为主要树种,A2气候下优势树种向阔叶树转变;3)与无采伐预案相比,当前气候下,抚育采伐使落叶松的林分密度和地上生物量分别降低了(165±94.9)株/hm~2和(8.5±5.1) Mg/hm~2,增加了樟子松、白桦和云杉等树木株数和地上生物量(3.3—753.4株/hm~2和0.2—4.0 Mg/hm~2),而对山杨的影响较小;B1和A2气候下抚育采伐显著改变林分密度,降低景观尺度地上生物量,进而表现为不可持续;4)B1气候下,推荐实施中低强度造林预案(10%和20%强度),在A2气候下,各强度造林均可在模拟后期增加树种地上生物量。  相似文献   

2.
预测森林地上生物量对气候变化和林火干扰的响应是陆地生态系统碳循环研究的重要内容,气温、降水等因素的改变和气候变暖导致林火干扰强度的变化将会影响森林生态系统的碳库动态.东北森林作为我国森林的重要组成部分,对气候变化和林火干扰的响应逐渐显现.本文运用LANDIS PRO模型,模拟气候变化对大兴安岭森林地上生物量的影响,并比较分析了气候变暖对森林地上生物量的直接影响与通过林火干扰强度改变所产生的影响.结果表明: 未来气候变暖和火干扰增强情景下,森林地上生物量增加;当前气候条件和火干扰下,研究区森林地上生物量为(97.14±5.78) t·hm-2;在B1F2预案下,森林地上生物量均值为(97.93±5.83) t·hm-2;在A2F3预案下,景观水平第100~150和150~200年模拟时期内的森林地上生物量均值较高,分别为(100.02±3.76)和(110.56±4.08) t·hm-2.与当前火干扰相比,CF2预案(当前火干扰增加30%)在一定时期使景观水平地上生物量增加(0.56±1.45) t·hm-2,CF3预案(当前火干扰增加230%)在整个模拟阶段使地上生物量减少(7.39±1.79) t·hm-2.针叶、阔叶树种对气候变暖的响应存在差异,兴安落叶松和白桦生物量随气候变暖表现为降低趋势,而樟子松、云杉和山杨的地上生物量则随气候变暖表现出不同程度的增加;气候变暖对针阔树种的直接影响具有时滞性,针叶树种响应时间比阔叶树种迟25~50年.研究区森林对高CO2排放情景下气候变暖和高强度火干扰的共同作用较为敏感,未来将明显改变研究区森林生态系统的树种组成和结构.  相似文献   

3.
生态弹性是森林生态系统在遭受外在扰动后恢复到稳定状态的能力,是森林资源可持续发展的重要目标之一,且森林生态弹性对诸如气候变化、林火和营林措施等外部因子的影响较为敏感.探究这些外部因子对森林生态弹性的影响在未来森林生态系统管理方面有重要意义.本研究首先从森林组成、结构和功能等方面选取指标因子并估算了森林生态弹性值,然后运用LANDIS PRO模型,模拟气候变化、林火干扰和营林措施等对寒温带典型森林生态弹性的影响,并探讨了当前抚育采伐方案在未来气候下的可持续性.结果表明: 模型初始化的2000年林分密度和胸高断面积与2000年真实景观较为吻合,模拟的2010年森林景观与野外调查数据无明显差异,基于当前林火干扰状况的模拟结果与火烧迹地调查数据基本匹配,说明林火模块能很好地模拟当前研究区林火发生状况.林火干扰增加30%将会使该区模拟期内景观水平上森林生态弹性提高15.7%~40.8%,而林火干扰增加200%则会降低该区4.4%~24.6%的森林生态弹性.短期和中期林火干扰增加对森林生态弹性的影响大于气候变化的影响.与当前预案相比,B1气候(林火增加30%预案)和A2气候(林火增加200%预案)对整个模拟阶段景观尺度森林生态弹性的影响分别处于-15.9%~38.9%和-60.4%~34.8%范围内.与无采伐预案相比,B1和A2气候下在整个模拟时期内若继续实施当前抚育采伐方案,将不利于景观水平森林生态弹性的提高.在B1气候(林火增加30%预案)下,在各模拟时期内无需实施任何营林措施;而在A2气候(林火增加200%预案)下,建议实施中、高强度种植的营林措施以提升景观水平森林生态弹性.  相似文献   

4.
停止商业性采伐对大兴安岭森林结构与地上生物量的影响   总被引:1,自引:0,他引:1  
采伐是北方森林最主要的人为干扰之一,过去高强度采伐导致森林植被组成单一化和均质化。为提高森林的生态功能和经济效益,国家先后于2000年实施"天然林资源保护工程"、2014年实施全面停止天然林商业性采伐。为评价这两种政策下不同的采伐干扰对森林的直接影响,以大兴安岭林区为研究对象,采用空间直观景观模型LANDIS PRO,模拟比较2000—2100年"天然林资源保护工程"、全面停止商业性采伐政策下森林树种组成、年龄结构及森林地上生物量的长期变化特征及其差异性。研究结果表明:1)模型初始化的林分密度、地上生物量与2000年野外调查数据相吻合(P0.01),模型模拟结果具有较高的可靠性;2)对比分类经营,全面停止商业性采伐的实施:增大了优势树种(落叶松与白桦)的树种组成比例,减小了保护树种(云杉与樟子松)的比例;对树种组成在中长期影响显著(P0.05),降低了树种组成结构的多样性;总体上增加了林分平均胸高断面积,减小了林分密度;3)模型模拟100年,全面停止商业性采伐下中幼龄林向成熟林过渡,改善森林年龄结构;4)与分类经营相比,整个模拟时期内全面停止商业性采伐增加森林地上生物量,提高森林恢复速率,有助于森林地上总生物量的恢复与累积。但保护树种(云杉与樟子松)森林地上生物量在一定程度上有所下降,不利于提高珍贵树种的丰度。对评估森林管理方案在森林资源恢复上的作用和有效实施森林生态系统管理有重要的参考意义。  相似文献   

5.
模拟分类经营对小兴安岭林区森林生物量的影响   总被引:1,自引:0,他引:1  
运用空间直观景观模型LANDIS 7.0 PRO,模拟了在当前采伐模式和无采伐两个预案下,小兴安岭林区森林生物量及主要树种生物量在2000—2200年间的动态。模拟结果如下:(1)无采伐预案下,森林生物量由最初的93.6 t/hm2逐渐升高,90a后达到最大值258 t/hm2,之后森林生物量在245 t/hm2上下小幅波动;(2)前100a采伐预案会明显降低森林生物量,与无采伐预案相比森林生物量最大可降低21.4 t/hm2,平均减少14.7 t/hm2;后100a采伐对森林生物量的影响逐渐减弱,森林生物量平均减少2.6 t/hm2;(3)当前采伐模式促进保护树种红松和紫椴生长,其生物量分别最大可提高9.0 t/hm2和0.53 t/hm2,占到无采伐预案生物量的56%和15%;(4)采伐预案对云冷杉生物量影响较小,主要降低先锋树种(白桦、山杨)和一些阔叶树种(枫桦、春榆)的生物量。研究结果表明现行采伐模式在未来100 a内会显著影响森林生物量,之后其影响逐渐减小,并且保护政策能提高所保护树种(红松、紫椴)的生物量,但要保持较高的总生物量,仍需要降低目前的采伐强度。  相似文献   

6.
张庆龙  梁宇  贺红士  黄超  刘波  姜思慧 《生态学报》2019,39(12):4442-4454
树种水平地上生物量(每个树种的地上生物量)是衡量森林生态系统结构功能的重要指标。为揭示树种水平森林地上生物量变化机制及其与气候变化和干扰的关系,运用KNN (k-nearest neighbor distance)方法将森林调查数据和MODIS数据相结合,估算了黑龙江大兴安岭2000、2010和2015年树种水平的森林地上生物量,在此基础上运用典型对应分析和随机森林方法,分析了研究区树种水平地上生物量变化特征及其与气候和干扰因素的关系。研究结果表明:2000—2015年期间,研究区总的森林地上生物量增加了8.9%(0.41×10~8 t),其中2010—2015年期间地上生物量的增加速度要明显高于2000—2010年;地上生物量增加最多的树种为白桦(Betula platyphylla Suk.),与2000年相比生物量增加了0.40×10~8 t,其次为樟子松(Pinus sylvestris var.mongolica Litv.)、山杨(Populus davidiana Dode)和蒙古栎(Quercus mongolica Fisch. ex Ledeb.),落叶松(Larix gmelinii(Rupr.) Kuzen)地上生物量下降了0.08×10~8 t,柳树(Chosenia arbutifolia(Pall.) A. Skv.)和云杉(Picea koraiensis Nakai)基本上没有变化;林火、采伐和造林等森林干扰均对树种水平地上生物量影响显著,林火对树种水平地上生物量的影响要高于造林和采伐;气候要素显示出了比干扰要素更为重要的作用,多年平均温度和降水解释了最多的树种水平地上生物量变异。年均温度与阔叶树种的生物量以及林火干扰有显著的正相关性,与总的森林地上生物量呈现出显著的负相关,与落叶松和白桦表现出微弱的负相关,预示着气候变暖将影响该区域的树种组成并降低该区域的森林生产力。  相似文献   

7.
应用空间直观景观模型(LANDIS)模拟了落叶松毛虫对呼中林区森林景观的长期影响,利用统计软件APACK计算了落叶松毛虫、代表性树种的分布面积以及反映物种分布格局的聚集度指数和森林斑块的平均面积,模拟了300年(1990—2290年)内有无落叶松毛虫干扰预案下大兴安岭呼中林区森林景观的动态变化.结果表明:研究区落叶松毛虫的分布面积呈先增加后降低的趋势;在落叶松毛虫干扰预案下,落叶松在模拟前150年的分布面积、平均斑块面积均低于无干扰预案,聚集度指数在前190年低于无干扰预案;干扰预案下白桦的分布面积和平均斑块面积百分比均高于无干扰预案,聚集度指数只在模拟的80~190年高于无干扰预案;樟子松的分布面积、聚集度指数和平均斑块面积在干扰预案下略低于无干扰预案.落叶松毛虫在一定程度上导致森林景观的破碎化.  相似文献   

8.
大兴安岭呼中林区虫害与火干扰交互作用的长期模拟   总被引:1,自引:1,他引:0  
Chen HW  Hu YM  Chang Y  Bu R  Li YH  Liu M 《应用生态学报》2011,22(3):585-592
虫害和林火是森林生态系统的两种主要干扰类型,各种干扰在大时空尺度上存在一定的交互作用.本文采用空间直观景观模型LANDIS模拟虫害和林火在300年内的交互作用.结果表明:虫害干扰降低了细可燃物载量,提高了模拟前期(0~100 a)和中期(100~200 a)的粗可燃物载量,降低了模拟前期和中期的林火频率,不同干扰预案模拟后期(200~300 a)火烧频率的结果比较接近;虫害干扰降低了模拟前期和后期的火烧强度,增加了模拟中期的火烧强度,提高了模拟中期的森林火险等级,降低了模拟前期和后期的火险等级.人类灭火可增加虫害的发生面积,因此建议森林管理部门采取适当的防虫措施,不可只注重灭火,可以采取可燃物去除和计划火烧等方式管理林火,促进森林生态系统的可持续发展.  相似文献   

9.
采伐是驱动长白山森林景观变化的关键因子。本研究采用空间直观森林景观模型(LANDIS PRO 7.0)模拟长白山露水河林业局在5个不同采伐强度方案下的森林地上生物量和景观格局的长期动态变化。结果表明:1)采伐导致了树种产生不同程度的景观破碎化;2)采伐强度对森林地上生物量具有显著影响,采伐强度增大,地上生物量减小;采伐同样显著降低了不同树种的地上生物量,其中采伐对水曲柳、椴树和云杉的影响较大。因此,在模拟的前100年(2003—2103年),当采伐强度较高时,应优先采伐白桦和山杨,然后是水曲柳、云杉和椴树;当采伐强度较低时,水曲柳、云杉、椴树,白桦和山杨都可作为采伐树种。在模拟的后100年(2103—2203年),由于森林地上生物量呈现减小的变化趋势,应适当减小采伐强度,水曲柳、云杉、椴树,白桦和山杨都可作为采伐树种,从而为当地森林管理部门制定合理的管理措施提供科学的依据。  相似文献   

10.
大兴安岭林区林火发生的频率受气候变化的影响将会增加,可能会增加该地区森林生态系统碳损失.本研究通过耦合森林生态系统模型和森林景观模型以模拟未来百年大兴安岭森林碳储量动态变化,量化气候变化、林火和采伐对森林碳储量的影响.结果表明: 虽然采伐和林火会抵消相当一部分由气候变化增加的碳储量,但气候变化仍然能够增加大兴安岭森林碳储量.未来100年该地区森林地上和土壤有机碳储量将会分别增加9%~22%和6%~9%.短期(0~20年)气候变化对大兴安岭森林碳储量的影响大于同期林火的影响,中期(30~50年)和长期(60~100年)气候变化对森林碳储量的影响小于林火和采伐的影响.由于未来大兴安岭地区气候变化及其林火干扰存在不确定性,导致未来该地区森林碳储量存在较大的不确定性.未来100年大兴安岭森林地上碳储量和土壤有机碳储量不确定性分别为12.4%~16.2%和6.6%~10.4%.为准确估算我国北方森林生态系统碳储量,需要考虑种子传播、林火和采伐的影响.  相似文献   

11.
Climate change will drive significant changes in vegetation cover and also impact efforts to restore ecosystems that have been disturbed by human activities. Bitumen mining in the Alberta oil sands region of western Canada requires reclamation to “equivalent land capability,” implying establishment of vegetation similar to undisturbed boreal ecosystems. However, there is consensus that this region will be exposed to relatively severe climate warming, causing increased occurrence of drought and wildfire, which threaten the persistence of both natural and reclaimed ecosystems. We used a landscape model, LANDIS‐II, to simulate plant responses to climate change and disturbances, forecasting changes to boreal forests within the oil sands region. Under the most severe climate forcing scenarios (representative concentration pathway [RCP] 8.5) the model projected substantial decreases in forest biomass, with the future forest being dominated by drought‐ and fire‐tolerant species characteristic of parkland or prairie ecosystems. In contrast, less extreme climate forcing scenarios (RCPs 2.6 and 4.5) had relatively minor effects on forest composition and biomass with boreal conifers continuing to dominate the landscape. If the climate continues to change along a trajectory similar to those simulated by climate models for the RCP 8.5 forcing scenario, current reclamation goals to reestablish spruce‐dominated boreal forest will likely be difficult to achieve. Results from scenario modeling studies such as ours, and continued monitoring of change in the boreal forest, will help inform reclamation practices, which could include establishment of species better adapted to warmer and drier conditions.  相似文献   

12.
In the coming century, forecast climate changes caused by increasing greenhouse gases may produce dramatic shifts in tree species distributions and the rates at which individual tree species sequester carbon or release carbon back to the atmosphere. The species composition and carbon storage capacity of northern Wisconsin (USA) forests are expected to change significantly as a result. Projected temperature changes are relatively large (up to a 5.8°C increase in mean annual temperature) and these forests encompass a broad ecotone that may be particularly sensitive to climate change. Our objective was to estimate the combined effects of climate change, common disturbances, and species migrations on regional forests using spatially interactive simulations. Multiple scenarios were simulated for 200 years to estimate aboveground live biomass and tree species composition. We used a spatially interactive forest landscape model (LANDIS‐II) that includes individual tree species, biomass accumulation and decomposition, windthrow, harvesting, and seed dispersal. We used data from two global circulation models, the Hadley Climate Centre (version 2) and the Canadian Climate Center (version 1) to generate transient growth and decomposition parameters for 23 species. The two climate change scenarios were compared with a control scenario of continuing current climate conditions. The results demonstrate how important spatially interactive processes will affect the aboveground live biomass and species composition of northern Wisconsin forests. Forest composition, including species richness, is strongly affected by harvesting, windthrow, and climate change, although five northern species (Abies balsamea, Betula papyrifera, Picea glauca, Pinus banksiana, P. resinosa) are lost in both climate scenarios regardless of disturbance scenario. Changes in aboveground live biomass over time are nonlinear and vary among ecoregions. Aboveground live biomass will be significantly reduced because of species dispersal and migration limitations. The expected shift towards southern oaks and hickory is delayed because of seed dispersal limitations.  相似文献   

13.
Biomass change of the world's forests is critical to the global carbon cycle. Despite storing nearly half of global forest carbon, the boreal biome of diverse forest types and ages is a poorly understood component of the carbon cycle. Using data from 871 permanent plots in the western boreal forest of Canada, we examined net annual aboveground biomass change (ΔAGB) of four major forest types between 1958 and 2011. We found that ΔAGB was higher for deciduous broadleaf (DEC) (1.44 Mg ha?1 year?1, 95% Bayesian confidence interval (CI), 1.22–1.68) and early‐successional coniferous forests (ESC) (1.42, CI, 1.30–1.56) than mixed forests (MIX) (0.80, CI, 0.50–1.11) and late‐successional coniferous (LSC) forests (0.62, CI, 0.39–0.88). ΔAGB declined with forest age as well as calendar year. After accounting for the effects of forest age, ΔAGB declined by 0.035, 0.021, 0.032 and 0.069 Mg ha?1 year?1 per calendar year in DEC, ESC, MIX and LSC forests, respectively. The ΔAGB declines resulted from increased tree mortality and reduced growth in all forest types except DEC, in which a large biomass loss from mortality was accompanied with a small increase in growth. With every degree of annual temperature increase, ΔAGB decreased by 1.00, 0.20, 0.55 and 1.07 Mg ha?1 year?1 in DEC, ESC, MIX and LSC forests, respectively. With every cm decrease of annual climatic moisture availability, ΔAGB decreased 0.030, 0.045 and 0.17 Mg ha?1 year?1 in ESC, MIX and LSC forests, but changed little in DEC forests. Our results suggest that persistent warming and decreasing water availability have profound negative effects on forest biomass in the boreal forests of western Canada. Furthermore, our results indicate that forest responses to climate change are strongly dependent on forest composition with late‐successional coniferous forests being most vulnerable to climate changes in terms of aboveground biomass.  相似文献   

14.
The boreal forest biome represents one of the most important terrestrial carbon stores, which gave reason to intensive research on carbon stock densities. However, such an analysis does not yet exist for the southernmost Eurosiberian boreal forests in Inner Asia. Most of these forests are located in the Mongolian forest‐steppe, which is largely dominated by Larix sibirica. We quantified the carbon stock density and total carbon pool of Mongolia's boreal forests and adjacent grasslands and draw conclusions on possible future change. Mean aboveground carbon stock density in the interior of L. sibirica forests was 66 Mg C ha?1, which is in the upper range of values reported from boreal forests and probably due to the comparably long growing season. The density of soil organic carbon (SOC, 108 Mg C ha?1) and total belowground carbon density (149 Mg C ha?1) are at the lower end of the range known from boreal forests, which might be the result of higher soil temperatures and a thinner permafrost layer than in the central and northern boreal forest belt. Land use effects are especially relevant at forest edges, where mean carbon stock density was 188 Mg C ha?1, compared with 215 Mg C ha?1 in the forest interior. Carbon stock density in grasslands was 144 Mg C ha?1. Analysis of satellite imagery of the highly fragmented forest area in the forest‐steppe zone showed that Mongolia's total boreal forest area is currently 73 818 km2, and 22% of this area refers to forest edges (defined as the first 30 m from the edge). The total forest carbon pool of Mongolia was estimated at ~ 1.5?1.7 Pg C, a value which is likely to decrease in future with increasing deforestation and fire frequency, and global warming.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号