首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24篇
  免费   2篇
  2023年   2篇
  2017年   2篇
  2016年   1篇
  2015年   2篇
  2014年   4篇
  2013年   6篇
  2012年   1篇
  2010年   2篇
  2009年   1篇
  2008年   3篇
  2007年   1篇
  2005年   1篇
排序方式: 共有26条查询结果,搜索用时 123 毫秒
1.
The socioeconomics and the ecological impact of nomadic pastoralism were analyzed using interviews with 87 herder families and secondary information in the western Khangai, Mongolia. The pastoralists had an income above the national average for rural areas in Mongolia. Most herders continued traditional seasonal migration patterns, which involved ca. 10 moves per year over a total distance of ca. 100 km between summer and winter grazing grounds. As elsewhere in Mongolia, the number of goats owned by herders has greatly increased and cashmere has become the main source of cash income. Total livestock numbers rose considerably after decollectivization of the livestock sector in 1992, but in recent years have periodically been reduced by harsh winters, often combined with drought. Due to the high economic risk of these periodic livestock losses, many herders invest in better education for their children to enable them to migrate to the cities.  相似文献   
2.
The larch forests at the southern limit of the Siberian boreal forest in Central Asia have repeatedly experienced strong recent growth declines attributed to decreasing summer precipitation in the course of climate warming. Here, we present evidence from the southernmost Larix sibirica forests in eastern Kazakhstan that these declines are primarily caused by a decrease in effective moisture due to increasing summer temperatures, despite constant annual, and summer precipitation. Tree-ring chronologies (>800 trees) showed a reduction by 50–80% in mean ring width and an increase in the frequency of missing rings since the 1970s. Climate-response analysis revealed a stronger (negative) effect of summer temperature (in particular of the previous year’s June and July temperature) on radial growth than summer precipitation (positive effect). It is assumed that a rise in the atmospheric vapor pressure deficit, which typically increases with temperature, is negatively affecting tree water status and radial growth, either directly or indirectly through reduced soil moisture. Larch rejuvenation ceased in the 1950s, which is partly explained by increasing topsoil desiccation in a warmer climate and a high drought susceptibility of larch germination, as was demonstrated by a germination experiment with variable soil moisture levels. The lack of regeneration and the reduced annual stem increment suggest that sustainable forest management aiming at timber harvesting is no longer feasible in these southern boreal forests. Progressive climate warming is likely to cause a future northward shift of the southern limit of the boreal forest.  相似文献   
3.
4.
The boreal forest biome represents one of the most important terrestrial carbon stores, which gave reason to intensive research on carbon stock densities. However, such an analysis does not yet exist for the southernmost Eurosiberian boreal forests in Inner Asia. Most of these forests are located in the Mongolian forest‐steppe, which is largely dominated by Larix sibirica. We quantified the carbon stock density and total carbon pool of Mongolia's boreal forests and adjacent grasslands and draw conclusions on possible future change. Mean aboveground carbon stock density in the interior of L. sibirica forests was 66 Mg C ha?1, which is in the upper range of values reported from boreal forests and probably due to the comparably long growing season. The density of soil organic carbon (SOC, 108 Mg C ha?1) and total belowground carbon density (149 Mg C ha?1) are at the lower end of the range known from boreal forests, which might be the result of higher soil temperatures and a thinner permafrost layer than in the central and northern boreal forest belt. Land use effects are especially relevant at forest edges, where mean carbon stock density was 188 Mg C ha?1, compared with 215 Mg C ha?1 in the forest interior. Carbon stock density in grasslands was 144 Mg C ha?1. Analysis of satellite imagery of the highly fragmented forest area in the forest‐steppe zone showed that Mongolia's total boreal forest area is currently 73 818 km2, and 22% of this area refers to forest edges (defined as the first 30 m from the edge). The total forest carbon pool of Mongolia was estimated at ~ 1.5?1.7 Pg C, a value which is likely to decrease in future with increasing deforestation and fire frequency, and global warming.  相似文献   
5.
Increasing exposure to climate warming-related drought and heat threatens forest vitality in many regions on earth, with the trees' vulnerability likely depending on local climatic aridity, recent climate trends, edaphic conditions, and the drought acclimatization and adaptation of populations. Studies exploring tree species' vulnerability to climate change often have a local focus or model the species' entire distribution range, which hampers the separation of climatic and edaphic drivers of drought and heat vulnerability. We compared recent radial growth trends and the sensitivity of growth to drought and heat in central populations of a widespread and naturally dominant tree species in Europe, European beech (Fagus sylvatica), at 30 forest sites across a steep precipitation gradient (500–850 mm year−1) of short length to assess the species' adaptive potential. Size-standardized basal area increment remained more constant during the period of accelerated warming since the early 1980s in populations with >360 mm growing season precipitation (April–September), while growth trends were negative at sites with <360 mm. Climatic drought in June appeared as the most influential climatic factor affecting radial growth, with a stronger effect at drier sites. A decadal decrease in the climatic water balance of the summer was identified as the most important factor leading to growth decline, which is amplified by higher stem densities. Inter-annual growth variability has increased since the early 1980s, and variability is generally higher at drier and sandier sites. Similarly, within-population growth synchrony is higher at sandier sites and has increased with a decrease in the June climatic water balance. Our results caution against predicting the drought vulnerability of trees solely from climate projections, as soil properties emerged as an important modulating factor. We conclude that beech is facing recent growth decline at drier sites in the centre of its distribution range, driven by climate change-related climate aridification.  相似文献   
6.
Forest fragmentation has been found to affect biodiversity and ecosystem functioning in multiple ways. We asked whether forest size and isolation in fragmented woodlands influences the climate warming sensitivity of tree growth in the southern boreal forest of the Mongolian Larix sibirica forest steppe, a naturally fragmented woodland embedded in grassland, which is highly affected by warming, drought, and increasing anthropogenic forest destruction in recent time. We examined the influence of stand size and stand isolation on the growth performance of larch in forests of four different size classes located in a woodland‐dominated forest‐steppe area and small forest patches in a grassland‐dominated area. We found increasing climate sensitivity and decreasing first‐order autocorrelation of annual stemwood increment with decreasing stand size. Stemwood increment increased with previous year's June and August precipitation in the three smallest forest size classes, but not in the largest forests. In the grassland‐dominated area, the tree growth dependence on summer rainfall was highest. Missing ring frequency has strongly increased since the 1970s in small, but not in large forests. In the grassland‐dominated area, the increase was much greater than in the forest‐dominated landscape. Forest regeneration decreased with decreasing stand size and was scarce or absent in the smallest forests. Our results suggest that the larch trees in small and isolated forest patches are far more susceptible to climate warming than in large continuous forests pointing to a grim future for the forests in this strongly warming region of the boreal forest that is also under high land use pressure.  相似文献   
7.
Question: Is the vegetation of meadow and mountain steppes distinct from the ground vegetation of light taiga forests in the transitional zone between these biomes? Location: Western Khentey Mountains, northern Mongolia. Methods: Vegetation was recorded from 100‐m2 plots from all dominant types of light taiga forest and dry grassland. Distinctness of ground vegetation was studied with Detrended Correspondence Analysis (DCA). Results: Ground vegetation in the light taiga was significantly different from the herbal vegetation of meadow and mountain steppes. Clear separation was only absent for the Car ex amgunensis meadow steppes that occur in a narrow strip along the forest edge and are partly shaded by trees. Forest and steppe communities followed a moisture gradient according to the DCA ordination with light taiga forests at the moistest sites and steppe communities at the driest sites. Ulmus pumila open woodlands diverged from this pattern, because of their close spatial and phytosociological relationship to mountain steppes. Conclusions: The present results do not support the assumption that grasslands in Mongolia's transitional zone between forest and steppe would generally resemble the ground vegetation of light taiga forests. This contradicts a published hypothesis stating that the vegetation of meadow and mountain steppes would not clearly differ from ground vegetation of light taiga forests in the forest‐steppe transitional zone of Mongolia.  相似文献   
8.
The past and present regeneration of Siberian larch (Larix sibirica) was studied in the forest-steppe of the Mongolian Altai, an area which has experienced an increase in annual mean temperature by 2.1 °C since 1940 and is subjected to grazing by mixed herds of livestock owned by pastoral nomads. Past regeneration was reconstructed from tree rings and present regeneration was analyzed by surveying seedlings, sapling-sized trees and the occurrence of viable larch seeds in the soil seed bank. Forest regeneration occurred throughout the twentieth and the early twenty-first centuries in the forest interiors, but ceased after the late 1970s at forest edges. The density of sapling-sized larch trees decreased with livestock density linearly in the interior and exponentially at the edge. Most sapling-sized trees had visible damage from livestock browsing, which also manifested in wood-anatomical anomalies. By contrast, the densities of 1- and 2-year old seedlings increased with livestock density at the forest edge, suggesting that seedlings in this habitat benefitted from the reduction in competition intensity due to livestock grazing. This relationship also suggests that larch seedlings, in contrast to sapling-sized trees, were avoided by the livestock, as otherwise removal by the herbivores should have counteracted the promotion due to reduced competition. Near-consistency of the correlations of total livestock and goat densities with sapling and seedling densities suggests that the control of larch regeneration is primarily a function of goat density, which have tripled in the Mongolian livestock during the past 20 years for economic reasons.  相似文献   
9.
The Central Asian forest-steppe ecotone has been exposed to large alterations in grazing pressure in the last two decades, but the consequences for biodiversity have not been studied so far. We analyzed the biodiversity of the edges and the interior of Siberian larch forests in the forest-steppes of eastern Kazakhstan (Saur, Kazakh Altai) and western Mongolia (Mongolian Altai, Khangai) across different groups of organisms (vascular plants, epiphytic lichens, soil macroarthropods, oribatid mites, moths). The species richness of these groups was related to each other only at the forest edge, but not in the interior. Species richness of vascular plants, soil macroarthropods and oribatid mites at the forest edges was positively correlated. This indicates that these ground-inhabiting groups of organisms responded similarly to the variation in the grazing pressure of livestock, which is kept at spatially varying densities by mostly nomadic or transhumant herders. The species richness of epiphytic lichens was only positively correlated with that of vascular plants, and the richness of the (volant) moths was not correlated with that of any other group. The complete lack of correlation between the diversity of groups of organisms in the forest interior suggests that the diversity of the five studied groups is controlled by specific environmental factors, including light and moisture. Except for the Mongolian Altai, which was subjected to the highest grazing pressure, vascular plants, lichens, soil macroarthropods, and moths had a higher diversity at the edges than in the interior; the opposite was true for the oribatid mites. The latter probably benefit from the higher soil moisture inside the forest, whereas the other four groups are favored by increased availability of light, the proximity to the steppe with a partial mixing of species pools, and the soil macroarthropods also by increased dung abundance.  相似文献   
10.
The potential of Siberian elm (Ulmus pumila) to regenerate from seeds was experimentally studied on south-facing slopes in the northern Mongolian mountain taiga. These slopes are covered with a vegetation mosaic of different steppe communities and small, savanna-like, U. pumila open woodlands. The hypothesis is tested that the xeric microclimate and high herbivore densities limit the success of seedling establishment in U. pumila and thereby prevent elm from complete encroachment of the grassland-dominated slopes. Seeds were sown and 2-yr-old seedlings were planted prior to the growing season. The water supply was manipulated by irrigation, as was the feeding pressure by caterpillars with an insecticide. Large herbivores were excluded by fencing. Seeds germinated throughout the summer, but the emerged seedlings did not survive for more than 2 or 3 weeks. Germination rates increased with increasing soil water content and decreasing soil temperatures. Many seeds were consumed by granivores. Most planted 2-yr-old seedlings survived the two growing seasons covered by the study. However, the seedlings suffered from feeding damage by insects (gypsy moth, grasshoppers) and small mammals, from nitrogen deficiency and, to a lesser degree, from drought. The results suggest that high susceptibility of newly emerged seedlings to environmental stresses is a serious bottle neck for U. pumila that prevents them from the formation of closed forests on northern Mongolia's steppe slopes, whereas the probability for seedling survival after this early stage is high.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号