首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 312 毫秒
1.
【目的】木糖发酵是纤维素燃料乙醇生产的一个关键瓶颈,同时木质纤维素水解液中的乙酸严重抑制酿酒酵母的木糖发酵过程,因此通过基因工程手段提高菌株对木糖的利用以及对乙酸的耐受性具有重要意义。本研究以非氧化磷酸戊糖途径(PPP途径)中关键基因转醛醇酶基因(TAL1)为研究对象,探讨了3种不同启动子PTDH3、PAHP1和PUBI4,控制其表达对菌株利用木糖和耐受乙酸的影响。【方法】通过同源重组用3种启动子替换酿酒酵母基因工程菌NAPX37的TAL1基因的启动子PTAL1,再通过孢子分离和单倍体交配构建了纯合子,利用批次发酵比较了在以木糖为唯一碳源和混合糖(葡萄糖和木糖)为碳源条件下,3种启动子控制TAL1基因表达导致的发酵和乙酸耐受能力的差异。【结果】启动子PTDH3、PAHP1和PUBI4在不同程度上提高了TAL1基因的转录水平,提高了菌株对木糖的利用速率及乙酸耐受能力,提高了菌株在60 mmol/L乙酸条件下的葡萄糖利用速率。在以木糖为唯一碳源且无乙酸存在、以及混合糖为碳源的条件下,PAHP1启动子控制TAL1表达菌株的发酵结果优于PTDH3和PUBI4启动子的菌株,PAHP1启动子控制的TAL1基因的转录水平比较合适。在木糖为唯一碳源且乙酸为30 mmol/L时,PUBI4启动子控制TAL1基因表达的菌株发酵结果则优于PAHP1和PTDH3启动子菌株,此时PUBI4启动子控制的TAL1的转录水平比较合适。【结论】启动子PTDH3、PAHP1和PUBI4不同程度地提高TAL1基因的表达,在不同程度上改善了酵母菌株的木糖发酵速率和耐受乙酸性能,改善程度受发酵条件的影响。  相似文献   

2.
目的:对大肠杆菌进行代谢网络改造,考察木糖好氧发酵生产琥珀酸的可行性。方法:以有氧条件下大肠杆菌木糖生物合成琥珀酸的代谢途径分析为基础,以大肠杆菌BL21为出发菌株,通过P1噬菌体一步敲除法敲除琥珀酸脱氢酶基因(sdhA)、磷酸转乙酰基酶基因(pta)、丙酮酸脱氢酶基因(poxB)及异柠檬酸裂解酶阻遏物基因(iclR),构建木糖好氧发酵生产琥珀酸的大肠杆菌工程菌JLS400(△poxB△pta△iclR△sdhA)。将携带磷酸烯醇式丙酮酸羧化酶基因的质粒pJW225转化到JLS400中。结果:摇瓶发酵结果表明,构建的工程菌能以木糖为碳源,在好氧发酵条件下琥珀酸产率较高,副产物仅有少量乙酸和丙酮酸。结论:基因工程大肠杆菌JLS400pJW225的构建,为有氧条件下以木糖为原料生产琥珀酸的进一步研究奠定了基础。  相似文献   

3.
目的:分别构建大肠杆菌astE、rph基因敲除突变株,并检测其异丁醇耐受性的变化。方法:利用Red重组系统分别敲除大肠杆菌的astE和rph基因,并对所获得的突变株进行异丁醇耐受性相关实验研究。结果:成功构建了astE基因缺失突变株△astE和rph基因缺失突变株Δrph,发现两种突变株的异丁醇耐受性均有所提高。结论:通过缺陷菌株的构建,为未来进一步代谢改造生产异丁醇和研究异丁醇耐受机制奠定了基础。  相似文献   

4.
重组大肠杆菌高密度发酵研究进展   总被引:4,自引:0,他引:4  
重组大肠杆菌的高密度发酵是提高基因工程产品产量的一个非常有效的手段,是现代发酵工程研究的一个热点。本文就高密度发酵中影响重组大肠杆菌发酵产率的几个因素,包括宿主菌、培养基、培养条件、补料方法以及高密度发酵过程中存在的问题和对策加以讨论,着重探讨了高密度下大肠杆菌产生的有害代谢副产物———乙酸的产生机制、抑制作用机理,以及控制乙酸积累的技术方法 。  相似文献   

5.
大肠杆菌乙酸代谢突变株的选育和特性研究   总被引:11,自引:1,他引:10  
李志敏  叶勤 《微生物学报》2001,41(2):223-228
在大肠杆菌高密度培养中 ,因代谢副产物乙酸积累 ,导致抑制菌体的生长和产物表达的下降。为减小乙酸的抑制作用 ,采用60 Co诱变处理大肠杆菌JM1 0 1 ,结合连续培养 (含乙酸钠选择压力 )定向富集方法 ,选育到一株乙酸耐受性增强的菌株JL3。该菌株表现出明显的乙酸耐受性的提高 ,在含有 1 0 g/L乙酸钠的MA培养基中 ,菌体生长和葡萄糖消耗速率都有较大程度提高 ,并且具有良好的遗传稳定性  相似文献   

6.
好氧发酵生产琥珀酸工程菌株的构建   总被引:2,自引:0,他引:2  
通过分析大肠杆菌的碳源代谢途径, 利用基因敲除手段, 以Escherichia coli MG1655为出发菌株, 成功构建了琥珀酸好氧发酵生产工程菌E. coli QZ1111 (MG1655?ptsG?poxB?pta?iclR?sdhA)。检测结果表明该菌株能以葡萄糖为碳源, 在好氧发酵且不表达任何异源基因的条件下大量积累琥珀酸。摇瓶试验证明, 琥珀酸发酵产量达到26.4 g/L, 乙酸盐作为唯一检测到的副产物产量为2.3 g/L。二者浓度比达到11.5:1。  相似文献   

7.
乙酸是木质纤维素类生物质水解液中的常见毒性抑制物,选育乙酸耐受性好的酿酒酵母菌株,有利于高效利用木质纤维素类生物质,发酵生产生物燃料和生物基化学品。目前对酿酒酵母抗逆性的研究多集中在转录水平,但对转运RNA (Transfer RNA,tRNA) 在耐受性中的作用研究较少。在对酿酒酵母抗逆性研究过程中发现,一些转运RNA基因在耐受性好的酿酒酵母菌株中转录明显上调。本文深入分析了精氨酸tRNA基因tR(ACG)D和亮氨酸tRNA基因tL(CAA)K过表达对酿酒酵母耐受木质纤维素水解液的影响。结果表明,在4.2 g/L乙酸胁迫条件下进行乙醇发酵时,过表达tL(CAA)K的菌株生长和发酵性能均优于对照酵母菌株,乙醇生产强度比对照菌株提高了29.41%,但过表达tR(ACG)D基因的菌株生长和代谢能力较对照菌株明显降低,体现了不同tRNA的不同调控作用。进一步分析发现,过表达tL(CAA)K的重组酵母菌株乙酸耐受性调控相关基因HAA1、MSN2和MSN4等胁迫耐受性相关转录因子编码基因的转录水平上调。本文的研究为选育高效利用木质纤维素资源进行生物炼制的酵母菌株提供了新的改造策略,也为进一步揭示酿酒酵母tRNA基因表达调控对抗逆性的影响提供了基础。  相似文献   

8.
进化代谢选育高渗透压耐受型产琥珀酸大肠杆菌   总被引:1,自引:0,他引:1       下载免费PDF全文
在以碳酸钠为酸中和剂的大肠杆菌两阶段发酵产琥珀酸的过程中,由于Na+的积累造成发酵体系中渗透压的提高,严重抑制了琥珀酸的产物浓度。为了增强大肠杆菌对渗透压的耐受性,考察了利用进化代谢方法筛选高渗透压耐受型高产琥珀酸大肠杆菌菌株的可行性。进化代谢系统作为一种菌株突变装置,可以使菌体在连续培养条件下以最大的生长速率生长。以NaCl为渗透压调节剂,通过在连续培养装置中逐步提高NaCl浓度使菌体在高渗透压条件下快速生长,最终得到了一株高渗透压耐受型琥珀酸生产菌株Escherichia coli XB4。以碳酸钠为酸中和剂,在7 L发酵罐中利用Escherichia coli XB4进行两阶段发酵,厌氧培养60 h后,琥珀酸产量达到了69.5 g/L,琥珀酸生产速率达到了1.81 g/(L.h),分别比出发菌株提高了18.6%和20%。  相似文献   

9.
重组大肠杆菌高密度发酵研究进展   总被引:32,自引:0,他引:32  
重组大肠杆菌的高密度发酵是提高基因工程产品产量的一个非常有铲的手段,是现代发酵工程研究的一个热点。本文就高密度发酵中影响重组大肠杆菌发酵产率的几个因素,包括宿主菌、培养基、培养条件、补料方法以及高密度发酵过程中存在的问题和对策加以讨论,着重探讨了高密度下大肠杆菌产生的有害代副产物--乙酸的产生机制、抑制作用机理,以及控制乙酸机累的技术方法。  相似文献   

10.
[目的] 以秸秆等木质纤维素类生物质为原料生产液体生物燃料乙醇,目前生产成本高,大规模工业化生产尚有较大难度。构建能同化阿拉伯糖进行木糖还原生产木糖醇的重组酿酒酵母菌株,以实现原料中全糖利用、生产高附加值产品,实现产品多元化。[方法] 首先,利用CRISPR/Cas9基因编辑技术依次向出发菌株中导入阿拉伯糖代谢途径和木糖还原酶基因,使菌株获得代谢阿拉伯糖和将木糖转化为木糖醇的能力;其次,通过适应性驯化的进化工程手段,提高重组菌株对阿拉伯糖的利用效率;最后,通过混合糖发酵验证重组菌株利用阿拉伯糖和还原木糖产木糖醇的能力。[结果] 通过导入植物乳杆菌的阿拉伯糖代谢途径,酿酒酵母菌株获得了较好的利用阿拉伯糖生长繁殖的能力;进一步导入假丝酵母的木糖还原酶基因后,重组菌株在葡萄糖作为辅助碳源条件下可高效还原木糖产木糖醇,但阿拉伯糖的利用能力下降。利用以阿拉伯糖为唯一碳源的培养基进行反复批次驯化,阿拉伯糖的利用能力得以恢复和提升,得到表型较好的重组菌株KAX3-2。该菌株在木糖(50 g/L)和阿拉伯糖(20 g/L)混合糖发酵条件下发酵72 h时,对阿拉伯糖和木糖利用率分别达到42.1%和65.9%,木糖醇的收率为64%。[结论] 本研究成功构建了一株能有效利用阿拉伯糖并能将木糖转化为木糖醇的重组酿酒酵母菌株KAX3-2,为后续构建、获得阿拉伯糖代谢能力更强、木糖醇积累效率更高菌株的工作奠定了基础。  相似文献   

11.
酿酒酵母乙酸耐性分子机制的功能基因组进展   总被引:4,自引:0,他引:4       下载免费PDF全文
提高工业酿酒酵母对高浓度代谢产物及原料中的毒性底物等环境胁迫因素的耐受性,对提高工业生产效率具有重要的意义。乙酸是纤维素原料水解产生的主要毒性副产物之一,其对酵母细胞的生长和代谢都具有较强的抑制作用,因此,对酿酒酵母乙酸耐性分子机制的研究可为选育优良菌种提供理论依据。近年来,通过细胞全局基因表达分析和代谢组分析,以及对单基因敲除的所有突变体的表型组研究,对酿酒酵母乙酸耐性的分子机制有了更多新的认识,揭示了很多新的与乙酸毒性适应性反应和乙酸耐性提高相关的基因。综述了近年来酿酒酵母乙酸耐性的基因组规模的研究进展,以及在此基础上构建乙酸耐性提高的工业酵母菌的代谢工程操作。结合本课题组的研究,对金属离子锌在酿酒酵母乙酸耐性中的作用进行了深入分析。未来对酿酒酵母乙酸耐性分子机理的认识及改造将深入到翻译后修饰和合成生物学等新的水平,所获得的认知,将为选育可高效进行纤维素原料生物转化、高效生产生物燃料和生物基化学品的工业酿酒酵母的菌株奠定理论基础。  相似文献   

12.
An integrated metabolic model for the production of acetate by Escherichia coli growing on glucose under aerobic conditions was presented previously (Ko et al., 1993). The resulting model equations can be used to explain phenomena often observed with industrial fermentations, i.e., increased acetate production which follows from high glucose uptake rate, a low dissolved oxygen concentration, a high specific growth rate, or a combination of these conditions. However, several questions still need to be addressed. First, cell composition is growth rate and media dependent. Second, the macromolecular composition varied between E. coli strains. And finally, a model that represents the carbon fluxes between the Embden-Meyerhof-Parnas (EMP) and the hexose monophosphate (HMP) pathways when cells are subject to internal and/or external stresses is still not well defined. In the present work, we have made an effort to account for these effects, and the resulting model equations show good agreement for wild-type and recombinant E. coli experimental data for the acetate concentration, the onset of acetate secretion, and cell yield based on glucose. These results are useful for optimizing aerobic E. coli fermentation processes. More specifically, we have determined the EMP pathway carbon flux profiles required by the integrated metabolic model for an accurate fit of the acetic acid profile data from a wild-type E. coli strain ML308. These EMP carbon flux profiles were correlated with a dimensionless measurement of biomass and then used to predict the acetic acid profiles for E. coli strain F-122 expressing human immunodeficiency virus-(HIV(528)) beta-galactosidase fusion protein. The effect of different macromolecular compositions and growth rates between these two E. coli strains required a constant scaling factor for improved quantitative predictions.  相似文献   

13.
利用Red重组系统对野生大肠杆菌Escherichia coli磷酸烯醇式丙酮酸-糖磷酸转移酶系统(Phosphoenolpyruvate:carbohydrate phosphotransferase system,PTS)进行修饰改造,敲除PTS系统中关键组分EⅡCBGlc的编码基因(ptsG),磷酸组氨酸搬运蛋白HPr的编码基因(ptsI),同时敲入来源于运动发酵单胞菌Zymomonas mobilis的葡萄糖易化体(Glucose facilitator)编码基因(glf),构建重组大肠杆菌,比较测定并系统评价了基因敲除和敲入对细胞的生长、葡萄糖代谢和乙酸积累的影响。敲除基因ptsG和ptsI造成大肠杆菌PTS系统部分功能缺失,细胞生长受到一定限制,敲入glf基因后,重组大肠杆菌能够利用Glf-Glk(葡萄糖易化体-葡萄糖激酶)途径,消耗ATP将葡萄糖进行磷酸化并转运进入细胞。通过该途径转运葡萄糖能够提高葡萄糖利用效率,降低副产物乙酸生成,同时能够使更多的碳代谢流进入后续相关合成途径,预期能够提高相关产物产量。  相似文献   

14.
Whereas microbial fermentation processes for producing ethanol and related alcohol biofuels are well established, biodiesel (methyl esters of fatty acids) is exclusively derived from plant oils. Slow cycle times for engineering oilseed metabolism and the excessive accumulation of glycerol as a byproduct are two major drawbacks of deriving biodiesel from plants. Although most bacteria produce fatty acids as cell envelope precursors, the biosynthesis of fatty acids is tightly regulated at multiple levels. By introducing four distinct genetic changes into the E. coli genome, we have engineered an efficient producer of fatty acids. Under fed-batch, defined media fermentation conditions, 2.5 g/L fatty acids were produced by this metabolically engineered E. coli strain, with a specific productivity of 0.024 g/h/g dry cell mass and a peak conversion efficiency of 4.8% of the carbon source into fatty acid products. At least 50% of the fatty acids produced were present in the free acid form.  相似文献   

15.

Background  

Acetic acid is a byproduct of Saccharomyces cerevisiae alcoholic fermentation. Together with high concentrations of ethanol and other toxic metabolites, acetic acid may contribute to fermentation arrest and reduced ethanol productivity. This weak acid is also a present in lignocellulosic hydrolysates, a highly interesting non-feedstock substrate in industrial biotechnology. Therefore, the better understanding of the molecular mechanisms underlying S. cerevisiae tolerance to acetic acid is essential for the rational selection of optimal fermentation conditions and the engineering of more robust industrial strains to be used in processes in which yeast is explored as cell factory.  相似文献   

16.
Among amino acids screened for their potential to relieve wild and recombinant Escherichia coli from the negative effects of acetic acid, glycine, and methionine showed a sparing effect. In the presence of 2 g/L of acetic acid, addition of 0.5 g/L of glycine or methionine resulted in either a complete recovery or a further enhancement in the specific growth rate, while the enhancement was significant but not fully complete in the presence of 4 g/L of acetic acid. The addition of 0.5 g/L of methionine alleviated the negative effect of acetic acid on recombinant E. Coli growth to produce more beta-lactamase, which was encoded by plasmid pUC18. In continuous fermentation the methionine effect on recombinant. E. coli metabolism depended on dilution rate; at high dilution rates, above 0.4 h(-1), the methionine addition enhanced beta-lactamase production and reduced acetic acid formation, while at low dilution rates, below 0.3 h (-1), the effect was reversed. In def-batch fermentation with wild-type E. Coli, cell growth rate and cell yield from glucose were enhanced with methionine addition, while the acetic acid concentration reached over 4 g/L. (c) 1993 John Wiley & Sons, Inc.  相似文献   

17.
18.
选育高乙醇耐性的酿酒酵母菌株对提高燃料乙醇的发酵效率具有重要意义.锌指蛋白广泛存在于多种生物中,对基因的转录和翻译起重要的调节作用.利用人工设计的锌指蛋白可定向设计锌指序列及其排列顺序,实现对细胞内多个基因的全局调控.由于与环境胁迫反应相关的基因很多,因此可利用人工锌指蛋白技术获得耐受性提高的微生物重组菌.文中将人工锌指文库转入到酿酒酵母模式菌株S288c,选育了具有高乙醇耐受性的重组菌株M01,并分离了与乙醇耐受性提高相关的人工锌指蛋白表达载体pRS316ZFP-M01,转入工业酿酒酵母Sc4126,在含有不同浓度乙醇的平板上,工业酵母Sc4126的重组菌株表现出显著的耐受性提高.在高糖培养基(250 g/L)条件下进行乙醇发酵,发现重组菌的乙醇发酵效率明显快于野生型,发酵时间提前24 h,且发酵终点乙醇浓度提高6.3%.结果表明人工锌指文库能够提高酵母的乙醇耐受性,为构建发酵性能优良的酵母菌种奠定了基础.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号