首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Polyvalent mosaic HIV immunogens offer a potential solution for generating vaccines that can elicit immune responses against genetically diverse viruses. However, it is unclear whether key T cell epitopes can be processed and presented from these synthetic Ags and recognized by epitope-specific human T cells. In this study, we tested the ability of mosaic HIV immunogens expressed by recombinant, replication-incompetent adenovirus serotype 26 vectors to process and present major HIV clade B and clade C CD8 T cell epitopes in human cells. A bivalent mosaic vaccine expressing HIV Gag sequences was used to transduce PBMCs from 12 HIV-1-infected individuals from the United States and 10 HIV-1-infected individuals from South Africa; intracellular cytokine staining, together with tetramer staining, was used to assess the ability of mosaic Gag Ags to stimulate pre-existing memory responses compared with natural clade B and C vectors. Mosaic Gag Ags expressed all eight clade B epitopes tested in 12 United States subjects and all 5 clade C epitopes tested in 10 South African subjects. Overall, the magnitude of cytokine production induced by stimulation with mosaic Ags was comparable to clade B and clade C Ags tested, but the mosaic Ags elicited greater cross-clade recognition. Additionally, mosaic Ags induced HIV-specific CD4 T cell responses. Our studies demonstrate that mosaic Ags express major clade B and clade C viral T cell epitopes in human cells, as well as support the evaluation of mosaic HIV-1 vaccines in humans.  相似文献   

2.
T-cell based vaccine approaches have emerged to counteract HIV-1/AIDS. Broad, polyfunctional and cytotoxic CD4+ T-cell responses have been associated with control of HIV-1 replication, which supports the inclusion of CD4+ T-cell epitopes in vaccines. A successful HIV-1 vaccine should also be designed to overcome viral genetic diversity and be able to confer immunity in a high proportion of immunized individuals from a diverse HLA-bearing population. In this study, we rationally designed a multiepitopic DNA vaccine in order to elicit broad and cross-clade CD4+ T-cell responses against highly conserved and promiscuous peptides from the HIV-1 M-group consensus sequence. We identified 27 conserved, multiple HLA-DR-binding peptides in the HIV-1 M-group consensus sequences of Gag, Pol, Nef, Vif, Vpr, Rev and Vpu using the TEPITOPE algorithm. The peptides bound in vitro to an average of 12 out of the 17 tested HLA-DR molecules and also to several molecules such as HLA-DP, -DQ and murine IAb and IAd. Sixteen out of the 27 peptides were recognized by PBMC from patients infected with different HIV-1 variants and 72% of such patients recognized at least 1 peptide. Immunization with a DNA vaccine (HIVBr27) encoding the identified peptides elicited IFN-γ secretion against 11 out of the 27 peptides in BALB/c mice; CD4+ and CD8+ T-cell proliferation was observed against 8 and 6 peptides, respectively. HIVBr27 immunization elicited cross-clade T-cell responses against several HIV-1 peptide variants. Polyfunctional CD4+ and CD8+ T cells, able to simultaneously proliferate and produce IFN-γ and TNF-α, were also observed. This vaccine concept may cope with HIV-1 genetic diversity as well as provide increased population coverage, which are desirable features for an efficacious strategy against HIV-1/AIDS.  相似文献   

3.
We investigated the underlying mechanism by which the highly conserved N-terminal V3 loop glycan of gp120 conferred resistance to neutralization of human immunodeficiency virus type 1 (HIV-1). We find that the presence or absence of this V3 glycan on clade A and B viruses accorded various degrees of susceptibility to neutralization by antibodies to the CD4 binding site, CD4-induced epitopes, and chemokine receptors. Our data suggest that this carbohydrate moiety on gp120 blocks access to the binding site for CD4 and modulates the chemokine receptor binding site of phenotypically diverse clade A and clade B isolates. Its presence also contributes to the masking of CD4-induced epitopes on clade B envelopes. These findings reveal a common mechanism by which diverse HIV-1 isolates escape immune recognition. Furthermore, the observation that conserved functional epitopes of HIV-1 are more exposed on V3 glycan-deficient envelope glycoproteins provides a basis for exploring the use of these envelopes as vaccine components.  相似文献   

4.
CXCR4-using human immunodeficiency virus, type 1 (HIV-1) variants emerge late in the course of infection in >40% of individuals infected with clade B HIV-1 but are described less commonly with clade C isolates. Tat is secreted by HIV-1-infected cells where it acts on both uninfected bystander cells and infected cells. In this study, we show that clade B Tat, but not clade C Tat, increases CXCR4 surface expression on resting CD4+ T cells through a CCR2b-dependent mechanism that does not involve de novo protein synthesis. The expression of plectin, a cytolinker protein that plays an important role as a scaffolding platform for proteins involved in cellular signaling including CXCR4 signaling and trafficking, was found to be significantly increased following B Tat but not C Tat treatment. Knockdown of plectin using RNA interference showed that plectin is essential for the B Tat-induced translocation of CXCR4 to the surface of resting CD4+ T cells. The increased surface CXCR4 expression following B Tat treatment led to increased function of CXCR4 including increased chemoattraction toward CXCR4-using-gp120. Moreover, increased CXCR4 surface expression rendered resting CD4+ T cells more permissive to X4 but not R5 HIV-1 infection. However, neither B Tat nor C Tat was able to up-regulate surface expression of CXCR4 on activated CD4+ T cells, and both proteins inhibited the infection of activated CD4+ T cells with X4 but not R5 HIV-1. Thus, B Tat, but not C Tat, has the capacity to render resting, but not activated, CD4+ T cells more susceptible to X4 HIV-1 infection.  相似文献   

5.
We aimed to identify cross-clade human immunodeficiency virus type 1 (HIV-1) specific T-cell responses among 10 HLA-typed individuals who were infected with non-B HIV-1 strains (A, AG, C, D, G, or F) and to correlate these responses with genetic variation in documented T-cell epitopes. T-cell reactivity was tested against peptide pools spanning clade B Gag, Pol, Nef, Rev, and Tat consensus, with Gag and Nef providing the highest responses. Nine individuals who responded to clade B Gag demonstrated cross-reactive T-cell responses against clade A and C Gag pools, while six of seven responders to Nef-B reacted to clade A and C Nef pools. An inverse correlation between the height of the T-cell responses and the sequence divergence of the HLA class I-restricted epitopes was identified when we compared autologous Gag and Nef sequences with the reactive consensus pools. This could be explained for the Gag sequences through observed variations in the HLA anchor residues. Through mapping of 30 amino acid cross-clade-reactive regions using Gag-B pools, we were able to link 58% (14/24) of the T-cell responses to regions containing previously described HLA class I-restricted epitopes. Forty-two percent (10/24) of the responses were directed to regions containing new epitopes, for which predicted HLA class I motifs could be recognized in 70% (7/10) of individuals. We demonstrate here that cross-clade T-cell responses are frequently induced in individuals infected with distinct HIV-1 clades, suggesting that interclade variation outside of HLA anchor residues may have less impact on vaccine-induced T-cell reactivity than previously thought.  相似文献   

6.

Background

CD8+ T cell responses play an important role in the control of HIV-1. The extensive sequence diversity of HIV-1 represents a critical hurdle to developing an effective HIV-1 vaccine, and it is likely that regional-specific vaccine strains will be required to overcome the diversity of the different HIV-1 clades distributed world-wide. Unfortunately, little is known about the CD8+ T cell responses against CRF01_AE, which is responsible for the majority of infections in Southeast Asia.

Methodology/Principal Findings

To identify dominant CD8+ T cell responses recognized in HIV-1 clade CRF01_AE infected subjects we drew upon data from an immunological screen of 100 HIV-1 clade CRF01_AE infected subjects using IFN-gamma ELISpot to characterize a novel immunodominant CD8+ T cell response in HIV-1 Gag restricted by HLA-Cw*0102 (p24, 277YSPVSILDI285, YI9). Over 75% of Cw*0102+ve subjects targeted this epitope, representing the strongest response in more than a third of these individuals. This novel CD8 epitope was located in a highly conserved region of HIV-1 Gag known to contain immunodominant CD8 epitopes, which are restricted by HLA-B*57 and -B*27 in clade B infection. Nonetheless, viral escape in this epitope was frequently observed in Cw*0102+ve subjects, suggestive of strong selection pressure being exerted by this common CD8+ T cell response.

Conclusions/Significance

As HLA-Cw*0102 is frequently expressed in the Thai population (allelic frequency of 16.8%), this immunodominant Cw*0102-restricted Gag epitope may represent an attractive candidate for vaccines specific to CRF01_AE and may help facilitate further studies of immunopathogenesis in this understudied HIV-1 clade.  相似文献   

7.
Antiretroviral therapy, antibody and CD8+ T cell-mediated responses targeting human immunodeficiency virus-1 (HIV-1) exert selection pressure on the virus necessitating escape; however, the ability of CD4+ T cells to exert selective pressure remains unclear. Using a computational approach on HIV gag/pol/nef sequences and HLA-II allelic data, we identified 29 HLA-II associated HIV sequence polymorphisms or adaptations (HLA-AP) in an African cohort of chronically HIV-infected individuals. Epitopes encompassing the predicted adaptation (AE) or its non-adapted (NAE) version were evaluated for immunogenicity. Using a CD8-depleted IFN-γ ELISpot assay, we determined that the magnitude of CD4+ T cell responses to the predicted epitopes in controllers was higher compared to non-controllers (p<0.0001). However, regardless of the group, the magnitude of responses to AE was lower as compared to NAE (p<0.0001). CD4+ T cell responses in patients with acute HIV infection (AHI) demonstrated poor immunogenicity towards AE as compared to NAE encoded by their transmitted founder virus. Longitudinal data in AHI off antiretroviral therapy demonstrated sequence changes that were biologically confirmed to represent CD4+ escape mutations. These data demonstrate an innovative application of HLA-associated polymorphisms to identify biologically relevant CD4+ epitopes and suggests CD4+ T cells are active participants in driving HIV evolution.  相似文献   

8.
Due to constitutive expression in cells targeted by human immunodeficiency virus (HIV), and immediate mode of viral restriction upon HIV entry into the host cell, APOBEC3G (A3G) and APOBEC3F (A3F) have been considered primarily as agents of innate immunity. Recent bioinformatic and mouse model studies hint at the possibility that mutation of the HIV genome by these enzymes may also affect adaptive immunity but whether this occurs in HIV-infected individuals has not been examined. We evaluated whether APOBEC-mediated mutations within common HIV CD8+ T cell epitopes can potentially enhance or diminish activation of HIV-specific CD8+ T cells from infected individuals. We compared ex vivo activation of CD8+ T lymphocytes from HIV-infected individuals by wild type HIV peptide epitopes and synthetic variants bearing simulated A3G/F-induced mutations by measuring interferon-γ (IFN-γ) production. We found that A3G/F-induced mutations consistently diminished HIV-specific CD8+ T cell responses against the common epitopes we tested. If this reflects a significant trend in vivo, then adaptation by HIV to enrich sequences that are favored for mutation by A3G/F (A3G/F hotspots) in portions of its genome that encode immunogenic CD8+ T cell epitopes would favor CTL escape. Indeed, we found the most frequently mutated A3G motif (CCC) is enriched up to 6-fold within viral genomic sequences encoding immunodominant CD8+ T cell epitopes in Gag, Pol and Nef. Within each gene, A3G/F hotspots are more abundant in sequences encoding epitopes that are commonly recognized due to their HLA restriction. Thus, in our system, mutations of the HIV genome, mimicking A3G/F activity, appeared to abrogate or severely reduce CTL recognition. We suggest that the physiological significance of this potential effect in facilitating CTL escape is echoed in the adaptation of the HIV genome to enrich A3G/F hotspots in sequences encoding CTL epitopes that are more immunogenic at the population level.  相似文献   

9.
10.
Sera from human immunodeficiency virus type 1 (HIV-1)-infected North American patients recognized a fusion protein expressing a V3 loop from a clade B primary isolate virus (JR-CSF) but not from a clade A primary isolate virus (92UG037.8), while most sera from Cameroonian patients recognized both fusion proteins. Competition studies of consensus V3 peptides demonstrated that the majority of the cross-reactive Cameroonian sera contained cross-reactive antibodies that reacted strongly with both V3 sequences. V3-specific antibodies purified from all six cross-reactive sera examined had potent neutralizing activity for virus pseudotyped with envelope proteins (Env) from SF162, a neutralization-sensitive clade B primary isolate. For four of these samples, neutralization of SF162 pseudotypes was blocked by both the clade A and clade B V3 fusion proteins, indicating that this activity was mediated by cross-reactive antibodies. In contrast, the V3-reactive antibodies from only one of these six sera had significant neutralizing activity against viruses pseudotyped with Envs from typically resistant clade B (JR-FL) or clade A (92UG037.8) primary isolates. However, the V3-reactive antibodies from these cross-reactive Cameroonian sera did neutralize virus pseudotyped with chimeric Envs containing the 92UG037.8 or JR-FL V3 sequence in Env backbones that did not express V1/V2 domain masking of V3 epitopes. These data indicated that Cameroonian sera frequently contain cross-clade reactive V3-directed antibodies and indicated that the typical inability of such antibodies to neutralize typical, resistant primary isolate Env pseudotypes was primarily due to indirect masking effects rather than to the absence of the target epitopes.  相似文献   

11.
The genetic diversity of HIV-1 across the globe is a major challenge for developing an HIV vaccine. To facilitate immunogen design, it is important to characterize clusters of commonly targeted T-cell epitopes across different HIV clades. To address this, we examined 39 HIV-1 clade C infected individuals for IFN-γ Gag-specific T-cell responses using five sets of overlapping peptides, two sets matching clade C vaccine candidates derived from strains from South Africa and China, and three peptide sets corresponding to consensus clades A, B, and D sequences. The magnitude and breadth of T-cell responses against the two clade C peptide sets did not differ, however clade C peptides were preferentially recognized compared to the other peptide sets. A total of 84 peptides were recognized, of which 19 were exclusively from clade C, 8 exclusively from clade B, one peptide each from A and D and 17 were commonly recognized by clade A, B, C and D. The entropy of the exclusively recognized peptides was significantly higher than that of commonly recognized peptides (p = 0.0128) and the median peptide processing scores were significantly higher for the peptide variants recognized versus those not recognized (p = 0.0001). Consistent with these results, the predicted Major Histocompatibility Complex Class I IC50 values were significantly lower for the recognized peptide variants compared to those not recognized in the ELISPOT assay (p<0.0001), suggesting that peptide variation between clades, resulting in lack of cross-clade recognition, has been shaped by host immune selection pressure. Overall, our study shows that clade C infected individuals recognize clade C peptides with greater frequency and higher magnitude than other clades, and that a selection of highly conserved epitope regions within Gag are commonly recognized and give rise to cross-clade reactivities.  相似文献   

12.
In February 2013, zoonotic transmission of a novel influenza A virus of the H7N9 subtype was reported in China. Although at present no sustained human-to-human transmission has been reported, a pandemic outbreak of this H7N9 virus is feared. Since neutralizing antibodies to the hemagglutinin (HA) globular head domain of the virus are virtually absent in the human population, there is interest in identifying other correlates of protection, such as cross-reactive CD8+ T cells (cytotoxic T lymphocytes [CTLs]) elicited during seasonal influenza A virus infections. These virus-specific CD8+ T cells are known to recognize conserved internal proteins of influenza A viruses predominantly, but it is unknown to what extent they cross-react with the newly emerging H7N9 virus. Here, we assessed the cross-reactivity of seasonal H3N2 and H1N1 and pandemic H1N1 influenza A virus-specific polyclonal CD8+ T cells, obtained from HLA-typed study subjects, with the novel H7N9 virus. The cross-reactivity of CD8+ T cells to H7N9 variants of known influenza A virus epitopes and H7N9 virus-infected cells was determined by their gamma interferon (IFN-γ) response and lytic activity. It was concluded that, apart from recognition of individual H7N9 variant epitopes, CD8+ T cells to seasonal influenza viruses display considerable cross-reactivity with the novel H7N9 virus. The presence of these cross-reactive CD8+ T cells may afford some protection against infection with the new virus.  相似文献   

13.
HIV-1-specific CD4+ and CD8+ T lymphocytes are important for HIV-1 replication control. F4/AS01 consists of F4 recombinant fusion protein (containing clade B Gag/p24, Pol/RT, Nef and Gag/p17) formulated in AS01 Adjuvant System, and was shown to induce F4-specific polyfunctional CD4+ T-cell responses in humans. While replication-incompetent recombinant HIV-1/SIV antigen-expressing human adenoviral vectors can elicit high-frequency antigen-specific CD8+ T-cell responses, their use is hampered by widespread pre-existing immunity to human serotypes. Non-human adenovirus serotypes associated with lower prevalence may offer an alternative strategy. We evaluated the immunogenicity of AdC7-GRN (‘A’), a recombinant chimpanzee adenovirus type 7 vector expressing clade B Gag, RT and Nef, and F4/AS01 (‘P’), when delivered intramuscularly in homologous (PP or AA) and heterologous (AAPP or PPAA) prime-boost regimens, in macaques and mice. Vaccine-induced HIV-1-antigen-specific T cells in peripheral blood (macaques), liver, spleen, and intestinal and genital mucosa (mice) were characterized by intracellular cytokine staining. Vaccine-specific IgG antibodies (macaques) were detected using ELISA. In macaques, only the heterologous prime-boost regimens induced polyfunctional, persistent and balanced CD4+ and CD8+ T-cell responses specific to each HIV-1 vaccine antigen. AdC7-GRN priming increased the polyfunctionality of F4/AS01-induced CD4+ T cells. Approximately 50% of AdC7-GRN-induced memory CD8+ T cells exhibited an effector-memory phenotype. HIV-1-specific antibodies were detected with each regimen. In mice, antigen-specific CD4+ and CD8+ T-cell responses were detected in the mucosal and systemic anatomical compartments assessed. When administered in heterologous prime-boost regimens, AdC7-GRN and F4/AS01 candidate vaccines acted complementarily in inducing potent and persistent peripheral blood HIV-1-specific CD4+ and CD8+ T-cell responses and antibodies in macaques. Besides, adenoviral vector priming modulated the cytokine-expression profile of the protein-induced CD4+ T cells. Each regimen induced HIV-1-specific T-cell responses in systemic/local tissues in mice. This suggests that prime-boost regimens combining adjuvanted protein and low-seroprevalent chimpanzee adenoviral vectors represent an attractive vaccination strategy for clinical evaluation.  相似文献   

14.
Cytotoxic T cells play a critical role in the control of HIV and the progression of infected individuals to AIDS. 2B4 (CD244) is a member of the SLAM family of receptors that regulate lymphocyte development and function. The expression of 2B4 on CD8+ T cells was shown to increase during AIDS disease progression. However, the functional role of 2B4+ CD8+ T cells against HIV infection is not known. Here, we have examined the functional role of 2B4+ CD8+ T cells during and after stimulation with HLA B14 or B27 restricted HIV epitopes. Interestingly, IFN-γ secretion and cytotoxic activity of 2B4+ CD8+ T cells stimulated with HIV peptides were significantly decreased when compared to influenza peptide stimulated 2B4+ CD8+ T cells. The expression of the signaling adaptor molecule SAP was downregulated in 2B4+ CD8+ T cells upon HIV peptide stimulation. These results suggest that 2B4+ CD8+ T cells play an inhibitory role against constrained HIV epitopes underlying the inability to control the virus during disease progression.  相似文献   

15.
CD8+ T cell-restricted immunity is important in the control of HIV-1 infection, but continued immune activation results in CD8+ T cell dysfunction. Early initiation of antiretroviral treatment (ART) and the duration of ART have been associated with immune reconstitution. Here, we evaluated whether restoration of CD8+ T cell function in HIV-1-infected individuals was dependent on early initiation of ART. HIV-specific CD107a, IFNγ, IL-2, TNFα and MIP-1β expression by CD8+ T cells and the frequency of CD8+ T cells expressing PD-1, 2B4 and CD160 were measured by flow cytometry. The frequency of CD8+ T cells expressing the inhibitory markers PD-1, 2B4 and CD160 was lower in ART-treated individuals compared with ART-naïve individuals and similar to the frequency in HIV-uninfected controls. The expression of the three markers was similarly independent of when therapy was initiated. Individuals treated before seroconversion displayed an HIV-specific CD8+ T cell response that included all five functional markers; this was not observed in individuals treated after seroconversion or in ART-naïve individuals. In summary, ART appears to restore the total CD8+ T cell population to a less exhausted phenotype, independent of the time point of initiation. However, to preserve multifunctional, HIV-1-specific CD8+ T cells, ART might have to be initiated before seroconversion.  相似文献   

16.
The reactivities of a panel of 14 monoclonal antibodies (MAbs) with monomeric gp120 derived from 67 isolates of human immunodeficiency virus type 1 of clades A through F were assessed by using an antigen-capture enzyme-linked immunosorbent assay. The MAbs used were all raised against gp120 or gp120 peptides from clade B viruses and were directed at a range of epitopes relevant to human immunodeficiency virus type 1 neutralization: the V2 and V3 loops, discontinuous epitopes overlapping the CD4-binding site, and two other discontinuous epitopes. Four of the five V3 MAbs showed modest cross-reactivity within clade B but very limited reactivity with gp120s from other clades. These reactivity patterns are consistent with the known primary sequence requirements for the binding of these MAbs. One V3 human MAb (19b), however, was much more broadly reactive than the others, binding to 19 of 29 clade B and 10 of 12 clade E gp120s. The 19b epitope is confined to the flanks of the V3 loop, and these sequences are relatively conserved in clade B and E viruses. In contrast to the limited reactivity of V3 MAbs, CD4-binding site MAbs were much more broadly reactive across clades, two of these MAbs (205-46-9 and 21h) being virtually pan-reactive across clades A through F. Another human MAb (A-32) to a discontinuous epitope was also pan-reactive. The CD4-binding site is strongly conserved between clades; but when considering the epitopes near the CD4-binding site, clade D gp120 appears to be the most closely related to clade B and clade E appears to be the least related. A tentative rank order for these epitopes is B/D-A/C-E/F. V2 MAbs reacted sporadically within and between clades, and no clear pattern was observable. While results from binding assays do not predict neutralization serotypes, they suggest that there may be antigenic subtypes related, but not identical, to the genetic subtypes.  相似文献   

17.
A human immunodeficiency virus (HIV) vaccine that will be useful in diverse geographic regions will need to induce a broad immune response characterized by cross-clade immunity. To test whether a clade B-based HIV candidate vaccine could induce interclade humoral responses, including neutralizing activity against primary HIV-1 isolates, sera were tested from recipients of a vaccine consisting of recombinant canarypox virus vCP205 and recombinant gp120(SF2). Serum antibodies exhibited strong immunochemical cross-reactivity with V3 peptides from clades B, C, and F, with weaker activity for several V3 peptides from clades A, D, G, and H; essentially no reactivity could be demonstrated with V3 peptides from clades E and O. Extensive cross-clade reactivity was also documented by enzyme-linked immunosorbent assay with all nine recombinant HIV envelope glycoproteins tested from clades B, D, and E. In addition, vaccinees' sera displayed significant neutralizing activity against 5 of 14 primary isolates tested, including one X4 virus and two dualtropic viruses (from clade B) and two R5 viruses (from clades B and C). This is the first demonstration of the induction by a candidate HIV vaccine constructed from clade B laboratory strains of HIV of neutralizing activity against R5 and clade C primary isolates. The data suggest that, by virtue of their ability to induce cross-clade immune responses, appropriately formulated HIV vaccines based on a finite number of HIV isolates may ultimately be able to protect against the wide range of HIV isolates affecting the populations of many geographic regions.  相似文献   

18.
Neutralizing antibodies have been shown to protect macaques against SHIV challenge. However, genetically diverse HIV-1 clades have evolved, and a key question left unanswered is whether neutralizing antibodies can confer cross-clade protection in vivo. The novel human monoclonal antibody HGN194 was isolated from an individual infected with an HIV-1 clade AG recombinant circulating recombinant form (CRF). HGN194 targets an epitope in the third hypervariable loop (V3) of HIV-1 gp120 and neutralizes a range of relatively neutralization-sensitive and resistant viruses. We evaluated the potential of HGN194 to protect infant rhesus monkeys against a SHIV encoding a primary CCR5-tropic HIV-1 clade C envelope. After high-dose mucosal challenge, all untreated controls became highly viremic while all HGN194-treated animals (50 mg/kg) were completely protected. When HGN194 was given at 1 mg/kg, one out of two monkeys remained aviremic, whereas the other had delayed, lower peak viremia. Interestingly, all protected monkeys given high-dose HGN194 developed Gag-specific proliferative responses of both CD4+ and CD8+ T cells. To test whether generation of the latter involved cryptic infection, we ablated CD8+ cells after HGN194 clearance. No viremia was detected in any protected monkeys, thus ruling out virus reservoirs. Thus, induction of CD8 T-cell immunity may have resulted from transient "Hit and Run" infection or cross priming via Ag-Ab-mediated cross-presentation. Together, our data identified the HGN194 epitope as protective and provide proof-of-concept that this anti-V3 loop mAb can prevent infection with sterilizing immunity after challenge with virus of a different clade, implying that V3 is a potential vaccine target.  相似文献   

19.
Understanding the social conditions and immunological characteristics that allow some human immunodeficiency virus (HIV)-exposed patients to remain uninfected represents an on-going challenge. In this study, the socio-demographic and sexual behaviour characteristics and immune activation profiles of uninfected individuals exposed to HIV-infected partners were investigated. A confidential and detailed questionnaire was administered and venous blood was tested using HIV-1/enzyme immunoassays, plasma HIV-1 RNA levels/bDNA and immunophenotyping/flow cytometry to determine the frequencies of CD4 and CD8 T cells expressing activation markers. The data analysis showed significant differences (p < 0.05) for immune parameters in individuals who were uninfected, albeit exposed to HIV-infected partners, compared with unexposed individuals. In particular, the exposed, uninfected individuals had a higher frequency (median, minimum-maximum) of CD4+HLA-DR+ (4.2, 1.8-6.1), CD8+HLA-DR+ (4.6, 0.9-13.7), CD4+CD45RO+ (27.5, 14.2-46.6), CD4+CD45RO+CD62L+ (46.7, 33.9-67.1), CD8+CD45RA+HLA-DR+ (12.1, 3.4-35.8) and CD8+CD45RO+HLA-DR+ (9.0, 3.2-14.8) cells, a decreased percentage of CD8+CD28+ cells (11.7, 4.5-24.0) and a lower cell-surface expression of Fcγ-R/CD16 on monocytes (56.5, 22.0-130.0). The plasma HIV-1 RNA levels demonstrated detectable RNA virus loads in 57% of the HIV-1+ female partners. These findings demonstrate an activation profile in both CD4 and CD8 peripheral T cells from HIV-1 exposed seronegative individuals of serodiscordant couples from a referral centre in Belo Horizonte, state of Minas Gerais.  相似文献   

20.
Virus-specific CD8(+) T cells are known to play an important role in the control of HIV infection. In this study we investigated whether there may be qualitative differences in the CD8(+) T cell response in HIV-1- and HIV-2-infected individuals that contribute to the relatively efficient control of the latter infection. A molecular comparison of global TCR heterogeneity showed a more oligoclonal pattern of CD8 cells in HIV-1- than HIV-2-infected patients. This was reflected in restricted and conserved TCR usage by CD8(+) T cells recognizing individual HLA-A2- and HLA-B57-restricted viral epitopes in HIV-1, with limited plasticity in their response to amino acid substitutions within these epitopes. The more diverse TCR usage observed for HIV-2-specific CD8(+) T cells was associated with an enhanced potential for CD8 expansion and IFN-gamma production on cross-recognition of variant epitopes. Our data suggest a mechanism that could account for any possible cross-protection that may be mediated by HIV-2-specific CD8(+) T cells against HIV-1 infection. Furthermore, they have implications for HIV vaccine development, demonstrating an association between a polyclonal, virus-specific CD8(+) T cell response and an enhanced capacity to tolerate substitutions within T cell epitopes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号