首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
神经元轴突外包裹的髓鞘结构对于提高神经元传导速率,维持神经系统稳定性有重要作用。在中枢神经系统中,髓鞘主要由少突胶质细胞形成。成髓鞘过程在内源性和外源性因素的共同调节下进行,神经元轴突信号在这个过程中扮演重要角色。髓鞘发育过程依赖于轴突的促进信号和抑制信号的相互平衡:促进信号包括层粘连蛋白和神经调节素等,神经元电信号能启动并促进髓鞘再生;抑制信号包括细胞黏附分子以及Notch信号。本文综述了一些因子尤其是神经元信号在髓鞘发育中的作用,也讨论了脱髓鞘疾病中神经元如何参与髓鞘再生。这些总结有助于理解髓鞘发育的机制,也有助于脱髓鞘疾病的研究和治疗。  相似文献   

2.
多发性硬化是一类中枢神经系统炎症性脱髓鞘疾病,其发病原因目前尚未明确。深入地研究该疾病的发生发展机制将为临床预防及治疗提供更有效的帮助。髓鞘是中枢神经系统重要的生理结构,主要发挥保护轴突和加速神经冲动传导的作用。在成年中枢神经系统,髓鞘损伤后可以由少突胶质前体细胞经增殖、迁移和分化而重新形成,即髓鞘再生。然而,在慢性多发性硬化症患者的病灶中,由于少突胶质前体细胞分化障碍,导致髓鞘再生减弱,进而造成轴突损伤和神经元丢失,发生不可逆的神经功能障碍,是进展型多发性硬化发生的重要原因。因此,研究进展型多发性硬化患者病灶中少突胶质前体细胞的分化障碍及其相关信号机制对于临床治疗和药物开发具有重要意义。本综述将着眼于少突胶质前体细胞的分化调控机制,分析其在进展型多发性硬化病理发生中的作用和意义,并讨论了相关的潜在治疗靶点。  相似文献   

3.
刘驰  肖岚 《生命科学》2011,(3):279-282
少突胶质细胞的发育分化是由遗传的和后生的机制共同参与调控的一系列动态过程,其中,对于后生调控机制的研究称为表观遗传学。既往对少突胶质细胞的研究主要集中在相关基因本身的特性研究。近年来,关于寻址组蛋白修饰的研究使我们对少突胶质细胞发育和衰老过程中基因表达的后生调控有了新的认识。这些理论将有助于我们更好地理解脱髓鞘及衰老后髓鞘修复障碍的原因和防治途径。  相似文献   

4.
《生命科学研究》2017,(6):534-541
少突胶质细胞(oligodendrocytes,OLs)在脊椎动物中枢神经系统(central nervous system,CNS)中负责形成包裹神经元轴突的髓鞘,保证神经冲动沿轴突的快速传导,并为其提供营养支持。OLs发育异常及损伤会导致严重的神经系统疾病,比如脑白质营养不良(leukodystrophy)、多发性硬化症(multiple sclerosis,MS)等。少突胶质细胞前体细胞(oligodendrocyte progenitor cells,OPCs)在胚胎期由神经前体细胞(neural progenitor cells,NPCs)产生,该过程受到一系列细胞内外因素的调控,对这一问题的研究也是神经系统研究的重要内容。现主要基于遗传学结果,简述关于OPCs产生的调控机制的最新研究进展。  相似文献   

5.
了解中枢神经系统髓鞘损伤再生的调控机制对多种中枢神经系统脱髓鞘疾病的治疗有重要意义。近年来研究发现,中枢神经系统中小胶质细胞的不同极化形式在调控髓鞘损伤再生中起到重要作用。在一系列细胞内外信号分子的介导下,M1型小胶质细胞会分泌一些促炎因子而加重髓鞘的损伤,而M2型小胶质细胞一方面可分泌抗炎分子和吞噬损伤坏死细胞而抑制炎症反应,为髓鞘再生创造条件;另一方面还能分泌多种神经营养因子,促进髓鞘修复。此外,最近研究发现M2型小胶质细胞在一定程度上还能促进少突胶质前体细胞的成熟分化,进而促进了中枢神经系统髓鞘的再生。这些研究结果提示,促进小胶质细胞的M2型极化可能成为治疗脱髓鞘疾病的新途径。  相似文献   

6.
深部脑刺激(deep brain stimulation,DBS)已在临床上广泛用于治疗帕金森病等疾病引起的运动障碍,它在难治性癫痫、顽固性强迫症等其他脑中枢神经系统疾病的治疗上也展现出良好的应用前景.经过30多年的临床应用、动物实验和计算模型仿真等多方面的研究,DBS的机制也逐渐明朗.虽然尚无定论,但已取得许多重要进展.本文从电生理角度分析和总结了有关DBS机制的发展历程.从早期的抑制论和兴奋论到目前主导的调控论;从关注刺激位点的神经元活动,到发现神经元胞体与轴突活动的去耦合,再到高频刺激诱导的间歇性轴突阻滞,以及由此轴突活动可能导致的投射区神经元群体的去同步活动.这一系列研究进展表明DBS具有复杂的神经网络调控机制.了解DBS的作用机制对于提高其疗效、开发新刺激模式以及扩大临床应用的范围都具有重要意义.  相似文献   

7.
Lingo-1(leucine-rich repeat and Ig domain containing,Nogo receptor-interacting protein1)是一种选择性表达于中枢神经系统的跨膜蛋白。目前,针对髓鞘再生过程的研究发现,在中枢神经系统损伤后出现高表达Lingo-1,从而抑制损伤区少突胶质前体细胞(oligodendrocyte progenitor cells,OPCs)的分化并降低神经元的存活率,最终抑制损伤神经元的髓鞘再生。由此提示,Lingo-1可能成为促进损伤后神经修复的重要新靶点。该文就近年来关于Lingo-1对中枢神经系统髓鞘再生影响的研究及其作用机制作一简单综述。  相似文献   

8.
NG2细胞是广泛分布于CNS中表达NG2蛋白多糖的一种胶质细胞,也被称为少突胶质前体细胞(oligodendrocyteprecur—sorcells,oPc)。该细胞具有典型复杂的星形形态和长突起围绕于胞体周围,表达电压门控的K+和Na+通道、GABAA以及AMPA/红藻氨酸受体并接受神经元突触的信号输入。NG2细胞增殖分化是保证神经元轴突髓鞘化的首要前提,NG2的增殖分化不能仅依靠其自身调控,NG2-神经元突触联系可能也是调控NG2细胞增殖分化的信息中转站。伴随NG2细胞增殖分化神经元轴突的髓鞘化也不断形成,这些过程在围生期表现尤为明显;NG2细胞分化为少突胶质细胞后,其功能上具有”专一性”,所以可能存在NG2.神经元突触联系的作用被削弱的现象。因此,在NG2细胞增殖过程中,NG2细胞保持与神经元之间的功能性突触并将其传递给子代NG2细胞;而在NG2细胞分化的过程中,NG2细胞的突触信号输入迅速减少。NG2细胞不但是一种前体细胞,同时也是一种具有独特功能的胶质细胞,在中枢神经系统中发挥重要作用。本综述就NG2细胞在增殖分化过程中其突触信号的变化以及可能的意义进行阐述。  相似文献   

9.
了解少突胶质细胞分化的调控机制对促进中枢神经系统脱髓鞘疾病髓鞘再生有重要意义。近年来研究发现,G蛋白偶联受体GPR17在调控少突胶质细胞分化和髓鞘再生中发挥了重要作用。本文主要就GPR17的特点及其在少突胶质细胞分化和脱髓鞘疾病中的作用作一简要综述,从而为中枢神经系统脱髓鞘疾病的治疗及药物研发提供新的理论依据。  相似文献   

10.
周围神经系统髓鞘形成依赖Schwann细胞和神经元之间复杂的相互作用。细胞极性分子蛋白Par-3在Schwann细胞与轴突接触面密集分布,为BDNF/p75NTR介导的启动成髓提供分子支架。然而,Par-3在该界面聚集并呈不对称性分布的机制仍是一个谜。不少研究发现,JAM和nectin等细胞粘附分子与Par-3不对称性分布有关。另外,通过改变轴突信号如神经营养因子和神经素的水平,也能影响Schwann髓鞘的形成。本文综述和阐释在髓鞘形成过程中,Schwann细胞极性是如何被调控的。  相似文献   

11.
许旺细胞 (Schwanncells)在外周神经元信号支配下参与其轴突髓鞘形成 ,此过程机制尚不明。美国Vanderbilt大学的BruceD .Carter等最近用多种方法证实 :在施万细胞形成髓鞘的过程中 ,核因子 κB(NF κB)起决定性作用。他们在大鼠髂神经元体外培养中发现 ,髓鞘形成特异性相关基因Oct 6和Krox 2 0的表达受NF κB的调控。Oct 6和Krox 2 0的基因产物分别是具有POU结构域和锌指结构域的转录因子 ,髓磷脂碱性蛋白(myelinbasicprotein ,MBP)是它们的靶基因。Oct 6在髓鞘形成的起始阶段 ,即胚胎期 16天开始表达 ,至出生后 15天消失 ,而此…  相似文献   

12.
神经系统作为一个复杂的体系,在其发育过程中轴突需要延伸较长的距离才能与下一级神经元或靶细胞形成突触。在这个复杂的移动过程中,神经元轴突在空间分布上形成了精确有序的结构。过去认为这种有序结构的形成主要由形态发生素的化学浓度梯度来指导,而最近的研究发现力学因素对调控轴突的延伸速度与方向发挥着重要的作用。因此,轴突的延伸本质上是一个力化学耦合过程。本文将结合自己过去的工作论述力学因素对轴突延伸的调控机制及相关的信号转导。这一领域的研究将为认识对神经系统疾病的发生以及神经再生提供重要的参考。  相似文献   

13.
少突胶质细胞主要围绕神经元轴突形成髓鞘,能几十倍地加快神经冲动的传导速度,它的异常会严重影响人的行动和健康,因此对其发育的研究显得极为重要。最近的研究显示脊髓中绝大部分少突胶质细胞和运动神经元先后由相同的神经前体细胞区产生。然而,对脊髓神经干细胞如何有秩序地先后产生这两种不同细胞的具体机制还不清楚。基于近年来的研究进展,对运动神经元和少突胶质细胞发育上的关系以及其发育命运转变的机制进行探讨。  相似文献   

14.
大脑皮层的发育是脑结构形成与功能建立的重要基础,在此过程中,皮层神经元放射状迁移及胼胝体区的轴突投射是必不可少的关键环节,该环节受基因转录的调控,但相关的分子机制目前仍不明确。转录因子BMAL1 (brain and muscle Arnt-like protein1)是体内重要的生物钟节律因子之一,最新研究发现其还参与调节海马神经祖细胞增殖,提示其与神经发育存在潜在的相关性。为明确Bmal1基因在大脑皮层发育中的具体作用,本研究首先通过RT-PCR和Real-timePCR检测Bmal1基因在神经系统中的表达情况。结果表明,Bmal1基因在神经系统中表达丰富,并且在发育期的大脑内呈现特定的表达规律:在胚胎后期和出生后早期脑内表达水平相对较高,以出生后第3 d为高峰。进一步通过联合使用小鼠子宫内胚胎电转和RNAi干扰方法敲减脑内神经元中Bmal1的表达水平,结果发现胚胎期皮层神经元的放射状迁移发生了延迟,延迟程度与RNAi的敲减效率呈正相关,存在一定的基因剂量-效应关系。进一步观察发现,在胚胎期脑内神经元中降低Bmal1表达水平以后,胼胝体轴突向对侧大脑半球的投射也出现了明显的缺陷。上述研究结果表明,BMAL1是大脑皮层神经元的放射状迁移以及轴突投射发育过程中的一个重要的调控分子,为从转录因子角度深入理解大脑皮层发育的分子调节机制和寻找调控靶点提供了新的线索。  相似文献   

15.
跨膜蛋白63A(transmembrane protein 63,TMEM63A)是一种机械敏感性离子通道(mechanosensitive ion channel,MSC),在髓鞘形成过程中发挥重要作用。TMEM63A于2019年与髓鞘形成低下性脑白质营养不良19型(hypomyelinating leukodystrophy 19,HLD19)相关联,确定为HLD19的致病基因。髓鞘是神经系统中由少突胶质细胞形成的兼具营养轴突和加速动作电位传导的结构,髓鞘形成障碍可表现为髓鞘形成低下、髓鞘囊性化和髓鞘变性。髓鞘中脂质含量丰富,不同脂质参与髓鞘形成、修复和胶质细胞与轴突识别等重要过程。TMEM63A变异导致的HLD19为髓鞘形成低下性疾病。TMEM63A变异可引起渗透压改变,细胞上TMEM63A跨膜蛋白受机械刺激产生电流,从而影响少突胶质细胞分化、成熟,导致髓鞘形成异常;同时,TMEM63A变异也可引起细胞膜脂质的分布异常,影响脂质正常功能,异常的脂质通过参与不同的髓鞘形成环节最终导致了髓鞘形成障碍。  相似文献   

16.
少突胶质前体细胞(OPC),又称为NG2细胞,是脑内广泛存在的一类大胶质细胞。OPC最初主要从室管膜区产生并经过发育期的长距离迁移而到达大脑的各个区域。这一迁移过程不仅对神经元正常髓鞘形成提供了必要条件,对大脑损伤后髓鞘的再修复也极为关键。因此,研究各种信号分子对OPC在迁移过程中的作用,探求它们如何对OPC在体内完成长距离的迁移和精确的定位而发挥作用,从而找到一定的规律,对全面认识少突胶质前体细胞如何在整个神经网络中发挥作用具有重要意义,也为脱髓鞘疾病的治疗提供新的思路和途径。  相似文献   

17.
Nogo-A及其受体在成年哺乳动物的中枢神经系统(CNS)中,尤其是在中枢神经系统损伤及修复过程中的作用及机制已经被广泛而深入的研究,但是它们在CNS发育中的扮演的角色却了解甚少。新近研究表明,Nogo-A在CNS发育过程中神经前体细胞分化及迁移,轴突的生长及可塑性的变化以及少突胶质细胞前体细胞分化和成髓鞘化等过程中发挥着重要的作用。  相似文献   

18.
髓鞘相关糖蛋白与神经系统的髓鞘发育和轴突生长   总被引:1,自引:0,他引:1  
Gu WL  Lu PH 《生理科学进展》2006,37(3):243-246
髓鞘相关糖蛋白(myelin-associated glycoprotein,MAG)是免疫球蛋白超家族成员,它由中枢神经系统的少突胶质细胞和外周神经系统的施万细胞表达。MAG定位于直接和轴突相接触的髓鞘膜的最里层,它通过介导胶质细胞与轴突的相互作用参与髓鞘的形成及其完整性的维持。同时MAG也是髓鞘来源的神经生长抑制因子的主要成分。在神经系统发育的不同阶段,MAG显示不同的功能:即发育期促进轴突生长,成熟期抑制轴突生长。其抑制作用主要由髓鞘来源的抑制分子的共同受体NgR介导,在神经营养因子受体p75NTR以及小GTP酶Rho等信号分子的共同参与下完成。  相似文献   

19.
编委推荐     
《遗传》2021,(9)
正Nature Communications|朗飞结是小胶质细胞和神经元沟通的桥梁小胶质细胞是中枢神经系统的常驻免疫细胞,是健康大脑稳态和可塑性的关键参与者。在神经系统疾病(如多发性硬化症)中,活化的小胶质细胞会引起组织损伤,同时也有神经保护和促进髓鞘再生作用。即便如此,小胶质细胞和神经元之间通讯的机制目前仍不清楚。  相似文献   

20.
神经生长因子主要由来源于神经嵴的神经元支配的靶组织产生,其被这些神经元轴突摄取后逆行运输至胞体,通过多种途径调节神经细胞的基因转录而发挥生物效应,维持神经元的存活、刺激轴突的生长.并对外周神经的发育、营养起重要的作用.在骨组织和骨折骨痴中均可见神经生长因子及其受体的表达,神经生长因子主要是通过促进骨折部位神经的再生参与骨折修复.骨折愈合的机制十分复杂,神经生长因子对骨组织的作用也是多方面、多层次和相互交叉的,其机制尚未完全明确.虽然神经生长因子促进骨折修复作用机制的研究已经取得一些进展,但仍处于初级阶段,其作用机制仍不明确.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号