首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 109 毫秒
1.
叶片衰老是整个植株生理特性的敏感表现,受根系、茎、生殖器官和其他叶片等器官的影响。器官间关系影响叶片衰老可能是通过竞争体内营养、水分等物质、竞争环境因子、源库关系、激素等信息系统调节等机制实现的。从整株水平上加强叶片衰老的生理机制和控制技术研究,将为生产上控制衰老、减少叶片异常衰老造成的产量和品质损失提供有效的技术途径。  相似文献   

2.
引起生物体的器官或某一部分最终走向死亡的变化即为衰老(senescence),所有高等植物在其生活史上的任何阶段,或在任何结构水平上,衰老均可发生。衰老作为植物生长发育中的重要事件,受到研究者们的极大关注。1908年minot首先对植物的衰老进行了研究,对植物器官衰老研究最多的是叶片和子叶,一般地,子叶的衰老与叶片的衰老没有本质的差异。  相似文献   

3.
者红色是典型的叶片衰老现象,该过程受到各种复杂外源环境信号(如光周期和温度)和内源植物激素(如脱落酸和乙烯)等因素的影响和有序的时空调控,是叶片发育的最后一个生物学过程.本文对木本植物季节性叶片衰老与营养/生殖生长的关系、植物激素在调控木本植物叶片衰老过程中的作用机制以及叶片衰老与季节性休眠之间的关系进行了阐述和总结,并且提出了木本植物叶片衰老的研究方向与研究方法.  相似文献   

4.
绿色器官的衰老是植株生长发育的一个内在组成部分,其重要的生物学意义在于营养物质的动员与再利用。作为最重要的营养"源"器官,衰老叶片中发生大规模的降解代谢活动,由此产生的大量小分子物质,包括糖类,氨基酸,核苷酸和可再生利用的矿质元素等会通过筛管转运至新生的组织器官,即"库"器官,特别是种子中,为其快速生长发育提供充足的营养供应。本文主要介绍了绿色器官衰老过程中氮素的营养动员与再利用研究进展,包括叶片中蛋白的降解和氨基酸的代谢转化,以及筛管装载和卸载。最后,对未来的研究方向进行了展望,提出了作物叶片光合总量和营养物质利用效率双双趋于最大化的理想叶片衰老模式。  相似文献   

5.
衰老是指最终导致有机体或器官死亡的变化过程,植物叶片的衰老伴随着叶绿体的破坏,光合能力的下降以及蛋白质降解等过程的发生,功能叶片的衰老对作物产量产生严重的影响[1],1957年Sacher首先提出了膜的脂质过氧化在细胞衰老中的重要作用,P.S.Dhi...  相似文献   

6.
陈烨  刘平丽 《西北植物学报》2023,43(6):1068-1080
植物叶片衰老是一个非常重要的发育过程,涉及大分子的有序分解从而将营养物质从叶片转移到其他器官,对植物的生存和适应至关重要。叶片衰老主要受植物的发育调控,但同时也受内部和外部环境因素的影响,涉及高度复杂的基因调控网络和多层级的调控。近年来的研究表明表观遗传是调控植物叶片衰老的一种重要调控方式。该研究综述了植物叶片衰老过程中的表观遗传调控机制,包括组蛋白修饰、DNA甲基化、ATP依赖的染色质重塑和非编码RNA介导的调控,并对该领域今后的发展方向进行了展望。  相似文献   

7.
杨同文  李成伟 《植物学报》2014,49(6):729-737
叶片是植物重要的光合器官, 它的衰老由外界环境刺激和内源发育信号所启动, 复杂的基因调控网络参与衰老过程的精确调控。最新研究表明, 植物通过对基因表达的重编程, 在表观遗传水平上调节着叶片衰老过程。该文简要介绍了表观遗传的分子机制, 在此基础上重点综述了组蛋白修饰、染色质重塑、DNA甲基化及小RNAs途径对叶片衰老调控的最新研究进展, 同时讨论了该领域存在的问题和未来研究方向。  相似文献   

8.
衰老是植物器官和组织发育的最后阶段, 是一个受到严格控制的高度协调过程, 其中碳水化合物浓度对衰老的影响十分显著。花花柴(Karelinia caspia)是塔克拉玛干沙漠南缘策勒绿洲的主要植物种, 为了研究花花柴在韧皮部环割后的碳水化合物变化和叶片衰老过程, 对其进行韧皮部环割, 测量叶片光合色素含量、光合速率、可溶性糖含量、淀粉含量、脱落酸(ABA)含量和叶水势。结果表明: (1)环割能够诱导花花柴叶片的衰老, 而诱导叶片衰老的主要因素有: 叶片碳水化合物的积累、叶片ABA含量的上升, 以及叶片水分状况的恶化。(2)相比于自然衰老, 环割诱导的衰老导致许多正常的生理过程受到破坏。(3)类胡萝卜素在衰老过程中主要起光保护的作用。(4)韧皮部半环割也导致花花柴各种生理指标显著下降, 表明植物无法通过增加剩余部分韧皮部筛管的运输通量而达到维持整个韧皮部运输系统顺畅的目的。  相似文献   

9.
植物叶片衰老过程中的基因表达与调控   总被引:2,自引:0,他引:2  
姚真  高燕萍  杨金水 《遗传》1999,21(4):63-65
衰老是一种器官或组织逐步走向功能衰退和死亡的变化过程〔1〕。它除了代表器官或组织生命周期的终结之外,在发育生物学上也有着重要的意义。叶片的衰老是植物的一个重要发育阶段。在这段时期内,植物在成熟叶片内积累的物质,包括大量的氮、碳有机化合物和矿物质,将被分解并运送至植物其它生长旺盛的部分,其中大部分被转移到种子内,为下一代的生长做好准备〔11〕。对于产生种子的作物,包括绝大多数农作物,这种转移使营养重新分配,对植株保持正常的生长发育与繁殖是十分必要的〔3〕。衰老过程中,叶片细胞在组成成分上有很大的变…  相似文献   

10.
植物衰老关乎器官发育和作物产量与品质性状的形成   总被引:1,自引:0,他引:1  
植物的衰老主要表现为绿色光合器官的衰老。叶片是最典型的绿色器官,其衰老与凋亡常常伴随着新生器官的发生与发育,这种以器官为单元的模块化衰老与凋亡方式反映了营固着生活方式的植物所特有的生存策略与适应性进化路径。对于一年生或隔年生的单次结实性植(作)物而言,生长季节后期营养器官集中衰老与死亡,与此同时完成生(繁)殖器官的发育与成熟,呈现出整个植株衰老  相似文献   

11.
Experiments concerning the effects of benzyladenine applications on the growth and senescence of leaves have been carried out with cuttings of bean seedlings. By measuring the interactions between leaves, it was found that this kinin not only can stimulate the growth of a treated whole leaf, but it can bring about the inhibition of growth in other untreated leaves on the same plant. Consistent, with the apparent mobilizing actions of this chemical, it was found that applications to one or more leaves would induce the senescence of untreated leaves in a manner similar to the senescence-inducing effects of stem apices and flowers and fruits. The experiments suggest that the mobilization effects due to natural kinins in such centers in the intact plant may provide endogenous stimuli of leaf senescence.  相似文献   

12.
Leaf senescence is a developmentally regulated process that contributes to nutrient redistribution during reproductive growth and finally leads to tissue death. Manipulating leaf senescence through breeding or genetic engineering may help to improve important agronomic traits, such as crop yield and the storage life of harvested organs. Here, we studied natural variations in the regulation of plant senescence among 16 Arabidopsis thaliana accessions. Chlorophyll content and the proportion of yellow leaves were used as indicator parameters to determine leaf and plant senescence respectively. Our study indicated significant genotype effects on the onset and development of senescence. We selected three late- and five early-senescence accessions for further physiological studies. The relationship between leaf and plant senescence was accession-dependent. There was a significant correlation between plant senescence and the total number of leaves, siliques and plant bolting age. We monitored expression of two senescence marker genes, SAG12 and WRKY53 , to evaluate progression of senescence. Our data revealed that chlorophyll content does not fully reflect leaf age, because even fully green leaves had already commenced senescence at the molecular level. Integrating senescence parameters, such as the proportion of senescent leaves, at the whole plant level provided a better indication of the molecular status of the plant than single leaf senescence parameters.  相似文献   

13.
Cloning and characterization of tomato leaf senescence-related cDNAs   总被引:24,自引:0,他引:24  
John  Isaac  Hackett  Rachel  Cooper  Wendy  Drake  Rachel  Farrell  Aldo  Grierson  Don 《Plant molecular biology》1997,33(4):641-651
Senescence-related cDNA clones designated SENU1, 4, 5 (senescence up-regulated) and SEND32, 33, 34, 35 and 36 (senescence down-regulated) isolated from a tomato leaf cDNA library [9] were characterized. Southern analysis showed that SEND32 is encoded by a single-copy gene while SEND33, 34, 35, 36 and SENU1 and SENU5 are members of small gene families. DNA and protein database searches revealed that SEND32, SEND35, SENU1 and SENU5 are novel cDNAs of unknown function. SEND33 encodes ferredoxin, SEND34 encodes a photosystem II 10 kDa polypeptide and SEND36 encodes catalase. The SENU4 sequence is identical to the P6 tomato protein previously reported to be pathogenesis-related [46]. The mRNA levels of SENU1, 4 and 5 increased during leaf senescence and SENU1 and SENU5 were also expressed at high levels during leaf development and in other plant organs. The SENU4 mRNA was associated more specifically with leaf senescence, although low expression was also detected in green fruit. The mRNAs for all SEND clones decreased during tomato leaf development and senescence and all except SEND32 were expressed at low levels in other plant organs. The accumulation of mRNA homologous to SENU4 and the decrease in abundance of SEND32 provide good molecular markers for leaf senescence.  相似文献   

14.
THE DISTRIBUTION OF APHID INFESTATION IN RELATION TO LEAF AGE   总被引:1,自引:0,他引:1  
Infestations of apterous Aphis fabae Scop, on potted sugar beets have been followed in detail for several weeks. The plants were somewhat stunted and their crowns presented an unusually complete series of leaf ages. Records were kept of the changing number and size of the leaves and of their stage of growth. Parallel records were kept of the changing population of aphids on every leaf, and the figures are analysed in various ways to show how suitability for the aphids varied through the life cycle of the leaves.
The leaves were very suitable when young, became unsuitable as they matured, became suitable again just after maturity and then unsuitable again as they senesced. But among leaves at any given stage, those which were growing or senescing rapidly were more suitable than those changing slowly, unless the rate of senescence was very high. The differences of population density on different-aged leaves were due largely to the preferences exercised by the apterous adults. The added effect of differences in the fecundity of these mothers while feeding on different leaves was not excluded, but could not be assessed. It is concluded that the physiological development of the plant as a whole determines, through the growth and senescence among its total complement of leaves, the progress and pattern of its aphid infestation.  相似文献   

15.
水稻叶片中存在着氨肽酶,其最适反应pH和最适反应温度分别为8.2℃和40℃,酶促反应的产物量在最初30min内与时间呈直线相关。 水稻叶片衰老过程中叶绿素和蛋白质含量下降,而氨肽酶比活上升;用植物激素延缓或促进叶片衰老蛋白质降解的同时也抑制或促进了氨肽酶比活的上升,说明氨肽酶在水稻叶片衰老蛋白质降解过程中起一定的作用。根据水稻叶片衰老过程中大分子化合物和叶片外部形态的变化,可将叶片衰老过程划分为缓衰期、急衰期和竭衰期。  相似文献   

16.
Photosynthetic complexes in the thylakoid membrane of plant leaves primarily function as energy-harvesting machinery during the growth period. However, leaves undergo developmental and functional transitions along aging and, at the senescence stage, these complexes become major sources for nutrients to be remobilized to other organs such as developing seeds. Here, we investigated age-dependent changes in the functions and compositions of photosynthetic complexes during natural leaf senescence in Arabidopsis thaliana. We found that Chl a/b ratios decreased during the natural leaf senescence along with decrease of the total chlorophyll content. The photosynthetic parameters measured by the chlorophyll fluorescence, photochemical efficiency (F v/F m) of photosystem II, non-photochemical quenching, and the electron transfer rate, showed a differential decline in the senescing part of the leaves. The CO2 assimilation rate and the activity of PSI activity measured from whole senescing leaves remained relatively intact until 28 days of leaf age but declined sharply thereafter. Examination of the behaviors of the individual components in the photosynthetic complex showed that the components on the whole are decreased, but again showed differential decline during leaf senescence. Notably, D1, a PSII reaction center protein, was almost not present but PsaA/B, a PSI reaction center protein is still remained at the senescence stage. Taken together, our results indicate that the compositions and structures of the photosynthetic complexes are differentially utilized at different stages of leaf, but the most dramatic change was observed at the senescence stage, possibly to comply with the physiological states of the senescence process.  相似文献   

17.
A model population comprising five genotypes of Phlox paniculata was used to investigate differentiation in carbon assimilation amongst those genotypes. Three methods were used to measure carbon assimilation, single leaf photosynthetic capacity, whole plant photosynthetic capacity and unit leaf rate (ULR). Genotypes displayed no significant differences in single leaf photosynthetic capacity and that character did not have a detectable genetic component. However, genotypes showed significant differences in both whole plant photosynthetic capacity and unit leaf rate, and significant genetic components were found for both characters. The differences in whole plant photosynthetic capacity and unit leaf rate are related to differences in plant architecture and modular demography. Erect, self-shading morphs had lower whole plant photosynthetic capacity and unit leaf rate than prostrate morphs. The results suggest that the better measures of physiological parameters for use at the population level will be those which integrate over the whole plant rather than those which only measure performance of parts.  相似文献   

18.
Programmed Cell Death in Floral Organs: How and Why do Flowers Die?   总被引:7,自引:0,他引:7  
Rogers HJ 《Annals of botany》2006,97(3):309-315
BACKGROUND: Flowers have a species-specific, limited life span with an irreversible programme of senescence, which is largely independent of environmental factors, unlike leaf senescence, which is much more closely linked with external stimuli. TIMING: Life span of the whole flower is regulated for ecological and energetic reasons, but the death of individual tissues and cells within the flower is co-ordinated at many levels to ensure correct timing. Some floral cells die selectively during organ development, whereas others are retained until the whole organ dies. TRIGGERS: Pollination is an important floral cell death trigger in many species, and its effects are mediated by the plant growth regulator (PGR) ethylene. In some species ethylene is a major regulator of floral senescence, but in others it plays a very minor role and the co-ordinating signals involved remain elusive. Other PGRs such as cytokinin and brassinosteroids are also important but their role is understood only in some specific systems. MECHANISMS: In two floral cell types (the tapetum and the pollen-tube) there is strong evidence for apoptotic-type cell death, similar to that in animal cells. However, in petals there is stronger evidence for an autophagous type of cell death involving endoplasmic reticulum-derived vesicles and the vacuole. Proteases are important, and homologues to animal caspases, key regulators of animal cell death, exist in plants. However, their role is not yet clear. COMPARISON WITH OTHER ORGANS: There are similarities to cell death in other plant organs, and many of the same genes are up-regulated in both leaf and petal senescence; however, there are also important differences for example in the role of PGRs. CONCLUSIONS: Understanding gene regulation may help to understand cell death in floral organs better, but alone it cannot provide all the answers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号