首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Genotyping with large numbers of molecular markers is now an indispensable tool within plant genetics and breeding. Especially through the identification of large numbers of single nucleotide polymorphism (SNP) markers using the novel high-throughput sequencing technologies, it is now possible to reliably identify many thousands of SNPs at many different loci in a given plant genome. For a number of important crop plants, SNP markers are now being used to design genotyping arrays containing thousands of markers spread over the entire genome and to analyse large numbers of samples. In this article, we discuss aspects that should be considered during the design of such large genotyping arrays and the analysis of individuals. The fact that crop plants are also often autopolyploid or allopolyploid is given due consideration. Furthermore, we outline some potential applications of large genotyping arrays including high-density genetic mapping, characterization (fingerprinting) of genetic material and breeding-related aspects such as association studies and genomic selection.  相似文献   

2.
The chicken has been widely used in experimental research given its importance to agriculture and its utility as a model for vertebrate biology and biomedical pursuits for over 100 years. Herein we used advanced technologies to investigate the genomic characteristics of specialized chicken congenic genetic resources developed on a highly inbred background. An Illumina 3K chicken single nucleotide polymorphism (SNP) array was utilized to study variation within and among major histocompatibility complex (MHC)-congenic lines as well as investigate line-specific genomic diversity, inbreeding coefficients, and MHC B haplotype-specific GGA 16 SNP profiles. We also investigated developmental mutant-congenic lines to map a number of single-gene mutations using both the Illumina 3K array and a recently developed Illumina 60K chicken SNP array. In addition to identifying the chromosomes and specific subregions, the mapping results affirmed prior analyses indicating recessive or dominant and autosomal or sex chromosome modes of inheritance. Priority candidate genes are described for each mutation based on association with similar phenotypes in other vertebrates. These single-gene mutations provide a means of studying amniote development and in particular serve as invaluable biomedical models for similar malformations found in human.  相似文献   

3.
Lee JE  Choi JH  Lee JH  Lee MG 《Mutation research》2005,573(1-2):195-204
Haplotype-based analysis using high-density single nucleotide polymorphism (SNP) markers have gained increasing attention in evaluating candidate genes in various clinical situations. For example, haplotype information is useful for predicting the severity and prognosis of certain genetic disorders. The intragenic cis-interactions between the common polymorphisms and the pathogenic mutations of prion protein (PRNP) and cystic fibrosis transmembrane conductance regulator (CFTR) genes greatly influence the phenotypes and the disease penetrance of hereditary Creutzfeldt-Jakob disease and cystic fibrosis. Merits of haplotype study are more evident in the fine mapping of complex diseases and in identifying genetic variations that influence individual's response to drugs. Knowledge-based approaches and/or linkage analyses using SNP tagged haplotypes are effective tools in detecting genetic associations. For example, haplotype studies in the inflammatory bowel disease susceptibility loci revealed diverse cis and trans gene-gene interactions, which can affect the clinical outcomes. Although currently, we have very limited knowledge on haplotype-phenotypic characterizations of most genes, these examples demonstrate that increased understanding of the clinically relevant haplotypes will provide better results in the diagnosis and possibly in the treatment of both monogenic and polygenic diseases.  相似文献   

4.
The International Stem Cell Initiative analyzed 125 human embryonic stem (ES) cell lines and 11 induced pluripotent stem (iPS) cell lines, from 38 laboratories worldwide, for genetic changes occurring during culture. Most lines were analyzed at an early and late passage. Single-nucleotide polymorphism (SNP) analysis revealed that they included representatives of most major ethnic groups. Most lines remained karyotypically normal, but there was a progressive tendency to acquire changes on prolonged culture, commonly affecting chromosomes 1, 12, 17 and 20. DNA methylation patterns changed haphazardly with no link to time in culture. Structural variants, determined from the SNP arrays, also appeared sporadically. No common variants related to culture were observed on chromosomes 1, 12 and 17, but a minimal amplicon in chromosome 20q11.21, including three genes expressed in human ES cells, ID1, BCL2L1 and HM13, occurred in >20% of the lines. Of these genes, BCL2L1 is a strong candidate for driving culture adaptation of ES cells.  相似文献   

5.
Studies of copy-number variation and linkage disequilibrium (LD) have typically excluded complex regions of the genome that are rich in duplications and prone to rearrangement. In an attempt to assess the heritability and LD of copy-number polymorphisms (CNPs) in duplication-rich regions of the genome, we profiled copy-number variation in 130 putative "rearrangement hotspot regions" among 269 individuals of European, Yoruba, Chinese, and Japanese ancestry analyzed by the International HapMap Consortium. Eighty-four hotspot regions, corresponding to 257 bacterial artificial chromosome (BAC) probes, showed evidence of copy-number differences. Despite a predisposing genetic architecture, no polymorphism was ever observed in the remaining 46 "rearrangement hotspots," and we suggest these represent excellent candidate sites for pathogenic rearrangements. We used a combination of BAC-based and high-density customized oligonucleotide arrays to resolve the molecular basis of structural rearrangements. For common variants (frequency >10%), we observed a distinct bias against copy-number losses, suggesting that deletions are subject to purifying selection. Heritability estimates did not differ significantly from 1.0 among the majority (30 of 34) of loci analyzed, consistent with normal Mendelian inheritance. Some of the CNPs in duplication-rich regions showed strong LD with nearby single-nucleotide polymorphisms (SNPs) and were observed to segregate on ancestral SNP haplotypes. However, LD with the best available SNP markers was weaker than has been reported for deletion polymorphisms in less complex regions of the genome. These observations may be accounted for by a low density of SNP data in duplicated regions, challenges in mapping and typing the CNPs, and the possibility that CNPs in these regions have rearranged on multiple haplotype backgrounds. Our results underscore the need for complete maps of genetic variation in duplication-rich regions of the genome.  相似文献   

6.
Complete hydatidiform moles (CHMs) are diploid tumors that result from fertilization of an empty ovum by a haploid 23,X sperm. In most cases, the resulting duplication of the genome gives rise to a 46,XX genotype and is thought to be androgenetic in origin. If this hypothesis is correct, then the genotypes of all polymorphic markers in CHMs should be homozygous. We used a dense set of single-nucleotide polymorphism (SNP) markers, evenly spaced throughout the genome, to definitively test this hypothesis. We genotyped genomic DNA samples from five CHMs and their corresponding maternal samples with 1494 SNP markers using high-density microarrays (HuSNP). As predicted, the maternal samples were heterozygous at >25% of the markers, which is consistent with the expected average heterozygosity of this panel of SNPs. In contrast, the five CHM samples were heterozygous at <0.75% of the SNP markers, which shows that these diploid tumors consist of a duplicated set of chromosomes. Because the CHM genotypes represent the haplotypes of their genomes, our results show that long-range haplotypes can be obtained easily with this resource and that a collection of such samples is a simple way to obtain reference haplotypes for association studies in various populations.  相似文献   

7.
The effects of selection on genome variation were investigated and visualized in tomato using a high-density single nucleotide polymorphism (SNP) array. 7,720 SNPs were genotyped on a collection of 426 tomato accessions (410 inbreds and 16 hybrids) and over 97% of the markers were polymorphic in the entire collection. Principal component analysis (PCA) and pairwise estimates of F st supported that the inbred accessions represented seven sub-populations including processing, large-fruited fresh market, large-fruited vintage, cultivated cherry, landrace, wild cherry, and S. pimpinellifolium. Further divisions were found within both the contemporary processing and fresh market sub-populations. These sub-populations showed higher levels of genetic diversity relative to the vintage sub-population. The array provided a large number of polymorphic SNP markers across each sub-population, ranging from 3,159 in the vintage accessions to 6,234 in the cultivated cherry accessions. Visualization of minor allele frequency revealed regions of the genome that distinguished three representative sub-populations of cultivated tomato (processing, fresh market, and vintage), particularly on chromosomes 2, 4, 5, 6, and 11. The PCA loadings and F st outlier analysis between these three sub-populations identified a large number of candidate loci under positive selection on chromosomes 4, 5, and 11. The extent of linkage disequilibrium (LD) was examined within each chromosome for these sub-populations. LD decay varied between chromosomes and sub-populations, with large differences reflective of breeding history. For example, on chromosome 11, decay occurred over 0.8 cM for processing accessions and over 19.7 cM for fresh market accessions. The observed SNP variation and LD decay suggest that different patterns of genetic variation in cultivated tomato are due to introgression from wild species and selection for market specialization.  相似文献   

8.

Background  

The volume of data available on genetic variations has increased considerably with the recent development of high-density, single-nucleotide polymorphism (SNP) arrays. Several software programs have been developed to assist researchers in the analysis of this huge amount of data, but few can rely upon a whole genome variability visualisation system that could help data interpretation.  相似文献   

9.
通过对小麦耐低磷相关性状进行全基因组关联分析(GWAS,genome-wide association study),挖掘与小麦耐低磷性显著相关的单核苷酸多态性标记(SNP,single nucleotide polymorphism)位点及候选基因,为小麦耐低磷性状的遗传基础和分子机制研究提供理论参考。本试验以198份黄淮麦区小麦品种(系)为试验材料,设置低磷和正常磷营养液水培试验,利用小麦35K芯片对分布于小麦全基因组的11896个SNP,采用Q+K关联模型对小麦耐低磷性相关性状进行关联分析。结果表明,小麦耐低磷性状表现出广泛的表型变异,变异系数为15.65%~26.59%,多态性信息含量(PIC,polymorphic information content)为0.095~0.500。群体结构分析表明,试验所用自然群体可分为2个亚群,GWAS共检测到67个与小麦耐低磷相关性状显著关联的SNP位点(P≤0.001),这些位点分布在除3A、3B和3D以外的18条染色体上,单个SNP位点可解释5.826%~9.552%的表型变异。在这些显著位点中有4个SNP位点同时关联到了2个不同的耐低磷性状。对67个SNP位点进行发掘,筛选到7个可能与小麦耐低磷性有关的候选基因。TraesCS6A02G001000和TraesCS6A02G001100在锌指合成中有重要作用;TraesCS6A02G118100可能为低磷胁迫诱导基因;TraesCS5D02G536400、TraesCS1B02G154200和TraesCS5D02G536500与低磷胁迫相关酶类基因家族有关;TraesCS1D02G231200与植物DUF 538结构域蛋白有关,是植物胁迫相关调控蛋白候选基因。  相似文献   

10.
Many exome sequencing studies of Mendelian disorders fail to optimally exploit family information. Classical genetic linkage analysis is an effective method for eliminating a large fraction of the candidate causal variants discovered, even in small families that lack a unique linkage peak. We demonstrate that accurate genetic linkage mapping can be performed using SNP genotypes extracted from exome data, removing the need for separate array-based genotyping. We provide software to facilitate such analyses.  相似文献   

11.
At present there is tremendous interest in characterizing the magnitude and distribution of linkage disequilibrium (LD) throughout the human genome, which will provide the necessary foundation for genome-wide LD analyses and facilitate detailed evolutionary studies. To this end, a human high-density single-nucleotide polymorphism (SNP) marker map has been constructed. Many of the SNPs on this map, however, were identified by sampling a small number of chromosomes from a single population, and inferences drawn from studies using such SNPs may be influenced by ascertainment bias (AB). Through extensive simulations, we have found that AB is a potentially significant problem in estimating and comparing LD within and between populations. Specifically, the magnitude of AB is a function of the SNP discovery strategy, number of chromosomes used for SNP discovery, population genetic characteristics of the particular genomic region considered, amount of gene flow between populations, and demographic history of the populations. We demonstrate that a balanced SNP discovery strategy (where equal numbers of chromosomes are sampled from multiple subpopulations) is the optimal study design for generating broadly applicable SNP resources. Finally, we validate our theoretical predictions by comparing our results to publicly available data from ten genes sequenced in 24 African American and 23 European American individuals.  相似文献   

12.
We have developed a software analysis package, HapScope, which includes a comprehensive analysis pipeline and a sophisticated visualization tool for analyzing functionally annotated haplotypes. The HapScope analysis pipeline supports: (i) computational haplotype construction with an expectation-maximization or Bayesian statistical algorithm; (ii) SNP classification by protein coding change, homology to model organisms or putative regulatory regions; and (iii) minimum SNP subset selection by either a Brute Force Algorithm or a Greedy Partition Algorithm. The HapScope viewer displays genomic structure with haplotype information in an integrated environment, providing eight alternative views for assessing genetic and functional correlation. It has a user-friendly interface for: (i) haplotype block visualization; (ii) SNP subset selection; (iii) haplotype consolidation with subset SNP markers; (iv) incorporation of both experimentally determined haplotypes and computational results; and (v) data export for additional analysis. Comparison of haplotypes constructed by the statistical algorithms with those determined experimentally shows variation in haplotype prediction accuracies in genomic regions with different levels of nucleotide diversity. We have applied HapScope in analyzing haplotypes for candidate genes and genomic regions with extensive SNP and genotype data. We envision that the systematic approach of integrating functional genomic analysis with population haplotypes, supported by HapScope, will greatly facilitate current genetic disease research.  相似文献   

13.
We have previously shown that linkage disequilibrium (LD) in the elite cultivated barley (Hordeum vulgare) gene pool extends, on average, for <1-5 cM. Based on this information, we have developed a platform for whole genome association studies that comprises a collection of elite lines that we have characterized at 3060 genome-wide single nucleotide polymorphism (SNP) marker loci. Interrogating this data set shows that significant population substructure is present within the elite gene pool and that diversity and LD vary considerably across each of the seven barley chromosomes. However, we also show that a subpopulation comprised of only the two-rowed spring germplasm is less structured and well suited to whole genome association studies without the need for extensive statistical intervention to account for structure. At the current marker density, the two-rowed spring population is suited for fine mapping simple traits that are located outside of the genetic centromeres with a resolution that is sufficient for candidate gene identification by exploiting conservation of synteny with fully sequenced model genomes and the emerging barley physical map.  相似文献   

14.
General parameters of selection, such as the frequency and strength of positive selection in natural populations or the role of introgression, are still insufficiently understood. The house mouse (Mus musculus) is a particularly well-suited model system to approach such questions, since it has a defined history of splits into subspecies and populations and since extensive genome information is available. We have used high-density single-nucleotide polymorphism (SNP) typing arrays to assess genomic patterns of positive selection and introgression of alleles in two natural populations of each of the subspecies M. m. domesticus and M. m. musculus. Applying different statistical procedures, we find a large number of regions subject to apparent selective sweeps, indicating frequent positive selection on rare alleles or novel mutations. Genes in the regions include well-studied imprinted loci (e.g. Plagl1/Zac1), homologues of human genes involved in adaptations (e.g. alpha-amylase genes) or in genetic diseases (e.g. Huntingtin and Parkin). Haplotype matching between the two subspecies reveals a large number of haplotypes that show patterns of introgression from specific populations of the respective other subspecies, with at least 10% of the genome being affected by partial or full introgression. Using neutral simulations for comparison, we find that the size and the fraction of introgressed haplotypes are not compatible with a pure migration or incomplete lineage sorting model. Hence, it appears that introgressed haplotypes can rise in frequency due to positive selection and thus can contribute to the adaptive genomic landscape of natural populations. Our data support the notion that natural genomes are subject to complex adaptive processes, including the introgression of haplotypes from other differentiated populations or species at a larger scale than previously assumed for animals. This implies that some of the admixture found in inbred strains of mice may also have a natural origin.  相似文献   

15.
T Areshchenkova  M W Ganal 《Génome》1999,42(3):536-544
Microsatellites as genetic markers are used in many crop plants. Major criteria for their usability as molecular markers include that they are highly polymorphic and evenly spread throughout a genome. In tomato, it has been reported that long arrays of tetranucleotide microsatellites containing the motif GATA are highly clustered around the centromeres of all chromosomes. In this study, we have isolated tomato microsatellites containing long arrays (> 20 repeats) of the dinucleotide motifs GA, GT, AT, as well as GATA, assessed their variability within Lycopersicon esculentum varieties and mapped them onto a genetic map of tomato. The investigated microsatellite markers exhibited between 1 and 5 alleles in a diverse set of L. esculentum lines. Mapping of the microsatellites onto the genetic map of tomato demonstrates that, as previously shown, GATA microsatellites are highly clustered in the regions of the tomato centromeres. Interestingly, the same centromeric location was now found for long dinucleotide microsatellite markers. Because of this uneven distribution, genetic mapping of the entire tomato genome using long dinucleotide microsatellites will be very difficult to achieve and microsatellite markers with shorter arrays of microsatellites could be more suitable for mapping experiments albeit their lower level of polymorphism. Some microsatellite markers described in this study might provide a useful tool to study the molecular structure of tomato centromeric regions and for variety identification.  相似文献   

16.
Based on EST sequences, fragments of 37 genes have been amplified and sequenced in two inbred lines of sugar beet. The rate of single nucleotide polymorphisms (SNP) corresponded to 1 every 130 bp, with an average (nucleotide diversity) value of 7.6×10–3. When extrapolated to the whole sugar beet genome, randomly compared lines differ at 5.4×106 SNPs in the genetic pool considered. In a wider search for SNP-related polymorphisms, 96 fragments of expressed genes were scanned with SSCP (single-strand conformation polymorphism) and heteroduplex (HA) analyses in 8 inbred lines. One SSCP or HA polymorphism was found every 1,470 bp of amplified DNA, corresponding to 5×105 SSCP or HA loci in the whole genome. This frequency, 11 times lower than the SNP rate, was attributed to the high frequency of base pair substitution along the amplified fragment analysed electrophoretically. Therefore nucleotide variability was further studied by sequencing fragments of 10 genes in the same 8 lines. The results indicate that sugar beet alleles of expressed genes are very frequently organized as robust intragene haplotypes. In the 8 lines analysed, two haplotypes were identified for each of three gene fragments, three haplotypes for six gene fragments and four haplotypes for one gene fragment which is in good correspondence with the number of alleles detected by SSCP and HA analysis. In a cross between two lines, SSCP or HA alleles of expressed genes have 54% probability to be different.  相似文献   

17.
Lu Y  Shah T  Hao Z  Taba S  Zhang S  Gao S  Liu J  Cao M  Wang J  Prakash AB  Rong T  Xu Y 《PloS one》2011,6(9):e24861
Understanding of genetic diversity and linkage disequilibrium (LD) decay in diverse maize germplasm is fundamentally important for maize improvement. A total of 287 tropical and 160 temperate inbred lines were genotyped with 1943 single nucleotide polymorphism (SNP) markers of high quality and compared for genetic diversity and LD decay using the SNPs and their haplotypes developed from genic and intergenic regions. Intronic SNPs revealed a substantial higher variation than exonic SNPs. The big window size haplotypes (3-SNP slide-window covering 2160 kb on average) revealed much higher genetic diversity than the 10 kb-window and gene-window haplotypes. The polymorphic information content values revealed by the haplotypes (0.436-0.566) were generally much higher than individual SNPs (0.247-0.259). Cluster analysis classified the 447 maize lines into two major groups, corresponding to temperate and tropical types. The level of genetic diversity and subpopulation structure were associated with the germplasm origin and post-domestication selection. Compared to temperate lines, the tropical lines had a much higher level of genetic diversity with no significant subpopulation structure identified. Significant variation in LD decay distance (2-100 kb) was found across the genome, chromosomal regions and germplasm groups. The average of LD decay distance (10-100 kb) in the temperate germplasm was two to ten times larger than that in the tropical germplasm (5-10 kb). In conclusion, tropical maize not only host high genetic diversity that can be exploited for future plant breeding, but also show rapid LD decay that provides more opportunity for selection.  相似文献   

18.
ALOHOMORA: a tool for linkage analysis using 10K SNP array data   总被引:9,自引:0,他引:9  
SUMMARY: ALOHOMORA is a software tool designed to facilitate genome-wide linkage studies performed with high-density single nucleotide polymorphism (SNP) marker panels such as the Affymetrix GeneChip(R) Human Mapping 10K Array. Genotype data are converted into appropriate formats for a number of common linkage programs and subjected to standard quality control routines before linkage runs are started. ALOHOMORA is written in Perl and may be used to perform state-of-the-art linkage scans in small and large families with any genetic model. Options for using different genetic maps or ethnicity-specific allele frequencies are implemented. Graphic outputs of whole-genome multipoint LOD score values are provided for the entire dataset as well as for individual families. AVAILABILITY: ALOHOMORA is available free of charge for non-commercial research institutions. For more details, see http://gmc.mdc-berlin.de/alohomora/  相似文献   

19.
The duplicated and the highly repetitive nature of the maize genome has historically impeded the development of true single nucleotide polymorphism (SNP) markers in this crop. Recent advances in genome complexity reduction methods coupled with sequencing-by-synthesis technologies permit the implementation of efficient genome-wide SNP discovery in maize. In this study, we have applied Complexity Reduction of Polymorphic Sequences technology (Keygene N.V., Wageningen, The Netherlands) for the identification of informative SNPs between two genetically distinct maize inbred lines of North and South American origins. This approach resulted in the discovery of 1,123 putative SNPs representing low and single copy loci. In silico and experimental (Illumina GoldenGate (GG) assay) validation of putative SNPs resulted in mapping of 604 markers, out of which 188 SNPs represented 43 haplotype blocks distributed across all ten chromosomes. We have determined and clearly stated a specific combination of stringent criteria (>0.3 minor allele frequency, >0.8 GenTrainScore and >0.5 Chi_test100 score) necessary for the identification of highly polymorphic and genetically stable SNP markers. Due to these criteria, we identified a subset of 120 high-quality SNP markers to leverage in GG assay-based marker-assisted selection projects. A total of 32 high-quality SNPs represented 21 haplotypes out of 43 identified in this study. The information on the selection criteria of highly polymorphic SNPs in a complex genome such as maize and the public availability of these SNP assays will be of great value for the maize molecular genetics and breeding community.  相似文献   

20.
Haplotype reconstruction from SNP fragments by minimum error correction   总被引:5,自引:0,他引:5  
MOTIVATION: Haplotype reconstruction based on aligned single nucleotide polymorphism (SNP) fragments is to infer a pair of haplotypes from localized polymorphism data gathered through short genome fragment assembly. An important computational model of this problem is the minimum error correction (MEC) model, which has been mentioned in several literatures. The model retrieves a pair of haplotypes by correcting minimum number of SNPs in given genome fragments coming from an individual's DNA. RESULTS: In the first part of this paper, an exact algorithm for the MEC model is presented. Owing to the NP-hardness of the MEC model, we also design a genetic algorithm (GA). The designed GA is intended to solve large size problems and has very good performance. The strength and weakness of the MEC model are shown using experimental results on real data and simulation data. In the second part of this paper, to improve the MEC model for haplotype reconstruction, a new computational model is proposed, which simultaneously employs genotype information of an individual in the process of SNP correction, and is called MEC with genotype information (shortly, MEC/GI). Computational results on extensive datasets show that the new model has much higher accuracy in haplotype reconstruction than the pure MEC model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号