首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 603 毫秒
1.
Segmental duplications and copy-number variation in the human genome   总被引:33,自引:0,他引:33       下载免费PDF全文
The human genome contains numerous blocks of highly homologous duplicated sequence. This higher-order architecture provides a substrate for recombination and recurrent chromosomal rearrangement associated with genomic disease. However, an assessment of the role of segmental duplications in normal variation has not yet been made. On the basis of the duplication architecture of the human genome, we defined a set of 130 potential rearrangement hotspots and constructed a targeted bacterial artificial chromosome (BAC) microarray (with 2,194 BACs) to assess copy-number variation in these regions by array comparative genomic hybridization. Using our segmental duplication BAC microarray, we screened a panel of 47 normal individuals, who represented populations from four continents, and we identified 119 regions of copy-number polymorphism (CNP), 73 of which were previously unreported. We observed an equal frequency of duplications and deletions, as well as a 4-fold enrichment of CNPs within hotspot regions, compared with control BACs (P < .000001), which suggests that segmental duplications are a major catalyst of large-scale variation in the human genome. Importantly, segmental duplications themselves were also significantly enriched >4-fold within regions of CNP. Almost without exception, CNPs were not confined to a single population, suggesting that these either are recurrent events, having occurred independently in multiple founders, or were present in early human populations. Our study demonstrates that segmental duplications define hotspots of chromosomal rearrangement, likely acting as mediators of normal variation as well as genomic disease, and it suggests that the consideration of genomic architecture can significantly improve the ascertainment of large-scale rearrangements. Our specialized segmental duplication BAC microarray and associated database of structural polymorphisms will provide an important resource for the future characterization of human genomic disorders.  相似文献   

2.
Copy-number variants (CNVs) can reach appreciable frequencies in the human population, and recent discoveries have shown that several of these copy-number polymorphisms (CNPs) are associated with human diseases, including lupus, psoriasis, Crohn disease, and obesity. Despite new advances, significant biases remain in terms of CNP discovery and genotyping. We developed a method based on single-channel intensity data and benchmarked against copy numbers determined from sequencing read depth to successfully obtain CNP genotypes for 1495 CNPs from 487 human DNA samples of diverse ethnic backgrounds. This microarray contained CNPs in segmental duplication-rich regions and insertions of sequences not represented in the reference genome assembly or on standard SNP microarray platforms. We observe that CNPs in segmental duplications are more likely to be population differentiated than CNPs in unique regions (p = 0.015) and that biallelic CNPs show greater stratification when compared to frequency-matched SNPs (p = 0.0026). Although biallelic CNPs show a strong correlation of copy number with flanking SNP genotypes, the majority of multicopy CNPs do not (40% with r > 0.8). We selected a subset of CNPs for further characterization in 1876 additional samples from 62 populations; this revealed striking population-differentiated structural variants in genes of clinical significance such as OCLN, a tight junction protein involved in hepatitis C viral entry. Our microarray design allows these variants to be rapidly tested for disease association and our results suggest that CNPs (especially those that cannot be imputed from SNP genotypes) might have contributed disproportionately to human diversity and selection.  相似文献   

3.
The genotyping of closely spaced single-nucleotide polymorphism (SNP) markers frequently yields highly correlated data, owing to extensive linkage disequilibrium (LD) between markers. The extent of LD varies widely across the genome and drives the number of frequent haplotypes observed in small regions. Several studies have illustrated the possibility that LD or haplotype data could be used to select a subset of SNPs that optimize the information retained in a genomic region while reducing the genotyping effort and simplifying the analysis. We propose a method based on the spectral decomposition of the matrices of pairwise LD between markers, and we select markers on the basis of their contributions to the total genetic variation. We also modify Clayton's "haplotype tagging SNP" selection method, which utilizes haplotype information. For both methods, we propose sliding window-based algorithms that allow the methods to be applied to large chromosomal regions. Our procedures require genotype information about a small number of individuals for an initial set of SNPs and selection of an optimum subset of SNPs that could be efficiently genotyped on larger numbers of samples while retaining most of the genetic variation in samples. We identify suitable parameter combinations for the procedures, and we show that a sample size of 50-100 individuals achieves consistent results in studies of simulated data sets in linkage equilibrium and LD. When applied to experimental data sets, both procedures were similarly effective at reducing the genotyping requirement while maintaining the genetic information content throughout the regions. We also show that haplotype-association results that Hosking et al. obtained near CYP2D6 were almost identical before and after marker selection.  相似文献   

4.
5.

Background  

Copy number variations (CNVs) and polymorphisms (CNPs) have only recently gained the genetic community's attention. Conservative estimates have shown that CNVs and CNPs might affect more than 10% of the genome and that they may be at least as important as single nucleotide polymorphisms in assessing human variability. Widely used tools for CNP analysis have been implemented in Birdsuite and PLINK for the purpose of conducting genetic association studies based on the unpartitioned total number of CNP copies provided by the intensities from Affymetrix's Genome-Wide Human SNP Array. Here, we are interested in partitioning copy number variations and polymorphisms in extended pedigrees for the purpose of linkage analysis on familial data.  相似文献   

6.
Significant interest has emerged in mapping genetic susceptibility for complex traits through whole-genome association studies. These studies rely on the extent of association, i.e., linkage disequilibrium (LD), between single nucleotide polymorphisms (SNPs) across the human genome. LD describes the nonrandom association between SNP pairs and can be used as a metric when designing maximally informative panels of SNPs for association studies in human populations. Using data from the 1.58 million SNPs genotyped by Perlegen, we explored the allele frequency dependence of the LD statistic r(2) both empirically and theoretically. We show that average r(2) values between SNPs unmatched for allele frequency are always limited to much less than 1 (theoretical approximately 0.46 to 0.57 for this dataset). Frequency matching of SNP pairs provides a more sensitive measure for assessing the average decay of LD and generates average r(2) values across nearly the entire informative range (from 0 to 0.89 through 0.95). Additionally, we analyzed the extent of perfect LD (r(2) = 1.0) using frequency-matched SNPs and found significant differences in the extent of LD in genic regions versus intergenic regions. The SNP pairs exhibiting perfect LD showed a significant bias for derived, nonancestral alleles, providing evidence for positive natural selection in the human genome.  相似文献   

7.
Genome structural variation shows remarkable complexity with respect to copy number, sequence content and distribution. While the discovery of copy number polymorphisms (CNP) has increased exponentially in recent years, the transition from discovery to genotyping has proved challenging, particularly for CNPs embedded in complex regions of the genome. CNPs that are collectively common in the population and possess a dynamic range of copy numbers have proved the most difficult to genotype in association studies. This is in some part due to technical limitations of genotyping assays and the sequence properties of the genomic region being analyzed. Here we describe in detail the basis of a number of molecular techniques used to genotype complex CNPs, compare and contrast these approaches for determination of multi-allelic copy number, and discuss the potential application of these techniques in genetic studies.  相似文献   

8.
We propose a simple model of evolution at a pair of SNP loci, under mutation, genetic drift and recombination. The developed model allows to consider evolution of SNPs under different demographic scenarios. We applied it to SNP data containing polymorphisms spanning 19 gene regions. We initially matched the linkage disequilibrium (LD) data only, and then we reconciled both LD and heterozygosity data. The imbalance between LD and heterozygosity data, observed for some of the analyzed genomic regions, may be a signature of selection acting in these regions. However, assuming neutrality, we obtain estimates of the age of population expansion of modern humans, which are consistent with the consensus estimates. In addition, we are able to estimate the ages of the polymorphisms observed in different genomic regions and we find that they vary widely with respect to their age. Polymorphisms at loci implicated in human disease, seem to be younger than average. Our results supplement the conclusions originally obtained by Reich and co-workers for the same set of data.  相似文献   

9.
Lee JA  Lupski JR 《Neuron》2006,52(1):103-121
Genomic disorders are a group of human genetic diseases caused by genomic rearrangements resulting in copy-number variation (CNV) affecting a dosage-sensitive gene or genes critical for normal development or maintenance. These disorders represent a wide range of clinically distinct entities but include many diseases affecting nervous system function. Herein, we review selected neurodevelopmental, neurodegenerative, and psychiatric disorders either known or suggested to be caused by genomic rearrangement and CNV. Further, we emphasize the cause-and-effect relationship between gene CNV and complex disease traits. We also discuss the prevalence and heritability of CNV, the correlation between CNV and higher-order genome architecture, and the heritability of personality, behavioral, and psychiatric traits. We speculate that CNV could underlie a significant proportion of normal human variation including differences in cognitive, behavioral, and psychological features.  相似文献   

10.
Segmental copy-number polymorphisms (CNPs) represent a significant component of human genetic variation and are likely to contribute to disease susceptibility. These potentially multiallelic and highly polymorphic systems present new challenges to family-based genetic-analysis tools that commonly assume codominant markers and allow for no genotyping error. The copy-number quantitation (CNP phenotype) represents the total number of segmental copies present in an individual and provides a means to infer, rather than to observe, the underlying allele segregation. We present an integrated approach to meet these challenges, in the form of a graphical model in which we infer the underlying CNP phenotype from the (single or replicate) quantitative measure within the analysis while assuming an allele-based system segregating through the pedigree. This approach can be readily applied to the study of any form of genetic measure, and the construction permits extension to a wide variety of hypothesis tests. We have implemented the basic model for use with nuclear families, and we illustrate its application through an analysis of the CNP located in gene CCL3L1 in 201 families with asthma.  相似文献   

11.
Kostem E  Lozano JA  Eskin E 《Genetics》2011,188(2):449-460
Genome-wide association studies (GWASs) have been effectively identifying the genomic regions associated with a disease trait. In a typical GWAS, an informative subset of the single-nucleotide polymorphisms (SNPs), called tag SNPs, is genotyped in case/control individuals. Once the tag SNP statistics are computed, the genomic regions that are in linkage disequilibrium (LD) with the most significantly associated tag SNPs are believed to contain the causal polymorphisms. However, such LD regions are often large and contain many additional polymorphisms. Following up all the SNPs included in these regions is costly and infeasible for biological validation. In this article we address how to characterize these regions cost effectively with the goal of providing investigators a clear direction for biological validation. We introduce a follow-up study approach for identifying all untyped associated SNPs by selecting additional SNPs, called follow-up SNPs, from the associated regions and genotyping them in the original case/control individuals. We introduce a novel SNP selection method with the goal of maximizing the number of associated SNPs among the chosen follow-up SNPs. We show how the observed statistics of the original tag SNPs and human genetic variation reference data such as the HapMap Project can be utilized to identify the follow-up SNPs. We use simulated and real association studies based on the HapMap data and the Wellcome Trust Case Control Consortium to demonstrate that our method shows superior performance to the correlation- and distance-based traditional follow-up SNP selection approaches. Our method is publicly available at http://genetics.cs.ucla.edu/followupSNPs.  相似文献   

12.

Background

Tandem repeat variation in protein-coding regions will alter protein length and may introduce frameshifts. Tandem repeat variants are associated with variation in pathogenicity in bacteria and with human disease. We characterized tandem repeat polymorphism in human proteins, using the UniGene database, and tested whether these were associated with host defense roles.

Results

Protein-coding tandem repeat copy-number polymorphisms were detected in 249 tandem repeats found in 218 UniGene clusters; observed length differences ranged from 2 to 144 nucleotides, with unit copy lengths ranging from 2 to 57. This corresponded to 1.59% (218/13,749) of proteins investigated carrying detectable polymorphisms in the copy-number of protein-coding tandem repeats. We found no evidence that tandem repeat copy-number polymorphism was significantly elevated in defense-response proteins (p = 0.882). An association with the Gene Ontology term 'protein-binding' remained significant after covariate adjustment and correction for multiple testing. Combining this analysis with previous experimental evaluations of tandem repeat polymorphism, we estimate the approximate mean frequency of tandem repeat polymorphisms in human proteins to be 6%. Because 13.9% of the polymorphisms were not a multiple of three nucleotides, up to 1% of proteins may contain frameshifting tandem repeat polymorphisms.

Conclusion

Around 1 in 20 human proteins are likely to contain tandem repeat copy-number polymorphisms within coding regions. Such polymorphisms are not more frequent among defense-response proteins; their prevalence among protein-binding proteins may reflect lower selective constraints on their structural modification. The impact of frameshifting and longer copy-number variants on protein function and disease merits further investigation.  相似文献   

13.
Despite the importance of soybean as a major crop, genome-wide variation and evolution of cultivated soybeans are largely unknown. Here, we catalogued genome variation in an annual soybean population by high-depth resequencing of 10 cultivated and 6 wild accessions and obtained 3.87 million high-quality single-nucleotide polymorphisms (SNPs) after excluding the sites with missing data in any accession. Nuclear genome phylogeny supported a single origin for the cultivated soybeans. We identified 10-fold longer linkage disequilibrium (LD) in the wild soybean relative to wild maize and rice. Despite the small population size, the long LD and large SNP data allowed us to identify 206 candidate domestication regions with significantly lower diversity in the cultivated, but not in the wild, soybeans. Some of the genes in these candidate regions were associated with soybean homologues of canonical domestication genes. However, several examples, which are likely specific to soybean or eudicot crop plants, were also observed. Consequently, the variation data identified in this study should be valuable for breeding and for identifying agronomically important genes in soybeans. However, the long LD of wild soybeans may hinder pinpointing causal gene(s) in the candidate regions.  相似文献   

14.
Copy-number polymorphisms: mining the tip of an iceberg   总被引:5,自引:0,他引:5  
Copy-number polymorphisms (CNPs) represent a greatly underestimated aspect of human genetic variation. Recently, two landmark studies reported genome-wide analyses of CNPs in normal individuals and represent the beginning of an understanding of this type of large-scale variation. Future array-CGH-based CNP analyses should include standard criteria on a common microarray platform. It is only when parallel analyses of CNPs and SNPs are performed in an integrated format that we will obtain a global picture of our genetic diversity.  相似文献   

15.
Interpreting the genomic and phenotypic consequences of copy-number variation (CNV) is essential to understanding the etiology of genetic disorders. Whereas deletion CNVs lead obviously to haploinsufficiency, duplications might cause disease through triplosensitivity, gene disruption, or gene fusion at breakpoints. The mutational spectrum of duplications has been studied at certain loci, and in some cases these copy-number gains are complex chromosome rearrangements involving triplications and/or inversions. However, the organization of clinically relevant duplications throughout the genome has yet to be investigated on a large scale. Here we fine-mapped 184 germline duplications (14.7 kb–25.3 Mb; median 532 kb) ascertained from individuals referred for diagnostic cytogenetics testing. We performed next-generation sequencing (NGS) and whole-genome sequencing (WGS) to sequence 130 breakpoints from 112 subjects with 119 CNVs and found that most (83%) were tandem duplications in direct orientation. The remainder were triplications embedded within duplications (8.4%), adjacent duplications (4.2%), insertional translocations (2.5%), or other complex rearrangements (1.7%). Moreover, we predicted six in-frame fusion genes at sequenced duplication breakpoints; four gene fusions were formed by tandem duplications, one by two interconnected duplications, and one by duplication inserted at another locus. These unique fusion genes could be related to clinical phenotypes and warrant further study. Although most duplications are positioned head-to-tail adjacent to the original locus, those that are inverted, triplicated, or inserted can disrupt or fuse genes in a manner that might not be predicted by conventional copy-number assays. Therefore, interpreting the genetic consequences of duplication CNVs requires breakpoint-level analysis.  相似文献   

16.
SNP microarray analysis for genome-wide detection of crossover regions   总被引:4,自引:0,他引:4  
There is a great deal of interest in understanding the non-random distribution of recombination events over the human genome, because it has important implications for using linkage disequilibrium (LD) to identify human disease genes. So far, only a few recombination hotspots in the human genome have been characterised and the identification of new crossover hotspots will contribute to a better understanding of the mechanisms that govern their formation and distribution. This study shows that high-density single nucleotide polymorphism (SNP) arrays, together with the presented analysis method, are an appropriate tool for generating a whole-genome recombination pattern and for detecting new crossover regions with enhanced recombination frequency. Based on the genotype data of 16 members of a Caucasian three-generation family, we identified 825 crossover regions. The average recombination frequency of females and males was 0.77 and 0.56 cM/Mb, respectively. We detected 24 crossover regions showing elevated recombination activity, which comprised known hotspots, like the MHC II region, confirming the non-random distribution of recombination events along the genome. Interestingly, 29.2% of the identified crossover hotspot regions overlapped with regions flanked by segmental duplications published by Bailey et al. (Science 297:1003–1007, 2002) suggesting that segmental duplications and crossover hotspot regions are mechanistically linked. By extrapolating the results of the present study, we conclude that it might be feasible, at least in part, to estimate to what extent the block-like pattern of LD exactly relies on the genome-wide crossover pattern using the next generation high-density SNP microarrays.Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

17.
Rearrangements of the genome can be detected by microarray methods and massively parallel sequencing, which identify copy-number alterations and breakpoint junctions, but these techniques are poorly suited to reconstructing the long-range organization of rearranged chromosomes, for example, to distinguish between translocations and insertions. The single-DNA-molecule technique HAPPY mapping is a method for mapping normal genomes that should be able to analyse genome rearrangements, i.e. deviations from a known genome map, to assemble rearrangements into a long-range map. We applied HAPPY mapping to cancer cell lines to show that it could identify rearrangement of genomic segments, even in the presence of normal copies of the genome. We could distinguish a simple interstitial deletion from a copy-number loss at an inversion junction, and detect a known translocation. We could determine whether junctions detected by sequencing were on the same chromosome, by measuring their linkage to each other, and hence map the rearrangement. Finally, we mapped an uncharacterized reciprocal translocation in the T-47D breast cancer cell line to about 2 kb and hence cloned the translocation junctions. We conclude that HAPPY mapping is a versatile tool for determining the structure of rearrangements in the human genome.  相似文献   

18.
Genomic rearrangements can result in losses, amplifications, translocations and inversions of DNA fragments thereby modifying genome architecture, and potentially having clinical consequences. Many genomic disorders caused by structural variation have initially been uncovered by early cytogenetic methods. The last decade has seen significant progression in molecular cytogenetic techniques, allowing rapid and precise detection of structural rearrangements on a whole-genome scale. The high resolution attainable with these recently developed techniques has also uncovered the role of structural variants in normal genetic variation alongside single-nucleotide polymorphisms (SNPs). We describe how array-based comparative genomic hybridisation, SNP arrays, array painting and next-generation sequencing analytical methods (read depth, read pair and split read) allow the extensive characterisation of chromosome rearrangements in human genomes.  相似文献   

19.
20.
Recent studies have shown that the human genome has a haplotype block structure such that it can be decomposed into large blocks with high linkage disequilibrium (LD) and relatively limited haplotype diversity, separated by short regions of low LD. One of the practical implications of this observation is that only a small fraction of all the single-nucleotide polymorphisms (SNPs) (referred as "tag SNPs") can be chosen for mapping genes responsible for human complex diseases, which can significantly reduce genotyping effort, without much loss of power. Algorithms have been developed to partition haplotypes into blocks with the minimum number of tag SNPs for an entire chromosome. In practice, investigators may have limited resources, and only a certain number of SNPs can be genotyped. In the present article, we first formulate this problem as finding a block partition with a fixed number of tag SNPs that can cover the maximal percentage of the whole genome, and we then develop two dynamic programming algorithms to solve this problem. The algorithms are sufficiently flexible to permit knowledge of functional polymorphisms to be considered. We apply the algorithms to a data set of SNPs on human chromosome 21, combining the information of coding and noncoding regions. We study the density of SNPs in intergenic regions, introns, and exons, and we find that the SNP density in intergenic regions is similar to that in introns and is higher than that in exons, results that are consistent with previous studies. We also calculate the distribution of block break points in intergenic regions, genes, exons, and coding regions and do not find any significant differences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号