首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 265 毫秒
1.
黄病毒能引起严重的人类疾病,但是并无特定药物来治疗病毒感染。黄病毒非结构蛋白NS3的N端区域及其辅因子NS2B构成蛋白酶,该酶切割病毒的多聚蛋白形成成熟的结构蛋白和非结构蛋白来帮助病毒完成增殖过程。NS2B-NS3pro蛋白酶在黄病毒生命周期中起关键的作用,使之成为抗病毒药物研发的重要靶标。本文综述了黄病毒属中寨卡病毒、登革热病毒、西尼罗病毒的NS2B-NS3pro蛋白酶结构的研究进展,并介绍了相关抑制剂与蛋白酶形成的复合物结构,以期为研发抗黄病毒药物提供必要的参考。  相似文献   

2.
【目的】圣路易斯脑炎病毒(St. Louis encephalitis virus,SLEV)属于黄病毒科,是一种单股正链RNA病毒。黄病毒编码的非结构蛋白NS3在病毒复制以及多聚蛋白加工过程中起着重要作用,NS2B是其发挥作用的重要辅助因子。因此,NS2B-NS3蛋白酶复合物是抗病毒药物的重要靶标。本研究旨在构建SLEV NS2B-NS3蛋白酶的原核表达系统并建立其抑制剂的高通量筛选方法,从而发现其小分子抑制剂。【方法】通过PCR扩增SLEVNS2B-NS3蛋白的编码区,构建原核表达质粒;在大肠杆菌BL21(DE3)中,经异丙基硫代半乳糖苷(Isopropyl β-D-thiogalactoside)诱导得到可溶性的NS2B-NS3蛋白,并用镍亲和层析方法进行纯化;基于荧光共振能量转移(Fluorescence resonance energy transfer)技术检测NS2B-NS3蛋白酶活性,建立其抑制剂的高通量筛选平台。【结果】SLEV NS2B-NS3蛋白酶纯化程度高达95%以上,基于酶活测定的抑制剂筛选平台准确可行。对700多个上市药物进行筛选后,发现原花青素对SLEVNS2B-NS3蛋白酶具有明显的抑制活性。【结论】本研究为SLEVNS2B-NS3蛋白酶抑制剂提供了一种操作方便、高通量的筛选方法,并首次发现了原花青素具有抑制SLEV NS2B-NS3蛋白酶活性的功能,可以作为治疗SLEV感染的潜在靶向药物。  相似文献   

3.
登革病毒非结构蛋白NS3是一种多功能蛋白,N端具有Ser蛋白酶活性,C端具有RNA解旋酶及NTP磷酸酶、5'RNA-Z磷酸酶等活性,参与病毒前体的加工和病毒RNA的复制及基因组RNA的5’端加帽。NS3具有良好的免疫原性,存在多个登革病毒特异性CD4^ ,CD8^ T细胞表位,且多具有型间交叉免疫特性。登革病毒非结构蛋白NS3已成为有吸引力的抗病毒靶标。  相似文献   

4.
寨卡病毒在南美洲的突然爆发引起了公共健康威胁。然而目前并无针对性的疫苗和抗病毒药物防治寨卡病毒感染。寨卡病毒蛋白酶NS2B-NS3是病毒复制所需的核心酶,是最好的潜在药物靶点。针对其结构和功能研究,对深入了解病毒的复制和研发抗感染药物十分重要。本研究介绍了近期寨卡病毒蛋白酶结构研究的进展。  相似文献   

5.
陈江涛  张建琼 《病毒学报》2017,33(5):791-797
寨卡病毒感染与小头畸形和神经系统并发症紧密相关,甚至可能损伤男性生殖系统,引起了全球性的关注,研究其结构和致病机制以及开发有效的诊断治疗方法成为当务之急。寨卡病毒的非结构蛋白NS1是病毒与宿主相互作用的重要蛋白,在病毒复制、发病机制及免疫逃逸中起着关键作用。本文总结了寨卡病毒NS1的空间精细结构,并将其与其它黄病毒NS1进行比较。本文也分析了寨卡病毒基于NS1的致病机理,总结了NS1在疾病诊断中的应用。  相似文献   

6.
A型流感病毒NS1蛋白研究进展   总被引:1,自引:0,他引:1  
NS1蛋白是A型流感病毒的唯一的非结构蛋白,是一种RNA结合蛋白,具有重要的调节活性。NS1蛋白仅存在于病毒感染的细胞内,且在感染的早期,大量存在于细胞核中,而在感染的晚期,也可出现于细胞浆中。NS1蛋白具有RNA结合区和效应区,在抑制宿主细胞蛋白质的合成、诱导细胞凋亡和拮抗干扰素α/β的产生等方面具有重要的作用。另外,NS1蛋白在野毒感染的鉴别诊断、外源基因的载体及抗病毒药物的设计等方面,均显示了良好的应用价值。  相似文献   

7.
庚型肝炎病毒(HGV)/GB病毒C(GBV-C)疑似引起人类庚型肝炎[1~3].HGV和GBV-C为同一病毒的两个不同分离株,本文将其称为GBV-C/HGV.GBV-C/HGV属黄病毒科,为单股正链RNA病毒,全长约9.4kb.基因组中仅含有一个单一开放阅读框,编码E1、E2结构蛋白和NS2、NS3、NS4及NS5非结构蛋白.GBV-C/HGV的NS3蛋白具备丝氨酸蛋白酶活性和解旋酶活性[3],在NS3蛋白中还存在线性抗原表位[4],因此,NS3蛋白是GBV-C/HGV的重要功能蛋白.  相似文献   

8.
丙型肝炎病毒(hepatitis C virus,HCV)是一种严重危害人类健康的病原体,全球感染率约3%,中国普通人群抗HCV阳性率约3.2%。然而,到目前为止,HCV感染还没有有效的治疗方法。近年的研究发现,HCV非结构蛋白NS2在HCV感染中扮演着重要角色,具有许多重要功能。NS2可以在HCV病毒的包装过程中发挥其功能,还可调节宿主细胞的基因表达及凋亡过程。此外,NS2蛋自还可参与NS5A磷酸蛋白的高度磷酸化修饰过程及为感染性HCV病毒粒子产生所必需。本文综述近几年来关于NS2蛋白的研究进展。  相似文献   

9.
NS1蛋白(non—structural protein1)是A型流感病毒重要的非结构蛋白,作为流感病毒的致病因子,NS1通过多种方式增强病毒的致病性和毒力。就H5N1禽流感病毒NS1蛋白的结构与功能进行了综述。  相似文献   

10.
丙型肝炎是丙型肝炎病毒(HCV)感染引起的,是导致肝硬化和肝癌的主要病因。HCV感染已成为严重危害人类健康的社会公共卫生问题。HCV非结构蛋白5A是近年来HCV抑制剂研究的重要靶点及热点,本文对NS5A的三个结构域以及各个结构域在丙肝病毒复制、病毒颗粒组装及释放方面的生物学功能的研究进展进行了综述,为NS5A抑制剂作用机制的研究提供了广泛的思路,有利于对NS5A抑制剂的研制。  相似文献   

11.
The development of novel therapeutic agents is essential for combating the increasing number of cases of dengue fever in endemic countries and among a large number of travelers from non-endemic countries. The dengue virus has three structural proteins and seven non-structural (NS) proteins. NS3 is a multifunctional protein with an N-terminal protease domain (NS3pro) that is responsible for proteolytic processing of the viral polyprotein, and a C-terminal region that contains an RNA triphosphatase, RNA helicase and RNA-stimulated NTPase domain that are essential for RNA replication. The serine protease domain of NS3 plays a central role in the replicative cycle of dengue virus. This review discusses the recent structural and biological studies on the NS2B-NS3 protease-helicase and considers the prospects for the development of small molecules as antiviral drugs to target this fascinating, multifunctional protein.  相似文献   

12.
The sequences of the protease domain of the tick-borne encephalitis (TBE) virus NS3 protein have two amino acid substitutions, 16 R→K and 45 S→F, in the highly pathogenic and poorly pathogenic strains of the virus, respectively. Two models of the NS2B-NS3 protease complex for the highly pathogenic and poorly pathogenic strains of the virus were constructed by homology modeling using the crystal structure of West Nile virus NS2B-NS3 protease as a template; 20?ns molecular dynamic simulations were performed for both models, the trajectories of the dynamic simulations were compared, and the averaged distance between the two models was calculated for each residue. Conformational differences between two models were revealed in the identified pocket. The different conformations of the pocket resulted in different orientations of the NS2B segment located near the catalytic triad. In the model of the highly pathogenic TBE virus the identified pocket had a more open conformation compared to the poorly pathogenic model. We propose that conformational changes in the active protease center, caused by two amino acid substitutions, can influence enzyme functioning and the virulence of the virus.  相似文献   

13.
The sequences of the protease domain of the tick-borne encephalitis (TBE) virus NS3 protein have two amino acid substitutions, 16 R→K and 45 S→F, in the highly pathogenic and poorly pathogenic strains of the virus, respectively. Two models of the NS2B-NS3 protease complex for the highly pathogenic and poorly pathogenic strains of the virus were constructed by homology modeling using the crystal structure of West Nile virus NS2B-NS3 protease as a template; 20?ns molecular dynamic simulations were performed for both models, the trajectories of the dynamic simulations were compared, and the averaged distance between the two models was calculated for each residue. Conformational differences between two models were revealed in the identified pocket. The different conformations of the pocket resulted in different orientations of the NS2B segment located near the catalytic triad. In the model of the highly pathogenic TBE virus the identified pocket had a more open conformation compared to the poorly pathogenic model. We propose that conformational changes in the active protease center, caused by two amino acid substitutions, can influence enzyme functioning and the virulence of the virus.  相似文献   

14.
A Cahour  B Falgout    C J Lai 《Journal of virology》1992,66(3):1535-1542
The cleavage mechanism utilized for processing of the NS3-NS4A-NS4B-NS5 domain of the dengue virus polyprotein was studied by using the vaccinia virus expression system. Recombinant vaccinia viruses vNS2B-NS3-NS4A-NS4B-NS5, vNS3-NS4A-NS4B-NS5, vNS4A-NS4B-NS5, and vNS4B-NS5 were constructed. These recombinants were used to infect cells, and the labeled lysates were analyzed by immunoprecipitation. Recombinant vNS2B-NS3-NS4A-NS4B-NS5 expressed the authentic NS3 and NS5 proteins, but the other recombinants produced uncleaved polyproteins. These findings indicate that NS2B is required for processing of the downstream nonstructural proteins, including the NS3/NS4A and NS4B/NS5 junctions, both of which contain a dibasic amino acid sequence preceding the cleavage site. The flavivirus NS4A/NS4B cleavage site follows a long hydrophobic sequence. The polyprotein NS4A-NS4B-NS5 was cleaved at the NS4A/NS4B junction in the absence of other dengue virus functions. One interpretation for this finding is that NS4A/NS4B cleavage is mediated by a host protease, presumably a signal peptidase. Although vNS3-NS4A-NS4B-NS5 expressed only the polyprotein, earlier results demonstrated that cleavage at the NS4A/NS4B junction occurred when an analogous recombinant, vNS3-NS4A-84%NS4B, was expressed. Thus, it appears that uncleaved NS3 plus NS5 inhibit NS4A/NS4B cleavage presumably because the putative signal sequence is not accessible for recognition by the responsible protease. Finally, recombinants that expressed an uncleaved NS4B-NS5 polyprotein, such as vNS4A-NS4B-NS5 or vNS4B-NS5, produced NS5 when complemented with vNS2B-30%NS3 or with vNS2B plus v30%NS3. These results indicate that cleavage at the NS4B/NS5 junction can be mediated by NS2B and NS3 in trans.  相似文献   

15.
Potentially immunoactive regions of the NS1 nonstructural protein of the tick-borne encephalitis virus that can stimulate the antibody formation in vivo and protect animals from this disease were chosen on the basis of theoretical calculations. Eleven 16-to 27-aa peptides containing the chosen regions were synthesized. The ability of the free peptides (without any high-molecular-mass carrier) to stimulate the production of antipeptide antibodies in mice of three lines and ensure the formation of protective immunity was studied. Most of these peptides were shown to exhibit the immunogenic activity in a free state. Five fragments that can protect mice from the infection by a lethal dose of tick-borne encephalitis virus were found.  相似文献   

16.
Yellow fever virus is the causative agent of Yellow fever. The genome of the virus contains three structural and seven non-structural proteins. Of these seven nonstructural proteins, NS2B-NS3 protein complex has protease activity required for viral replication. Predicting the 3D structure of this complex and studying the interaction of residues at the recognized catalytic triad of the complex is an integral part to understand the virus replication mechanism. In the present study, the structure was determined for NS2B-NS3 complex by Homology modeling and modeled structure was validated for its stability. Mutation studies at the residues His94, Asp118 and Ser176 revealed that Asp118-His94 bond played an important role in the structural stability of NS2B-NS3 complex. This indicates site-directed mutagenesis, controlling YFV replication, as one mechanism to design vaccine strains. Docking studies of the bioactive compounds at the active site of NS2B-NS3 complex also indicated 4-hydroxypanduratin A as potential lead compound for drug development. The theoretical models will further pave way to experimentally verify our mutation and docking studies, thus taking a lead in pharmacogenomics and drug development.

Abbreviations

YFV - Yellow Fever Virus, WNV - West Nile Virus, H-bonds - hydrogen bonds, SNP - Single nucleotide polymorphism.  相似文献   

17.
One approach to treating the dengue virus infection is to inhibit its NS2B-NS3 protease that plays a vital role in virus maturation. However, the lack of structural information on the active conformation of the protease hindered related drug design. With a co-expression system, we obtained the active two-component protease in its unlinked form. BPTI shows strong competitive inhibitory activity (Ki = 6.5 nM) against this unlinked protease, which adopts a closed conformation. Based on the biochemical and NMR perturbation information, an inhibition model of BPTI to NS2B-NS3 protease is proposed.  相似文献   

18.
Dengue virus is endemic throughout tropical and subtropical regions, and cause severe epidemic diseases. The NS2B/NS3 protease is a promising drug target for dengue virus. Herein, we report the discovery and modification of a novel class of thiadiazoloacrylamide derivatives with potent inhibitory activity against the NS2B/NS3 protease. Thiadiazolopyrimidinone 1 was firstly determined as a new chemical structure against NS2B/NS3 from a commercial compound library. Then, we sought to identify similar compounds with the thiadiazoloacrylamide core that would exhibit better activity. A series of analogues were synthesized and fourteen of them were identified with strong inhibitory activities, in which the nitrile group in the linker part was discovered as an essential group for the inhibitory activity. The best of these (8b) demonstrated an IC50 at 2.24 μM based on in vitro DENV2 NS2B-NS3pro assays.  相似文献   

19.
Flaviviruses are serious human pathogens for which treatments are generally lacking. The proteolytic maturation of the 375-kDa viral polyprotein is one target for antiviral development. The flavivirus serine protease consists of the N-terminal domain of the multifunctional nonstructural protein 3 (NS3) and an essential 40-residue cofactor (NS2B(40)) within viral protein NS2B. The NS2B-NS3 protease is responsible for all cytoplasmic cleavage events in viral polyprotein maturation. This study describes the first biochemical characterization of flavivirus protease activity using full-length NS3. Recombinant proteases were created by fusion of West Nile virus (WNV) NS2B(40) to full-length WNV NS3. The protease catalyzed two autolytic cleavages. The NS2B/NS3 junction was cleaved before protein purification. A second site at Arg(459) decreasing Gly(460) within the C-terminal helicase region of NS3 was cleaved more slowly. Autolytic cleavage reactions also occurred in NS2B-NS3 recombinant proteins from yellow fever virus, dengue virus types 2 and 4, and Japanese encephalitis virus. Cis and trans cleavages were distinguished using a noncleavable WNV protease variant and two types of substrates as follows: an inactive variant of recombinant WNV NS2B-NS3, and cyan and yellow fluorescent proteins fused by a dodecamer peptide encompassing a natural cleavage site. With these materials, the autolytic cleavages were found to be intramolecular only. Autolytic cleavage of the helicase site was insensitive to protein dilution, confirming that autolysis is intramolecular. Formation of an active protease was found to require neither cleavage of NS2B from NS3 nor a free NS3 N terminus. Evidence was also obtained for product inhibition of the protease by the cleaved C terminus of NS2B.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号