首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.

Background

Isocitrate dehydrogenase isoforms 1 and 2 (IDH1 and IDH2) mutations have received considerable attention since the discovery of their relation with human gliomas. The predictive value of IDH1 and IDH2 mutations in gliomas remains controversial. Here, we present the results of a meta-analysis of the associations between IDH mutations and both progression-free survival (PFS) and overall survival (OS) in gliomas. The interrelationship between the IDH mutations and MGMT promoter hypermethylation, EGFR amplification, codeletion of chromosomes 1p/19q and TP53 gene mutation were also revealed.

Methodology and Principal Findings

An electronic literature search of public databases (PubMed, Embase databases) was performed. In total, 10 articles, including 12 studies in English, with 2,190 total cases were included in the meta-analysis. The IDH mutations were frequent in WHO grade II and III glioma (59.5%) and secondary glioblastomas (63.4%) and were less frequent in primary glioblastomas (7.13%). Our study provides evidence that IDH mutations are tightly associated with MGMT promoter hypermethylation (P<0.001), 1p/19q codeletion (P<0.001) and TP53 gene mutation (P<0.001) but are mutually exclusive with EGFR amplification (P<0.001). This meta-analysis showed that the combined hazard ratio (HR) estimate for overall survival and progression-free survival in patients with IDH mutations was 0.33 (95% CI: 0.25–0.42) and 0.38 (95% CI: 0.21–0.68), compared with glioma patients whose tumours harboured the wild-type IDH. Subgroup analyses based on tumour grade also revealed that the presence of IDH mutations was associated with a better outcome.

Conclusion

Our study suggests that IDH mutations, which are closely linked to the genomic profile of gliomas, are potential prognostic biomarkers for gliomas.  相似文献   

2.
Isocitrate dehydrogenase 1 gene mutations are found in most World Health Organization grade II and III gliomas and secondary glioblastomas. Isocitrate dehydrogenase 1 mutations are known to have prognostic value in high-grade gliomas. However, their prognostic significance in low-grade gliomas remains controversial. We determined the predictive and prognostic value of isocitrate dehydrogenase 1 status in low-grade gliomas. The association of isocitrate dehydrogenase 1 status with clinicopathological and genetic factors was also evaluated. Clinical information and genetic data including isocitrate dehydrogenase 1 mutation, O 6-methylguanine DNA methyltransferase promoter methylation, 1p/19q chromosome loss, and TP53 mutation of 417 low-grade gliomas were collected from the Chinese Glioma Genome Atlas database. Kaplan–Meier and Cox proportional hazards regression analyses were performed to evaluate the prognostic effect of clinical characteristics and molecular biomarkers. Isocitrate dehydrogenase 1 mutation was identified as an independent prognostic factor for overall, but not progression-free, survival. Notably, isocitrate dehydrogenase 1 mutation was found to be a significant prognostic factor in patients with oligodendrogliomas, but not in patients with astrocytomas. Furthermore, O 6-methylguanine DNA methyltransferase promoter methylation (p = 0.017) and TP53 mutation (p < 0.001), but not 1p/19q loss (p = 0.834), occurred at a higher frequency in isocitrate dehydrogenase 1-mutated tumors than in isocitrate dehydrogenase 1 wild-type tumors. Younger patient age (p = 0.041) and frontal lobe location (p = 0.010) were significantly correlated with isocitrate dehydrogenase 1 mutation. Chemotherapy did not provide a survival benefit in patients with isocitrate dehydrogenase 1-mutated tumors. Isocitrate dehydrogenase 1 mutation was an independent prognostic factor in low-grade gliomas, whereas it showed no predictive value for chemotherapy response. Isocitrate dehydrogenase 1 mutation was highly associated with O 6-methylguanine DNA methyltransferase promoter methylation and TP53 mutation.  相似文献   

3.
Frequent mutations in the isocitrate dehydrogenase 1 and 2 genes (IDH1 and IDH2) have been identified in gliomas and acute myeloid leukemia (AML). Our aim is to assess whether IDH mutations were presented in Chinese patients with various hematological disorders. In this study, we screened the IDH1 and IDH2 mutations in a cohort of 456 Chinese patients with various hematological malignancies and disorders. We found three missense (p.R132C, p.R132G, and p.I99M; occurred in five patients) and one silent mutation (c.315C>T; occurred in two patients) in the IDH1 gene and two missense mutations (p.R140Q and p.R172K; occurred in four AML patients) and one silent mutation (c.435G>A) in the IDH2 gene. Except for one non-Hodgkin lymphoma (NHL) patient harboring IDH1 mutation p.R132C, all IDH1 and IDH2 missense mutations were observed in patients with AML. Intriguingly, the IDH2 mutation p.R140Q and novel IDH1 mutation p.I99M co-occurred in a 75-year-old patient with AML developed from myelodysplastic syndromes (MDS). The frequency of IDH1 and IDH2 missense mutations in Chinese AML patients reached 5.9% and 8.3%, respectively. Our results supported the recent findings that IDH gene mutations were common in AML. Conversely, IDH mutations were rather rare in Chinese patients with other types of hematological disorders.  相似文献   

4.

Background

To investigate the dynamics of inter- and intratumoral molecular alterations during tumor progression in recurrent gliomas.

Methodology/Principal Findings

To address intertumoral heterogeneity we investigated non- microdissected tumor tissue of 106 gliomas representing 51 recurrent tumors. To address intratumoral heterogeneity a set of 16 gliomas representing 7 tumor pairs with at least one recurrence, and 4 single mixed gliomas were investigated by microdissection of distinct oligodendroglial and astrocytic tumor components. All tumors and tumor components were analyzed for allelic loss of 1p/19q (LOH 1p/19q), for TP53- mutations and for R132 mutations in the IDH1 gene. The investigation of non- microdissected tumor tissue revealed clonality in 75% (38/51). Aberrant molecular alterations upon recurrence were detected in 25% (13/51). 64% (9/14) of these were novel and associated with tumor progression. Loss of previously detected alterations was observed in 36% (5/14). One tumor pair (1/14; 7%) was significant for both. Intratumoral clonality was detected in 57% (4/7) of the microdissected tumor pairs and in 75% (3/4) of single microdissected tumors. 43% (3/7) of tumor pairs and one single tumor (25%) revealed intratumoral heterogeneity. While intratumoral heterogeneity affected both the TP53- mutational status and the LOH1p/19q status, all tumors with intratumoral heterogeneity shared the R132 IDH1- mutation as a common feature in both their microdissected components.

Conclusions/Significance

The majority of recurrent gliomas are of monoclonal origin. However, the detection of divertive tumor cell clones in morphological distinct tumor components sharing IDH1- mutations as early event may provide insight into the tumorigenesis of true mixed gliomas.  相似文献   

5.
Mutations in the isocitrate dehydrogenase (IDH) genes are frequently found in gliomas and in a fraction of acute myeloid leukemia patients. This results in the production of an oncometabolite, 2-hydroxyglutarate (2-HG). Glioma patients harboring IDH mutations have a longer survival than their wild-type counterparts. 2-HG has been detected noninvasively in gliomas with IDH mutations using magnetic resonance spectroscopy (MRS), suggesting its potential clinical relevance for identifying glioma subtypes with better prognosis. In this paper, the recent developments in the MRS detection of the 2-HG in gliomas are reviewed, including the therapeutic potentials and translational values.  相似文献   

6.
Isocitrate dehydrogenase 1 (IDH1) and isocitrate dehydrogenase 2 (IDH2) are enzymes which convert isocitrate to α-ketoglutarate while reducing nicotinamide adenine dinucleotide phosphate (NADP + to NADPH). IDH1/2 were recently identified as mutated in a large percentage of progressive gliomas. These mutations occur at IDH1R132 or the homologous IDH2R172. Melanomas share some genetic features with IDH1/2-mutated gliomas, such as frequent TP53 mutation. We sought to test whether melanoma is associated with IDH1/2 mutations. Seventy-eight human melanoma samples were analyzed for IDH1R132 and IDH2R172 mutation status. A somatic, heterozygous IDH1 c.C394T (p.R132C) mutation was identified in one human melanoma metastasis to the lung. Having identified this mutation in one metastasis, we sought to test the hypothesis that certain selective pressures in the brain environment may specifically favor the cell growth or survival of tumor cells with mutations in IDH1/2, regardless of primary tumor site. To address this, we analyzed IDH1R132 and IDH2R172 mutation status 53 metastatic brain tumors, including nine melanoma metastases. Results revealed no mutations in any samples. This lack of mutations would suggest that mutations in IDH1R132 or IDH2R172 may be necessary for the formation of tumors in a cell-lineage dependent manner, with a particularly strong selective pressure for mutations in progressive gliomas; this also suggests the lack of a particular selective pressure for growth in brain tissue in general. Studies on the cell-lineages of tumors with IDH1/2 mutations may help clarify the role of these mutations in the development of brain tumors.  相似文献   

7.
High-grade ovarian serous carcinomas (HGSC) are characterized by TP53 mutations and non-random patterns of chromosomal anomalies, where the nature of the TP53 mutation may correlate with clinical outcome. However, the frequency of common somatic genomic events occurring in HGSCs from demographically defined populations has not been explored. Whole genome SNP array, and TP53 mutation, gene and protein expression analyses were assessed in 87 confirmed HGSC samples with clinical correlates from French Canadians, a population exhibiting strong founder effects, and results were compared with independent reports describing similar analyses from unselected populations. TP53 mutations were identified in 91% of HGSCs. Anomalies observed in more than 50% of TP53 mutation-positive HGSCs involved gains of 3q, 8q and 20q, and losses of 4q, 5q, 6q, 8p, 13q, 16q, 17p, 17q, 22q and Xp. Nearly 400 regions of non-overlapping amplification or deletion were identified, where 178 amplifications and 98 deletions involved known genes. The subgroup expressing mutant p53 protein exhibited significantly prolonged overall and disease-free survival as compared with the p53 protein null subgroup. Interestingly, a comparative analysis of genomic landscapes revealed a significant enrichment of gains involving 1q, 8q, and 12p intervals in the subgroup expressing mutant p53 protein as compared with the p53 protein null subgroup. Although the findings show that the frequency of TP53 mutations and the genomic landscapes observed in French Canadian samples were similar to those reported for samples from unselected populations, there were differences in the magnitude of global gains/losses of specific chromosomal arms and in the spectrum of amplifications and deletions involving focal regions in individual samples. The findings from our comparative genomic analyses also support the notion that there may be biological differences between HGSCs that could be related to the nature of the TP53 mutation.  相似文献   

8.
Recurrence and progression to higher grade lesions are characteristic behaviorsof gliomas. Though IDH1 mutation frequently occurs and is considered as an early event in gliomagenesis, little is known about its role in the recurrence and progression of gliomas. We therefore analysed IDH1 and IDH2 statusat codon 132 of IDH1 and codon 172 of IDH2 by direct sequencing and anti-IDH1-R132H immunohistochemistry in 53 paired samples and their recurrences, including 29 low- grade gliomas, 16 anaplastic gliomas and 8 Glioblastomas. IDH1/IDH2 mutation was detected in 32 primarytumors, with 25 low- grade gliomas and 6 anaplastic gliomas harboring IDH1 mutation and 1 low- grade glioma harboring IDH2 mutation. All of the paired tumors showed consistent IDH1 and IDH2 status. Patients were analyzed according to IDH1 status and tumor-related factors. Malignant progression at recurrence was noted in 22 gliomas and was not associated with IDH1 mutation. Survival analysis revealed patients with IDH1 mutated gliomas had a significantly longer progression-free survival (PFS) and overall survival (OS). In conclusion, this study demonstrated a strong tendency of IDH1/IDH2 status being consistent during progression of glioma. IDH1 mutation was not a predictive marker for malignant progression and it was a potential prognostic marker for gliomas of Chinese patients.  相似文献   

9.
Recent reports have indicated that KRAS and TP53 mutations predict response to therapy in colorectal cancer. However, little is known about the relationship between these two common genetic alterations. Micro-RNAs (miRNAs), a class of noncoding RNA implicated in cellular processes, have been increasingly linked to KRAS and TP53. We hypothesized that lethal-7a (let-7a) miRNA regulates KRAS through TP53. To investigate the relationship between KRAS, TP53, and let-7a, we used HCT116 KRASmut human colorectal cancer cells with four different genotypic modifications in TP53 (TP53−/−, TP53+/−, TP53mut/+, and TP53mut/−). Using these cells we observed that K-Ras activity was higher in cells with mutant or knocked out TP53 alleles, suggesting that wild-type TP53 may suppress K-Ras activity. Let-7a was present in HCT116 KRASmut cells, though there was no correlation between let-7a level and TP53 genotype status. To explore how let-7a may regulate K-Ras in the different TP53 genotype cells we used let-7a inhibitor and demonstrated increased K-Ras activity across all TP53, thus corroborating prior reports that let-7a regulates K-Ras. To assess potential clinical implications of this regulatory network, we examined the influence of TP53 genotype and let-7a inhibition on colon cancer cell survival following chemoradiation therapy (CRT). We observed that cells with complete loss of wild-type TP53 alleles (−/− or −/mut) were resistant to CRT following treatment with 5-fluorouracil and radiation. Further increase in K-Ras activity with let-7a inhibition did not impact survival in these cells. In contrast, cells with single or double wild-type TP53 alleles were moderately responsive to CRT and exhibited resistance when let-7a was inhibited. In summary, our results show a complex regulatory system involving TP53, KRAS, and let-7a. Our results may provide clues to understand and target these interactions in colorectal cancer.  相似文献   

10.
11.
This study aims to establish the best and simplified panel of molecular markers for prognostic stratification of glioblastomas (GBMs). One hundred fourteen cases of GBMs were studied for IDH1, TP53, and TERT mutation by Sanger sequencing; EGFR and PDGFRA amplification by fluorescence in situ hybridization; NF1expression by quantitative real time polymerase chain reaction (qRT-PCR); and MGMT promoter methylation by methylation-specific PCR. IDH1 mutant cases had significantly longer progression-free survival (PFS) and overall survival (OS) as compared to IDH1 wild-type cases. Combinatorial assessment of MGMT and TERT emerged as independent prognostic markers, especially in the IDH1 wild-type GBMs. Thus, within the IDH1 wild-type group, cases with only MGMT methylation (group 1) had the best outcome (median PFS: 83.3 weeks; OS: not reached), whereas GBMs with only TERT mutation (group 3) had the worst outcome (PFS: 19.7 weeks; OS: 32.8 weeks). Cases with both or none of these alterations (group 2) had intermediate prognosis (PFS: 47.6 weeks; OS: 89.2 weeks). Majority of the IDH1 mutant GBMs belonged to group 1 (75%), whereas only 18.7% and 6.2% showed group 2 and 3 signatures, respectively. Interestingly, none of the other genetic alterations were significantly associated with survival in IDH1 mutant or wild-type GBMs.Based on above findings, we recommend assessment of three markers, viz., IDH1, MGMT, and TERT, for GBM prognostication in routine practice. We show for the first time that IDH1 wild-type GBMs which constitute majority of the GBMs can be effectively stratified into three distinct prognostic subgroups based on MGMT and TERT status, irrespective of other genetic alterations.  相似文献   

12.
13.
Oncogenic mutations in gastrointestinal stromal tumors (GISTs) predict prognosis and therapeutic responses to imatinib. In wild-type GISTs, the tumor-initiating events are still unknown, and wild-type GISTs are resistant to imatinib therapy. We performed an association study between copy number alterations (CNAs) identified from array CGH and gene expression analyses results for four wild-type GISTs and an imatinib-resistant PDGFRA D842V mutant GIST, and compared the results to those obtained from 27 GISTs with KIT mutations. All wild-type GISTs had multiple CNAs, and CNAs in 1p and 22q that harbor the SDHB and GSTT1 genes, respectively, correlated well with expression levels of these genes. mRNA expression levels of all SDH gene subunits were significantly lower (P≤0.041), whereas mRNA expression levels of VEGF (P=0.025), IGF1R (P=0.026), and ZNFs (P<0.05) were significantly higher in GISTs with wild-type/PDGFRA D842V mutations than GISTs with KIT mutations. qRT-PCR validation of the GSTT1 results in this cohort and 11 additional malignant GISTs showed a significant increase in the frequency of GSTT1 CN gain and increased mRNA expression of GSTT1 in wild-type/PDGFRA D842V GISTs than KIT-mutant GISTs (P=0.033). Surprisingly, all four malignant GISTs with KIT exon 11 deletion mutations with primary resistance to imatinib had an increased GSTT1 CN and mRNA expression level of GSTT1. Increased mRNA expression of GSTT1 and ZNF could be predictors of a poor response to imatinib. Our integrative approach reveals that for patients with wild-type (or imatinib-resistant) GISTs, attempts to target VEGFRs and IGF1R may be reasonable options.  相似文献   

14.
Breast cancers (BCs) of the luminal B subtype are estrogen receptor-positive (ER+), highly proliferative, resistant to standard therapies and have a poor prognosis. To better understand this subtype we compared DNA copy number aberrations (CNAs), DNA promoter methylation, gene expression profiles, and somatic mutations in nine selected genes, in 32 luminal B tumors with those observed in 156 BCs of the other molecular subtypes. Frequent CNAs included 8p11-p12 and 11q13.1-q13.2 amplifications, 7q11.22-q34, 8q21.12-q24.23, 12p12.3-p13.1, 12q13.11-q24.11, 14q21.1-q23.1, 17q11.1-q25.1, 20q11.23-q13.33 gains and 6q14.1-q24.2, 9p21.3-p24,3, 9q21.2, 18p11.31-p11.32 losses. A total of 237 and 101 luminal B-specific candidate oncogenes and tumor suppressor genes (TSGs) presented a deregulated expression in relation with their CNAs, including 11 genes previously reported associated with endocrine resistance. Interestingly, 88% of the potential TSGs are located within chromosome arm 6q, and seven candidate oncogenes are potential therapeutic targets. A total of 100 candidate oncogenes were validated in a public series of 5,765 BCs and the overexpression of 67 of these was associated with poor survival in luminal tumors. Twenty-four genes presented a deregulated expression in relation with a high DNA methylation level. FOXO3, PIK3CA and TP53 were the most frequent mutated genes among the nine tested. In a meta-analysis of next-generation sequencing data in 875 BCs, KCNB2 mutations were associated with luminal B cases while candidate TSGs MDN1 (6q15) and UTRN (6q24), were mutated in this subtype. In conclusion, we have reported luminal B candidate genes that may play a role in the development and/or hormone resistance of this aggressive subtype.  相似文献   

15.
Epithelial ovarian cancer is a diverse molecular and clinical disease, yet standard treatment is the same for all subtypes. TP53 mutations represent a node of divergence in epithelial ovarian cancer histologic subtypes and may represent a therapeutic opportunity in subtypes expressing wild type, including most low-grade ovarian serous carcinomas, ovarian clear cell carcinomas and ovarian endometrioid carcinomas, which represent approximately 25% of all epithelial ovarian cancer. We therefore sought to investigate Nutlin-3a—a therapeutic which inhibits MDM2, activates wild-type p53, and induces apoptosis—as a therapeutic compound for TP53 wild-type ovarian carcinomas. Fifteen epithelial ovarian cancer cell lines of varying histologic subtypes were treated with Nutlin-3a with determination of IC50 values. Western Blot (WB) and quantitative real-time polymerase chain reaction (qRT-PCR) analyses quantified MDM2, p53, and p21 expression after Nutlin-3a treatment. DNA from 15 cell lines was then sequenced for TP53 mutations in exons 2-11 including intron-exon boundaries. Responses to Nutlin-3a were dependent upon TP53 mutation status. By qRT-PCR and WB, levels of MDM2 and p21 were upregulated in wild-type TP53 sensitive cell lines, and p21 induction was reduced or absent in mutant cell lines. Annexin V assays demonstrated apoptosis in sensitive cell lines treated with Nutlin-3a. Thus, Nutlin-3a could be a potential therapeutic agent for ovarian carcinomas expressing wild-type TP53 and warrants further investigation.  相似文献   

16.
BackgroundMutations in isocitrate dehydrogenase (IDH) 1 have been reported in over 70% of low-grade gliomas and secondary glioblastomas. IDH1 is the enzyme that catalyzes the oxidative decarboxylation of isocitrate to α-ketoglutarate while mutant IDH1 catalyzes the conversion of α-ketoglutarate into 2-hydroxyglutarate. These mutations are associated with the accumulation of 2-hydroxyglutarate within the tumor and are believed to be one of the earliest events in the development of low-grade gliomas. The goal of this work was to determine whether the IDH1 mutation leads to additional magnetic resonance spectroscopy (MRS)–detectable changes in the cellular metabolome.MethodsTwo genetically engineered cell models were investigated, a U87-based model and an E6/E7/hTERT immortalized normal human astrocyte (NHA)-based model. For both models, wild-type IDH1 cells were generated by transduction with a lentiviral vector coding for the wild-type IDH1 gene while mutant IDH1 cells were generated by transduction with a lentiviral vector coding for the R132H IDH1 mutant gene. Metabolites were extracted from the cells using the dual-phase extraction method and analyzed by 1H-MRS. Principal Component Analysis was used to analyze the MRS data.ResultsPrincipal Component Analysis clearly discriminated between wild-type and mutant IDH1 cells. Analysis of the loading plots revealed significant metabolic changes associated with the IDH1 mutation. Specifically, a significant drop in the concentration of glutamate, lactate and phosphocholine as well as the expected elevation in 2-hydroxyglutarate were observed in mutant IDH1 cells when compared to their wild-type counterparts.ConclusionThe IDH1 mutation leads to several, potentially translatable MRS-detectable metabolic changes beyond the production of 2-hydroxyglutarate.  相似文献   

17.
Ren X  Cui X  Lin S  Wang J  Jiang Z  Sui D  Li J  Wang Z 《PloS one》2012,7(3):e32764

Objective

To characterize co-deletion of chromosome 1p/19q and IDH1/2 mutation in Chinese brain tumor patients and to assess their associations with clinical features.

Methods

In a series of 528 patients with gliomas, pathological and radiological materials were reviewed. Pathological constituents of tumor subsets, incidences of 1p/19q co-deletion and IDH1/2 mutation in gliomas by regions and sides in the brain were analyzed.

Results

Overall, 1p and 19q was detected in 339 patients by FISH method while the sequence of IDH1/2 was determined in 280 patients. Gliomas of frontal, temporal and insular origin had significantly different pathological constituents of tumor subsets (P<0.001). Gliomas of frontal origin had significantly higher incidence of 1p/19q co-deletion (50.4%) and IDH1/2 mutation (73.5%) than those of non-frontal origin (27.0% and 48.5%, respectively) (P<0.001), while gliomas of temporal origin had significantly lower incidence of 1p/19q co-deletion (23.9%) and IDH1/2 mutation (41.7%) than those of non-temporal origin (39.9% and 63.2%, respectively) (P = 0.013 and P = 0.003, respectively). Subgroup analysis confirmed these findings in oligoastrocytic and oligodendroglial tumors, respectively. Although the difference of 1p/19q co-deletion was not statistically significant in temporal oligodendroglial tumors, the trend was marginally significant (P = 0.082). However, gliomas from different sides of the brain did not show significant different pathological constituents, incidences of 1p/19q co-deletion or IDH1/2 mutation.

Conclusion

Preferential distribution of pathological subsets, 1p/19q co-deletion and IDH1/2 mutation were confirmed in some brain regions in Chinese glioma patients, implying their distinctive tumor genesis and predictive value for prognosis.  相似文献   

18.
The presence of a TP53 gene mutation can influence tumour response to some treatments, especially in breast cancer. In this study, we analysed p53 mRNA expression, LOH at 17p13 and TP53 mutations from exons 2 to 11 in 206 patients with breast carcinoma and correlated the results with disease-free and overall survival. The observed mutations were classified according to their type and location in the three protein domains (transactivation domain, DNA binding domain, oligomerization domain) and correlated with disease-free and overall survival. In our population, neither p53 mRNA expression nor LOH correlated with outcome. Concerning TP53 mutations, 27% of tumours were mutated (53/197) and the presence of a mutation in the TP53 gene was associated with worse overall survival (p = 0.0026) but not with disease-free survival (p = 0.0697), with median survival of 80 months and 78 months, respectively. When alterations were segregated into mutation categories and locations, and related to survival, tumours harbouring mutations other than missense mutations in the DNA binding domain of P53 had the same survival profiles as wild-type tumours. Concerning missense mutations in the DNA binding domain, median disease-free and overall survival was 23 months and 35 months, respectively (p = 0.0021 and p<0.0001, respectively), compared with 78 and 80 months in mutated tumours overall. This work shows that disease-free and overall survival in patients with a frameshift mutation of TP53 or missense mutation in the oligomerization domain are the same as those in wild-type TP53 patients.  相似文献   

19.
The wild-type p53-induced phosphatase 1 (WIP1) is a serine/threonine phosphatase that negatively regulates multiple proteins involved in DNA damage response including p53, CHK2, Histone H2AX, and ATM, and it has been shown to be overexpressed or amplified in human cancers including breast and ovarian cancers. We examined WIP1 mRNA levels across multiple tumor types and found the highest levels in breast cancer, leukemia, medulloblastoma and neuroblastoma. Neuroblastoma is an exclusively TP53 wild type tumor at diagnosis and inhibition of p53 is required for tumorigenesis. Neuroblastomas in particular have previously been shown to have 17q amplification, harboring the WIP1 (PPM1D) gene and associated with poor clinical outcome. We therefore sought to determine whether inhibiting WIP1 with a selective antagonist, GSK2830371, can attenuate neuroblastoma cell growth through reactivation of p53 mediated tumor suppression. Neuroblastoma cell lines with wild-type TP53 alleles were highly sensitive to GSK2830371 treatment, while cell lines with mutant TP53 were resistant to GSK2830371. The majority of tested neuroblastoma cell lines with copy number gains of the PPM1D locus were also TP53 wild-type and sensitive to GSK2830371A; in contrast cell lines with no copy gain of PPM1D were mixed in their sensitivity to WIP1 inhibition, with the primary determinant being TP53 mutational status. Since WIP1 is involved in the cellular response to DNA damage and drugs used in neuroblastoma treatment induce apoptosis through DNA damage, we sought to determine whether GSK2830371 could act synergistically with standard of care chemotherapeutics. Treatment of wild-type TP53 neuroblastoma cell lines with both GSK2830371 and either doxorubicin or carboplatin resulted in enhanced cell death, mediated through caspase 3/7 induction, as compared to either agent alone. Our data suggests that WIP1 inhibition represents a novel therapeutic approach to neuroblastoma that could be integrated with current chemotherapeutic approaches.  相似文献   

20.
《Translational oncology》2020,13(2):125-134
The isocitrate dehydrogenase (IDH1/2) mutations are frequent genetic abnormalities in the majority of WHO grade II/III glioma and secondary GBM. IDH1-mutated (IDH1Mut) glioma exhibits distinctive patterns in cancer biology and metabolism. In the present study, we showed that bone morphogenetic proteins (BMP4) are significantly upregulated in IDH1Mut glioma. Further, we demonstrated that cancer-associated BMP4 is secreted to tumor microenvironment, which enhances the tumor migration and invasion through an autocrine manner. Mechanistically, BMP4 activates its receptor and concomitant SMAD1/5/8 signaling, which potentiates Wnt/β-catenin signaling by enhancing Frizzled receptor expression. LDN-193189, a selective BMP receptor inhibitor, prolonged the overall survival of mice bearing IDH1-mutated intracranial xenografts by limiting BMP/catenin signaling. These findings demonstrate the pivotal role of BMP4 on tumor aggressiveness in IDH1Mut gliomas, suggesting a possible therapeutic strategy for this type of malignancy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号