首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cibacron Blue F3GA was covalently attached onto monosize poly(glycidyl methacrylate) [poly(GMA)] beads for removal of human serum albumin (HSA) from human serum. Monosize poly(GMA) beads, 1.6 microm in diameter, were produced by dispersion polymerization. Cibacron Blue F3GA loading was 1.73 mol/g. HSA adsorption experiments were performed by stirred-batch adsorption. The non-specific adsorption of HSA was low (0.8 mg/g polymer). Dye attachment onto the monosize beads significantly increased the HSA adsorption (189.8 mg/g). The maximum HSA adsorption was observed at pH 5.0. With an increase of the aqueous phase concentration of sodium chloride, the adsorption capacity decreased drastically. The equilibrium adsorption of HSA significantly decreased with increasing temperature. The elution studies were performed by adding 0.1 M Tris/HCl buffer containing 0.5 M NaSCN to the HSA solutions in which adsorption equilibria had been reached. The elution results demonstrated that the adsorption of HSA to the adsorbent was reversible. The depletion efficiencies for HSA were above 87% for all studied concentrations. To test the efficiency of HSA removal from human serum, proteins in the serum and eluted portion were analyzed by two-dimensional gel electrophoresis. Eluted proteins include mainly albumin, and a small number of nonalbumin proteins such as apo-lipoprotein A1, sero-transferrin, haptoglobulin and alpha1-antitrypsin were bound by the dye-affinity beads. IgA was not identified in eluted fraction.  相似文献   

2.
Magnetic poly(2-hydroxyethyl methacrylate) mPHEMA beads carrying Cibacron Blue F3GA were prepared by suspension polymerization of HEMA in the presence of Fe3O4 nano-powder. Average size of spherical beads was 80-120 microm. The beads had a specific surface area of 56.0m(2)/g. The characteristic functional groups of dye-attached mPHEMA beads were analyzed by Fourier transform infrared spectrometer (FTIR) and Raman spectrometer. mPHEMA with a swelling ratio of 68% and carrying 28.5 micromol CibacronBlueF3GA/g were used for the purification of lysozyme. Adsorption studies were performed under different conditions in a magnetically stabilized fluidized bed (i.e., pH, protein concentration, flow-rate, temperature, and ionic strength). Lysozyme adsorption capacity of mPHEMA and mPHEMA/Cibacron Blue F3GA beads were 0.8 mg/g and 342 mg/g, respectively. It was observed that after 20 adsorption-desorption cycle, mPHEMA beads can be used without significant loss in lysozyme adsorption capacity. Purification of lysozyme from egg white was also investigated. Purification of lysozyme was monitored by determining the lysozyme activity using Micrococcus lysodeikticus as substrate. The purity of the desorbed lysozyme was about 87.4% with recovery about 79.6%. The specific activity of the desorbed lysozyme was high as 41.586 U/mg.  相似文献   

3.
The hydrophobic affinity ligand L-tryptophan immobilized magnetic poly(glycidyl methacrylate) [m-poly(GMA)] beads in monosize form (1.6 microm in diameter) were used for the affinity purification of lysozyme from chicken egg white. The m-poly(GMA) beads were prepared by dispersion polymerization in the presence of Fe3O4 nano-powder. The epoxy groups of the m-poly(GMA) beads were converted into amino groups with 1,6 diaminohexane (i.e., spacer arm). l-tryptophan was then covalently immobilized on spacer arm attached m-poly(GMA) beads. Elemental analysis of immobilised L-tryptophan for nitrogen was estimated as 42.5 micromol/g polymer. Adsorption studies were performed under different conditions in a batch system (i.e., medium pH, protein concentration and temperature). Maximum lysozyme adsorption amount of m-poly(GMA) and m-poly(GMA)-L-tryptophan beads were 1.78 and 259.6 mg/g, respectively. The applicability of two kinetic models including pseudo-first order and pseudo-second order model was estimated on the basis of comparative analysis of the corresponding rate parameters, equilibrium adsorption capacity and correlation coefficients. Results suggest that chemisorption processes could be the rate-limiting step in the adsorption process. It was observed that after 10 adsorption-elution cycle, m-poly(GMA)-L-tryptophan beads can be used without significant loss in lysozyme adsorption capacity. Purification of lysozyme from egg white was also investigated. Purification of lysozyme was monitored by determining the lysozyme activity using Micrococcus lysodeikticus as substrate. It was found to be successful in achieving purification of lysozyme in a high yield of 76% with a purification fold of 71 in a single step. The specific activity of the eluted lysozyme (62,580 U/mg) was higher than that obtained with a commercially available pure lysozyme (Sigma (60,000 U/mg).  相似文献   

4.
《Process Biochemistry》2010,45(4):556-562
Magnetic poly(2-hydroxyethylmethacrylate) [mPHEMA] beads were prepared by suspension polymerization of HEMA in the presence of Fe3O4 nano-powder. Cibacron Blue F3GA was covalently immobilized to the mPHEMA beads via nucleophilic substitution reaction between chloride of its triazine ring and hydroxyl groups of HEMA under alkaline conditions. The mPHEMA/Cibacron Blue F3GA beads (100–140 μm in diameter) carrying 68.3 μmol Cibacron Blue F3GA per gram polymer were used for β-casein adsorption studies. Adsorption studies were performed under different conditions in a batch system (i.e., pH, β-casein initial concentration, temperature, and ionic strength) and then in a magnetically stabilized fluidized bed (MSFB) system. The swelling ratio of the mPHEMA was 62.1%. The maximum adsorption capacity for batch system was 20.2% lower as compared to the value obtained in MSFB. The mPHEMA/Cibacron Blue F3GA beads could be repeatedly applied for β-casein adsorption without significant losses in the adsorption capacity.  相似文献   

5.
Cibacron Blue F3GA was covalently attached onto magnetic poly(vinyl alcohol) (mPVAL) beads (100-150 μm in diameter) for human serum albumin (HSA) adsorption from human plasma. Despite low nonspecific adsorption of HSA on mPVAL beads, Cibacron Blue F3GA attachment significantly increased the HSA adsorption. The maximum HSA adsorption was observed at pH 5.0. Higher HSA adsorption was observed from human plasma. Desorption of HSA from mPVAL beads was achieved by medium containing 1.0 M KSCN at pH 8.0. To test the efficiency of albumin adsorption from human serum, before and after albumin adsorption was demonstrated with sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) analyses. HSA molecules could be reversibly adsorbed and desorbed 10 times with the magnetic beads without noticeable loss in their HSA adsorption capacity.  相似文献   

6.
Cibacron Blue F3GA-immobilized poly(EGDMA–HEMA) microbeads were investigated as a specific sorbent for bilirubin removal from human plasma. The poly(EGDMA–HEMA) microbeads were prepared by a modified suspension copolymerization technique. Cibacron Blue F3GA was covalently coupled to the poly(EGDMA–HEMA) microbeads via the nucleophilic reaction between the chloride of its triazine ring and the hydroxyl groups of the HEMA molecule, under alkaline conditions. Bilirubin adsorption was investigated from hyperbilirubinemic human plasma on the poly(EGDMA–HEMA) microbeads containing different amounts of immobilized Cibacron Blue F3GA, (between 5.0–16.5 μmol/g). The non-specific bilirubin adsorption on the unmodified poly(EGDMA–HEMA) microbeads were 0.32 mg/g from human plasma. Higher bilirubin adsorption values, up to 14.8 mg/g, were obtained with the Cibacron Blue F3GA-immobilized microbeads. Bilirubin molecules interacted with these sorbents directly. Contribution of albumin adsorption on the bilirubin adsorption was pronounced. Bilirubin adsorption increased with increasing temperature.  相似文献   

7.
Chitosan microsphere (CS) was prepared by phase-inversion method as the support matrices. Cibacron Blue F3GA (CB) was covalently attached to the chitosan microspheres, and thus the novel dye-affinity adsorbent was obtained. These Cibacron Blue F3GA-attached chitosan microspheres (CB-CS) were used in the catalase (CAT) adsorption studies. The maximum CAT adsorption capacity of Cibacron Blue F3GA-attached chitosan microspheres was 28.4 mg/g at pH 7.0. Langmuir adsorption model was found to be applicable in interpreting CAT adsorption. Significant amount of the adsorbed CAT (up to 90.6%) was eluted in the elution medium containing 0.5 M NaSCN at pH 8.0. It appears that CB-CS can be applied for adsorption of CAT without causing any denaturation.  相似文献   

8.
Poly(2-hydroxyethylmethacrylate–ethyleneglycoldimethacrylate) [poly(HEMA–EGDMA)] microspheres carrying Cibacron Blue F3GA and/or thionein were prepared and used for the removal of cadmium ions Cd(II) from human plasma. The poly(HEMA–EGDMA) microspheres, in the size range of 150–200 μm in diameter, were produced by a modified suspension copolymerization of HEMA and EGDMA. The reactive triazinyl dye-ligand Cibacron Blue F3GA was then covalently incorporated into the microspheres. The maximum dye incorporation was 16.5 μmol/g. Then, thionein was bound onto the Cibacron Blue F3GA-incorporated microspheres under different conditions. The maximum amount of thionein bound was 14.3 mg/g. The maximum amounts of Cd(II) ions removed from human plasma by poly(HEMA–EGDMA)–Cibacron Blue F3GA and poly(HEMA–EGDMA)–Cibacron Blue F3GA–thionein were of 17.5 mg/g and 38.0 mg/g, respectively. Cd(II) ions could be repeatedly adsorbed and desorbed with both types of microspheres without significant loss in their adsorption capacity.  相似文献   

9.
Aluminum [Al(III)] adsorption onto dye-incorporated poly(ethylene glycol dimethacrylate-hydroxyethyl methacrylate) [poly(EGDMA-HEMA)] microspheres was investigated. Poly(EGDMA-HEMA) microspheres, in the size range of 150–200 μm, were produced by a modified suspension polymerization of EGDMA and HEMA. The reactive dyes (i.e., Congo Red, Cibacron Blue F3GA and Alkali Blue 6B) were covalently incorporated to the microspheres. The maximum dye load was 14.5 μmol Congo Red/g, 16.5 μmol Cibacron Blue F3GA/g and 23.7 μmol Alkali Blue 6B/g polymer. The maximum Al(III) adsorption on the dye microspheres from aqueous solutions containing different amounts of Al(III) ions were 27.9 mg/g, 17.3 mg/g and 12.2 mg/g polymer for the Congo Red, Cibacron Blue F3GA and Alkali Blue 6B, respectively. The maximum Al(III) adsorption was observed at pH 7.0 in all cases. Non-specific Al(III) adsorption was about 0.84 mg/g polymer under the same conditions. High desorption ratios (95%) were achieved in all cases by using 0.1 M HNO3. It was possible to reuse these dye-incorporated poly(EGDMA-HEMA) microspheres without significant losses in the Al(III) adsorption capacities.  相似文献   

10.
A novel affinity sorbent system for direct bilirubin removal from human plasma was developed. These new adsorbents comprise Cibacron Blue F3GA as the specific ligand, and microporous membranous poly(tetrafluoroethylene) capillary (modified by coating with a hydrophilic layer of poly(vinyl alcohol) after activation) as the carrier matrix. The affinity adsorbents carrying 126.5 micromol Cibacron Blue F3GA/g polymer was then used to remove bilirubin in a flow-injection system. Non-specific adsorption on the poly(vinyl alcohol) coated capillary remains low, and higher affinity adsorption capacity, of up to 76.2 mg/g polymer was obtained after dye immobilization. The bilirubin adsorption capacity of the affinity capillary decreased with increase in the recirculation rate of plasma. The adsorption capacity increased with increase the temperature while decreased with increase the ionic strength. The maximum adsorption was only observed in neutral solution (pH 6-7). The adsorption isotherm fitted the Langmuir model well. These new adsorbents have higher velocity of mass transfer, better adsorption capacity, less fouling, longer service life and good reusability. The results of blood tests suggested the dye affinity capillary has good blood compatibility.  相似文献   

11.
Cibacron Blue F3GA from several commercial sources is shown to be heterogeneous. This crude dye inactivates both phosphoglycerate kinase and isoleucyl-tRNA synthetase. Purification of Cibacron Blue F3GA to homogeneity results in a dramatic decrease in inactivation of these enzymes. The inactivation is shown to be due to covalent modification of phosphoglycerate kinase and probably isoleucyl-tRNA synthetase by a minor component present in crude Cibacron Blue F3GA.  相似文献   

12.
An affinity dye ligand, Cibacron Blue F3GA was covalently attached onto commercially available microporous polyamide hollow-fibre membranes for human serum albumin (HSA) adsorption from both aqueous solutions and human plasma. Different amounts of Cibacron Blue F3GA were incorporated on the polyamide hollow-fibres by changing the dye attachment conditions, i.e. initial dye concentration, addition of sodium carbonate and sodium chloride. The maximum amount of Cibacron Blue F3GA attachment was obtained at 42.5 μmol g−1 when the hollow-fibres were treated with 3 M HCl for 30 min before performing the dye attachment. HSA adsorption onto unmodified and Cibacron Blue F3GA-derived polyamide hollow-fibre membranes was investigated batchwise. The non-specific adsorption of HSA was very low (6.0 mg g−1 hollow-fibre). Cibacron Blue F3GA attachment onto the hollow-fibres significantly increased the HSA adsorption (147 mg g−1 hollow-fibre). The maximum HSA adsorption was observed at pH 5.0. Higher HSA adsorption was observed from human plasma (230 mg HSA g−1 hollow-fibre). Desorption of HSA from Cibacron Blue F3GA derived hollow-fibres was obtained using 0.1 M Tris–HCl buffer containing 0.5 M NaSCN or 1.0 M NaCl. High desorption ratios (up to 98% of the adsorbed HSA) were observed. It was possible to reuse Cibacron Blue F3GA derived polyamide hollow-fibre without significant decreases in the adsorption capacities.  相似文献   

13.
Covalent coupling of chitosan (CS) to activated nylon membrane was performed after the reaction of the microporous nylon membrane with formaldehyde. Non-specific adsorption on the CS-coated nylon membrane decreased greatly, compared with plain nylon membrane. The dye Cibacron Blue F3GA (CB F3GA) as a ligand was then covalently immobilized on the CS-coated membranes. Physical properties of the composite membrane and its applications in affinity membrane chromatography were examined. The contents of CS and CB F3GA-attached membranes were 89.6 mg/g nylon membrane and 146.1 micromol/g nylon membrane, respectively. These CB F3GA-attached composite membranes were used in the papain adsorption studies. Higher papain adsorption capacity, up to 235.3mg/g affinity membrane, was obtained. The adsorption isotherm fitted the Freundlich model well. Significant amount of the adsorbed papain (about 94.3%) was eluted by 1.0M NaSCN at pH 9.0. Experiments on regeneration and dynamic adsorption were also performed. It appears that CB F3GA-CS nylon membranes can be applied for papain separation without causing any denaturation.  相似文献   

14.
Blue dextran or Cibacron Blue F3GA has been shown to inhibit yeast phosphoglycerate kinase [EC 2.7.2.3] competitively with respect to ATP (Thompson et al. (1975) Proc. Natl. Acad. Sci. U.S. 72, 663--667; Beissner and Rudolph (1979) J. Biol. Chem. 254, 6273--6277). However, we have found that phosphoglycerate kinase of Lactobacillus plantarum was inhibited by Cibacron Blue F3GA, the blue chromophore of blue dextran, noncompetitively with respect to ATP, but competitively with respect to 3-phosphoglycerate. Further inhibition studies with Cibacron Blue F3GA suggest that one molecule of the dye was bound per molecule of phosphoglycerate kinase at a saturated level of either substrate, but two molecules of the dye were bound per molecule of the kinase with an unsaturated level of either substrate used as a fixed substrate. Furthermore, phosphoglycerate mutase [EC 2.7.5.3] of Leuconostoc dextranicum was also inhibited by Cibacron Blue F3GA competitively with respect to 3-phosphoglycerate and noncompetitively with respect to 2,3-bisphosphoglycerate. These results suggest that the 3-phosphoglycerate-binding site on both phosphoglycerate kinase and phosphoglycerate mutase can interact with Cibacron Blue F3GA.  相似文献   

15.
Rat liver spermidine/spermine N1-acetyltransferase was found to be strongly inhibited by the dyes Cibacron F3GA, Coomassie Brilliant Blue and Congo Red. Inhibition was competitive with respect to acetyl-CoA and Ki values of 0.7 microM and 52 microM were determined for Cibacron F3GA and Coomassie Brilliant Blue respectively. The enzyme was strongly retained by columns of Affi-Gel Blue, which contains Cibacron F3GA linked to agarose. It was not eluted from this adsorbent in the presence of 10 mM-spermidine/0.5 M-NaCl/50 mM-Tris/HCl, pH 7.5, but was released by 1 mM-CoA in 10 mM-spermidine/50 mM-Tris/HCl, pH 7.5. These results are consistent with the presence in the enzyme of a dinucleotide fold that binds acetyl CoA and has a high affinity for Cibacron F3GA. The spermidine/spermine N1-acetyltransferase was irreversibly inactivated by exposure to butane-2,3-dione in sodium borate, pH 7.8, or by exposure to phenylglyoxal or camphorquinone-10-sulphonic acid. All of these reagents are known to interact with arginine residues in proteins under the conditions in which they inactivated the acetyltransferase. Inactivation was prevented by the presence of acetyl-CoA or CoA, but to a lesser extent by 3'-dephospho-CoA and not at all by NAD or adenosine. This protection suggests that an arginine residue at the active site is involved in the binding of the acetyl-CoA substrate. Treatment of the assay mixture but not the spermidine N1-acetyltransferase with alkaline phosphatase prevented the reaction taking place. This suggests that the apparent loss of enzyme activity in response to alkaline phosphatase reported by Matsui, Otani, Kamei & Morisawa [(1982) FEBS Lett. 150, 211-213] is due to dephosphorylation of the acetyl-CoA substrate and that the 3'-phosphate group is essential for activity.  相似文献   

16.
An affinity-based reverse micellar system formulated with nonionic surfactant was applied to the refolding of denatured-reduced lysozyme. The nonionic surfactant of sorbitan trioleate (Span 85) was modified with Cibacron Blue F-3GA (CB) as an affinity surfactant (CB-Span 85) to form affinity-based reverse micelles in n-hexane. The water content of 15 was found optimal for lysozyme refolding in the reverse micellar system of 62.7 mmol/L Span 85 with coupled CB of 0.3 and 0.5 mmol/L. In addition, the operating conditions such as pH and the concentrations of urea and redox reagents were optimized. Under the optimized conditions, complete renaturation of lysozyme at 3-3.5 mg/mL was achieved, whereas dilution refolding in the bulk aqueous phase under the same conditions gave much lower activity recovery. Moreover, the secondary structure of the refolded lysozyme was found to be the same as the native lysozyme. Over 95% of the refolded lysozyme was recovered from CB-Span 85 reverse micelles by a stripping solution of 0.5 mol/L MgCl(2). Thus, the present system is advantageous over the conventional reverse micellar system formed with ionic surfactants in the ease of protein recovery.  相似文献   

17.
The objective of this study was the development of affinity adsorbent particles with the appropriate characteristics to be applied in protein purification using the affinity ultrafiltration method. To prepare affinity macroligands Cibacron Blue 3GA, as a ligand molecule, was immobilized by covalent bonding onto yeast cell walls, the support material or matrix. The maximum attachment of the ligand to the matrix was 212 μmol/g (ligand dry weight/yeast dry weight). Lysozyme was selected as the protein model for the adsorption studies. Its adsorption onto the matrix without ligand and matrix with attached ligand were investigated batch-wise. The adsorption equilibrium isotherms appeared to follow a typical Langmuir isotherm. The maximum adsorption capacity (q(m)) of the Cell-Cibacron macroligand for lysozyme was 110 mg/ml of wet macroligand. The adsorbent was also employed for the separation of lysozyme from hen egg white. High purity lysozyme was obtained.  相似文献   

18.
The composition and purity of three commercial preparations of the widely used affinity chromatography ligand Cibacron Blue F3GA have been evaluated by TLC and by paired-ion reversed-phase HPLC and were found to contain several chromophoric species. Stepwise synthesis of the reported dye structure showed that only one commercial preparation contained any actual Cibacron Blue F3GA, and that it was present only in minor amounts. In all three preparations the major component appears to be the dichlorotriazinyl precursor of Cibacron Blue F3GA. Commercial samples of the related dyes Procion Blue MX-3G and Procion Blue MX-R are also highly heterogeneous. In addition, our experiments suggest that TLC results must be evaluated carefully to ensure that catalytic surface activity of alumina and silica has not created ghost bands.  相似文献   

19.
The thermo-sensitive N-alkyl substituted polyacrylamide polymer was synthesized by radical polymerization and its lower critical solution temperature (LCST) was controlled to be 28 °C. The thermo-sensitive recovery of polymer was over 95% in the presence of 0.05 M NaClO4. Cibacron Blue F3GA was covalently immobilized onto the polymer via the nucleophilic reaction between the active chlorine atom of its triazine ring and the hydroxyl group of the polymer. The ligands density was 30 μmol g−1 polymer. The adsorption capacity of lysozyme on the polymer was 3.4 mg g−1polymer in affinity precipitation process. And over 90% of adsorbed lysozyme was eluted by 0.5 M KSCN at pH 8.0. When the affinity polymer was applied in the purification of lysozyme from egg white, the purification factor was 28 and lysozyme yield was 80% or so.  相似文献   

20.
Thiogalactoside transacetylase, the product of the lacA gene of the lactose operon of Escherichia coli, has been purified by an improved procedure. The enzyme binds tightly to immobilized Cibacron Blue F3GA columns and can be eluted by potassium chloride in high concentrations. Final purification was obtained by affinity chromatography on an agarose-coenzyme A column followed by gel filtration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号