首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Aluminum [Al(III)] adsorption onto dye-incorporated poly(ethylene glycol dimethacrylate-hydroxyethyl methacrylate) [poly(EGDMA-HEMA)] microspheres was investigated. Poly(EGDMA-HEMA) microspheres, in the size range of 150–200 μm, were produced by a modified suspension polymerization of EGDMA and HEMA. The reactive dyes (i.e., Congo Red, Cibacron Blue F3GA and Alkali Blue 6B) were covalently incorporated to the microspheres. The maximum dye load was 14.5 μmol Congo Red/g, 16.5 μmol Cibacron Blue F3GA/g and 23.7 μmol Alkali Blue 6B/g polymer. The maximum Al(III) adsorption on the dye microspheres from aqueous solutions containing different amounts of Al(III) ions were 27.9 mg/g, 17.3 mg/g and 12.2 mg/g polymer for the Congo Red, Cibacron Blue F3GA and Alkali Blue 6B, respectively. The maximum Al(III) adsorption was observed at pH 7.0 in all cases. Non-specific Al(III) adsorption was about 0.84 mg/g polymer under the same conditions. High desorption ratios (95%) were achieved in all cases by using 0.1 M HNO3. It was possible to reuse these dye-incorporated poly(EGDMA-HEMA) microspheres without significant losses in the Al(III) adsorption capacities.  相似文献   

2.
Chitosan microsphere (CS) was prepared by phase-inversion method as the support matrices. Cibacron Blue F3GA (CB) was covalently attached to the chitosan microspheres, and thus the novel dye-affinity adsorbent was obtained. These Cibacron Blue F3GA-attached chitosan microspheres (CB-CS) were used in the catalase (CAT) adsorption studies. The maximum CAT adsorption capacity of Cibacron Blue F3GA-attached chitosan microspheres was 28.4 mg/g at pH 7.0. Langmuir adsorption model was found to be applicable in interpreting CAT adsorption. Significant amount of the adsorbed CAT (up to 90.6%) was eluted in the elution medium containing 0.5 M NaSCN at pH 8.0. It appears that CB-CS can be applied for adsorption of CAT without causing any denaturation.  相似文献   

3.
An affinity dye ligand, Cibacron Blue F3GA was covalently attached onto commercially available microporous polyamide hollow-fibre membranes for human serum albumin (HSA) adsorption from both aqueous solutions and human plasma. Different amounts of Cibacron Blue F3GA were incorporated on the polyamide hollow-fibres by changing the dye attachment conditions, i.e. initial dye concentration, addition of sodium carbonate and sodium chloride. The maximum amount of Cibacron Blue F3GA attachment was obtained at 42.5 μmol g−1 when the hollow-fibres were treated with 3 M HCl for 30 min before performing the dye attachment. HSA adsorption onto unmodified and Cibacron Blue F3GA-derived polyamide hollow-fibre membranes was investigated batchwise. The non-specific adsorption of HSA was very low (6.0 mg g−1 hollow-fibre). Cibacron Blue F3GA attachment onto the hollow-fibres significantly increased the HSA adsorption (147 mg g−1 hollow-fibre). The maximum HSA adsorption was observed at pH 5.0. Higher HSA adsorption was observed from human plasma (230 mg HSA g−1 hollow-fibre). Desorption of HSA from Cibacron Blue F3GA derived hollow-fibres was obtained using 0.1 M Tris–HCl buffer containing 0.5 M NaSCN or 1.0 M NaCl. High desorption ratios (up to 98% of the adsorbed HSA) were observed. It was possible to reuse Cibacron Blue F3GA derived polyamide hollow-fibre without significant decreases in the adsorption capacities.  相似文献   

4.
Cibacron Blue F3GA-immobilized poly(EGDMA–HEMA) microbeads were investigated as a specific sorbent for bilirubin removal from human plasma. The poly(EGDMA–HEMA) microbeads were prepared by a modified suspension copolymerization technique. Cibacron Blue F3GA was covalently coupled to the poly(EGDMA–HEMA) microbeads via the nucleophilic reaction between the chloride of its triazine ring and the hydroxyl groups of the HEMA molecule, under alkaline conditions. Bilirubin adsorption was investigated from hyperbilirubinemic human plasma on the poly(EGDMA–HEMA) microbeads containing different amounts of immobilized Cibacron Blue F3GA, (between 5.0–16.5 μmol/g). The non-specific bilirubin adsorption on the unmodified poly(EGDMA–HEMA) microbeads were 0.32 mg/g from human plasma. Higher bilirubin adsorption values, up to 14.8 mg/g, were obtained with the Cibacron Blue F3GA-immobilized microbeads. Bilirubin molecules interacted with these sorbents directly. Contribution of albumin adsorption on the bilirubin adsorption was pronounced. Bilirubin adsorption increased with increasing temperature.  相似文献   

5.
Cibacron Blue F3GA was covalently attached onto monosize poly(glycidyl methacrylate) [poly(GMA)] beads for purification of lysozyme from chicken egg white. Monosize poly(GMA) beads, 1.6 microm in diameter, were produced by a dispersion polymerization technique. The content of epoxy groups on the surface of the poly(GMA) sample determined by the HCl-pyridine method (3.8 mmol/g). Cibacron Blue F3GA loading was 1.73 mmol/g. The monosize beads were characterized by elemental analysis, FTIR and SEM. Adsorption studies were performed under different conditions in a batch system (i.e., medium pH, protein concentration, temperature and ionic strength). Maximum lysozyme adsorption amount of poly(GMA) and poly(GMA)-Cibacron Blue F3GA beads were 1.6 and 591.7 mg/g, respectively. The applicability of two kinetic models including pseudo-first order and pseudo-second order model was estimated on the basis of comparative analysis of the corresponding rate parameters, equilibrium adsorption capacity and correlation coefficients. Results suggest that chemisorption processes could be the rate-limiting step in the adsorption process. It was observed that after 10 adsorption-elution cycle, poly(GMA)-Cibacron Blue F3GA beads can be used without significant loss in lysozyme adsorption capacity. Purification of lysozyme from egg-white was also investigated. Purification of lysozyme was monitored by determining the lysozyme activity using Micrococcus lysodeikticus as substrate. The purity of the eluted lysozyme was analyzed by SDS-PAGE and found to be 88% with recovery about 79%. The specific activity of the eluted lysozyme was high as 43,600 U/mg.  相似文献   

6.
Cibacron Blue F3GA was covalently attached onto monosize poly(glycidyl methacrylate) [poly(GMA)] beads for removal of human serum albumin (HSA) from human serum. Monosize poly(GMA) beads, 1.6 microm in diameter, were produced by dispersion polymerization. Cibacron Blue F3GA loading was 1.73 mol/g. HSA adsorption experiments were performed by stirred-batch adsorption. The non-specific adsorption of HSA was low (0.8 mg/g polymer). Dye attachment onto the monosize beads significantly increased the HSA adsorption (189.8 mg/g). The maximum HSA adsorption was observed at pH 5.0. With an increase of the aqueous phase concentration of sodium chloride, the adsorption capacity decreased drastically. The equilibrium adsorption of HSA significantly decreased with increasing temperature. The elution studies were performed by adding 0.1 M Tris/HCl buffer containing 0.5 M NaSCN to the HSA solutions in which adsorption equilibria had been reached. The elution results demonstrated that the adsorption of HSA to the adsorbent was reversible. The depletion efficiencies for HSA were above 87% for all studied concentrations. To test the efficiency of HSA removal from human serum, proteins in the serum and eluted portion were analyzed by two-dimensional gel electrophoresis. Eluted proteins include mainly albumin, and a small number of nonalbumin proteins such as apo-lipoprotein A1, sero-transferrin, haptoglobulin and alpha1-antitrypsin were bound by the dye-affinity beads. IgA was not identified in eluted fraction.  相似文献   

7.
《Process Biochemistry》2010,45(4):556-562
Magnetic poly(2-hydroxyethylmethacrylate) [mPHEMA] beads were prepared by suspension polymerization of HEMA in the presence of Fe3O4 nano-powder. Cibacron Blue F3GA was covalently immobilized to the mPHEMA beads via nucleophilic substitution reaction between chloride of its triazine ring and hydroxyl groups of HEMA under alkaline conditions. The mPHEMA/Cibacron Blue F3GA beads (100–140 μm in diameter) carrying 68.3 μmol Cibacron Blue F3GA per gram polymer were used for β-casein adsorption studies. Adsorption studies were performed under different conditions in a batch system (i.e., pH, β-casein initial concentration, temperature, and ionic strength) and then in a magnetically stabilized fluidized bed (MSFB) system. The swelling ratio of the mPHEMA was 62.1%. The maximum adsorption capacity for batch system was 20.2% lower as compared to the value obtained in MSFB. The mPHEMA/Cibacron Blue F3GA beads could be repeatedly applied for β-casein adsorption without significant losses in the adsorption capacity.  相似文献   

8.
A novel affinity sorbent system for direct bilirubin removal from human plasma was developed. These new adsorbents comprise Cibacron Blue F3GA as the specific ligand, and microporous membranous poly(tetrafluoroethylene) capillary (modified by coating with a hydrophilic layer of poly(vinyl alcohol) after activation) as the carrier matrix. The affinity adsorbents carrying 126.5 micromol Cibacron Blue F3GA/g polymer was then used to remove bilirubin in a flow-injection system. Non-specific adsorption on the poly(vinyl alcohol) coated capillary remains low, and higher affinity adsorption capacity, of up to 76.2 mg/g polymer was obtained after dye immobilization. The bilirubin adsorption capacity of the affinity capillary decreased with increase in the recirculation rate of plasma. The adsorption capacity increased with increase the temperature while decreased with increase the ionic strength. The maximum adsorption was only observed in neutral solution (pH 6-7). The adsorption isotherm fitted the Langmuir model well. These new adsorbents have higher velocity of mass transfer, better adsorption capacity, less fouling, longer service life and good reusability. The results of blood tests suggested the dye affinity capillary has good blood compatibility.  相似文献   

9.
Poly(ethylene glycol dimethacrylate-n-vinyl imidazole) [poly(EGDMA–VIM)] hydrogel (average diameter 150–200 μm) was prepared copolymerizing ethylene glycol dimethacrylate (EGDMA) with n-vinyl imidazole (VIM). Poly(EGDMA–VIM) beads had a specific surface area of 59.8 m2/g. Poly(EGDMA–VIM) beads were characterized by swelling studies and scanning electron microscope (SEM). Cu2+ ions were chelated on the poly(EGDMA–VIM) beads (452 μmol Cu2+/g), then the metal-chelated beads were used in the adsorption of yeast invertase in a batch system. The maximum invertase adsorption capacity of the poly(EGDMA–VIM)–Cu2+ beads was observed as 35.2 mg/g at pH 4.5. The adsorption isotherm of the poly(EGDMA–VIM)–Cu2+ beads can be well fitted to the Langmuir model. Adsorption kinetics data were tested using pseudo-first- and -second-order models. Kinetic studies showed that the adsorption followed a pseudo-second-order reaction. The value of the Michaelis constant Km of invertase was significantly larger upon adsorption, indicating decreased affinity by the enzyme for its substrate, whereas Vmax was smaller for the adsorbed invertase. The optimum temperature for the adsorbed preparation of poly(EGDMA–VIM)–Cu2+-invertase at 50 °C, 10 °C higher than that of the free enzyme at 40 °C. Storage stability was found to increase with adsorption. Adsorbed invertase retains an activity of 82% after 10 batch successive reactions, demonstrating the usefulness of the enzyme-loaded beads in biocatalytic applications.  相似文献   

10.
Magnetic poly(2-hydroxyethyl methacrylate) mPHEMA beads carrying Cibacron Blue F3GA were prepared by suspension polymerization of HEMA in the presence of Fe3O4 nano-powder. Average size of spherical beads was 80-120 microm. The beads had a specific surface area of 56.0m(2)/g. The characteristic functional groups of dye-attached mPHEMA beads were analyzed by Fourier transform infrared spectrometer (FTIR) and Raman spectrometer. mPHEMA with a swelling ratio of 68% and carrying 28.5 micromol CibacronBlueF3GA/g were used for the purification of lysozyme. Adsorption studies were performed under different conditions in a magnetically stabilized fluidized bed (i.e., pH, protein concentration, flow-rate, temperature, and ionic strength). Lysozyme adsorption capacity of mPHEMA and mPHEMA/Cibacron Blue F3GA beads were 0.8 mg/g and 342 mg/g, respectively. It was observed that after 20 adsorption-desorption cycle, mPHEMA beads can be used without significant loss in lysozyme adsorption capacity. Purification of lysozyme from egg white was also investigated. Purification of lysozyme was monitored by determining the lysozyme activity using Micrococcus lysodeikticus as substrate. The purity of the desorbed lysozyme was about 87.4% with recovery about 79.6%. The specific activity of the desorbed lysozyme was high as 41.586 U/mg.  相似文献   

11.
Cibacron Blue F3GA was covalently attached onto magnetic poly(vinyl alcohol) (mPVAL) beads (100-150 μm in diameter) for human serum albumin (HSA) adsorption from human plasma. Despite low nonspecific adsorption of HSA on mPVAL beads, Cibacron Blue F3GA attachment significantly increased the HSA adsorption. The maximum HSA adsorption was observed at pH 5.0. Higher HSA adsorption was observed from human plasma. Desorption of HSA from mPVAL beads was achieved by medium containing 1.0 M KSCN at pH 8.0. To test the efficiency of albumin adsorption from human serum, before and after albumin adsorption was demonstrated with sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) analyses. HSA molecules could be reversibly adsorbed and desorbed 10 times with the magnetic beads without noticeable loss in their HSA adsorption capacity.  相似文献   

12.
Blue dextran or Cibacron Blue F3GA has been shown to inhibit yeast phosphoglycerate kinase [EC 2.7.2.3] competitively with respect to ATP (Thompson et al. (1975) Proc. Natl. Acad. Sci. U.S. 72, 663--667; Beissner and Rudolph (1979) J. Biol. Chem. 254, 6273--6277). However, we have found that phosphoglycerate kinase of Lactobacillus plantarum was inhibited by Cibacron Blue F3GA, the blue chromophore of blue dextran, noncompetitively with respect to ATP, but competitively with respect to 3-phosphoglycerate. Further inhibition studies with Cibacron Blue F3GA suggest that one molecule of the dye was bound per molecule of phosphoglycerate kinase at a saturated level of either substrate, but two molecules of the dye were bound per molecule of the kinase with an unsaturated level of either substrate used as a fixed substrate. Furthermore, phosphoglycerate mutase [EC 2.7.5.3] of Leuconostoc dextranicum was also inhibited by Cibacron Blue F3GA competitively with respect to 3-phosphoglycerate and noncompetitively with respect to 2,3-bisphosphoglycerate. These results suggest that the 3-phosphoglycerate-binding site on both phosphoglycerate kinase and phosphoglycerate mutase can interact with Cibacron Blue F3GA.  相似文献   

13.
Functional recovery following a sciatic nerve crush in rats was investigated by measuring the reflex withdrawal of the hindpaw to a hot air stream. The ACTH(4–9) analog Org 2766 accelerated recovery when administered subcutaneously (two-daily injections: 10 μg/animal; minipumps: 20–40 μg/animal per 24 hr; biodegradable microspheres: 40 μg/animal per 24 hr), but oral administration (1.5–20 mg/animal daily, in the drinking water; 1.5–15 mg/animal daily, by gavage) was not effective.  相似文献   

14.
Cibacron Blue F3GA from several commercial sources is shown to be heterogeneous. This crude dye inactivates both phosphoglycerate kinase and isoleucyl-tRNA synthetase. Purification of Cibacron Blue F3GA to homogeneity results in a dramatic decrease in inactivation of these enzymes. The inactivation is shown to be due to covalent modification of phosphoglycerate kinase and probably isoleucyl-tRNA synthetase by a minor component present in crude Cibacron Blue F3GA.  相似文献   

15.
以F3GA(Cibacron Blue F3GA)为配基建立了一种可用于免疫毒素(IT)分离纯化的亲和层析方法。实验中用三种不同来源的核糖体灭活蛋白(RIP),即蓖麻毒素A链(RTA),苦瓜毒素(momordin,MT)和Saporin,以探讨RIP与F3GA的相互作用。分析显示三种RIP均能引起F3GA吸收光诸明显红移,提示RIP均可与F3GA发生特异结合。将F3GA与Sephadex交联可获得Bluedex。Bluedex亲和层析是一种经济有效,简单易行,便于在各类实验室中使用的蛋白质亲和层析技术。结果表明:在低盐溶液中RTA和MT均可迅速地与Bluedex结合,而在高盐溶液中(0.65mol/LNaCl)又极易被洗脱回收。这一技术用于免疫毒素的研究可有效地去除游离抗体,而不影响其杀伤活性。  相似文献   

16.
The aim of this work was to test a chromatographic affinity support containing methacryloyl antipyrine (MAAP) for penicillin acylase (PA) purification by using pure penicillin acylase and crude extract. First, MAAP as a pseudo-specific ligand was synthesized by using methacryloyl chloride and 4-aminoantipyrine. Polymer beads (average size diameter: 40–120 μm) were prepared by suspension polymerization of ethylene glycol dimethacrylate (EGDMA) and MAAP. This approach for the preparation of adsorbent has several advantages over conventional preparation protocols. An expensive and time consuming step in the preparation of adsorbent is immobilization of a ligand to the adsorption matrix. In this procedure, affinity ligand MAAP acts as comonomer without further modification steps. Poly(EGDMA-MAAP) beads were characterized by FTIR, NMR and screen analysis. Elemental analysis of MAAP for nitrogen was estimated as 89.3 μmol/g. The prepared adsorbent was then used for the capture of penicillin acylase in batch system. The maximum penicillin acylase adsorption capacity of the poly(EGDMA-MAAP) beads was found to be 82.2 mg/g at pH 5.0. Chromatography with crude feedstock resulted in 23.2-fold purification and 93% recovery with 1.0 M NaOH.  相似文献   

17.
Human serum transcobalamin II (TC II), a vitamin B12 (Cbl) transport protein, complexes with Cibacron Blue F3GA, a reactive blue dye which can bind to proteins that require nucleotides as cofactors. Apo-TC II and holo-TC II both bind, but intrinsic factor (IF) and R-type binders of Cbl do not. Other mammalian species TC II also complex with the dye. Greater than 87% of the applied TC II-CN-[57Co]Cbl remains bound to the dye even at pH 4.0. At pH values below this, the CN-[57Co]Cbl dissociates off TC II which remains bound to the dye. High salt concentrations will break the TC II-dye complex. Ionic forces were considered not to be involved since complexing also occurred at pH 9.0, 2.5 pH units above the isoelectric point of TC II. Failure to dissociate the TC II-dye complex with 50% glycerol makes hydrophobic interactions unlikely. In addition to the potential uses of TC II-Cibacron Blue F3GA complexes in a total scheme for protein purification, the possibility that TC II is a nucleotide-requiring protein should be explored.  相似文献   

18.
The composition and purity of three commercial preparations of the widely used affinity chromatography ligand Cibacron Blue F3GA have been evaluated by TLC and by paired-ion reversed-phase HPLC and were found to contain several chromophoric species. Stepwise synthesis of the reported dye structure showed that only one commercial preparation contained any actual Cibacron Blue F3GA, and that it was present only in minor amounts. In all three preparations the major component appears to be the dichlorotriazinyl precursor of Cibacron Blue F3GA. Commercial samples of the related dyes Procion Blue MX-3G and Procion Blue MX-R are also highly heterogeneous. In addition, our experiments suggest that TLC results must be evaluated carefully to ensure that catalytic surface activity of alumina and silica has not created ghost bands.  相似文献   

19.
Covalent coupling of chitosan (CS) to activated nylon membrane was performed after the reaction of the microporous nylon membrane with formaldehyde. Non-specific adsorption on the CS-coated nylon membrane decreased greatly, compared with plain nylon membrane. The dye Cibacron Blue F3GA (CB F3GA) as a ligand was then covalently immobilized on the CS-coated membranes. Physical properties of the composite membrane and its applications in affinity membrane chromatography were examined. The contents of CS and CB F3GA-attached membranes were 89.6 mg/g nylon membrane and 146.1 micromol/g nylon membrane, respectively. These CB F3GA-attached composite membranes were used in the papain adsorption studies. Higher papain adsorption capacity, up to 235.3mg/g affinity membrane, was obtained. The adsorption isotherm fitted the Freundlich model well. Significant amount of the adsorbed papain (about 94.3%) was eluted by 1.0M NaSCN at pH 9.0. Experiments on regeneration and dynamic adsorption were also performed. It appears that CB F3GA-CS nylon membranes can be applied for papain separation without causing any denaturation.  相似文献   

20.
The present study describes the preparation of poly(HEMA-co-GMA) reactive membranes that were grafted with polyethylenimine (PEI) following UV photo-polymerization. The immobilization of tyrosinase was carried out via multi-point ionic interactions based on ---NH2 groups of PEI and Cu(II) ions. Tyrosinase is a copper-dependent enzyme, which should show a binding affinity for the chelated Cu(II) ions on the membrane surfaces. The tyrosinase immobilization was positively correlated with the input enzyme amount in the immobilization medium. The maximum tyrosinase immobilization capacities of the poly(HEMA-co-GMA)–PEI and poly(HEMA-co-GMA)–PEI–Cu(II) membranes were 19.3 and 24.6 mg/m2, respectively. The enzyme activity when assessed at various pH and temperatures gave broader range for immobilized preparations when compared to free enzyme. The poly(HEMA-co-GMA)–PEI–Cu(II) tyrosinase membranes retained 82% of their initial activity at the end of 120 h of continuous reaction. Moreover, upon storage for 3 months the activity of the immobilized membranes retained 46% of their initial levels. After deactivation of the enzyme, the poly(HEMA-co-GMA)–PEI membrane was easily regenerated, re-chelated with the Cu(II) ions and reloaded with the enzyme for repeated use. The mild immobilization conditions, easy and rapid membrane preparation, one-step enzyme adsorption at substantially higher levels and membrane reusability are the beneficial properties of such systems and offers promising potential in several biochemical processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号