首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
高浓度CO_2培养条件下极大螺旋藻光抑制研究   总被引:1,自引:0,他引:1  
以极大螺旋藻作为实验材料 ,研究了不同 CO2 浓度培养对螺旋藻光抑制和恢复的影响 ,结果表明由光抑制导致的光合速率下降 ,高浓度 CO2 比低浓度 CO2 培养程度小 ,在高浓度 CO2 条件下培养的极大螺旋藻 ,虽然在强光下也表现出光抑制 ,但与低浓度 CO2 相比 ,光合速率下降得较慢。这种现象在强光与弱光培养均存在 ,但强光培养时更明显。光抑制后的恢复实验表明 ,不同 CO2 浓度培养的极大螺旋藻 ,光系统 光化学活性 (Fv/Fm)在弱光下恢复较好 ,高光强、高浓度 CO2 培养的藻 ,恢复速度稍快 ;而在黑暗中 ,几乎没有恢复 ;在弱光和含氯霉素的条件下 Fv/Fm均下降。由此可见 ,高 CO2 浓度可减轻极大螺旋藻的光抑制 ,但对其光抑制后的恢复影响不大。  相似文献   

2.
强光和短期高浓度CO2对玉米和大豆光能转化效率的影响   总被引:17,自引:3,他引:14  
盆栽和人工光源条件下,玉米叶片在普通空气中对强光照射不敏感,在高浓度CO2中强光照射0~5h后,光合速率(Pn)逐渐降低,无机磷(Pi)限制是其主要原因之一;大豆叶片在普通空气中受强光照射5h后,Fv/Fm、Pn、羧化效率(CE)和表观量子效率(AOY)明显降低,Fo升高,在高浓度CO2和强光下大豆Fo上升、Fv/Fm和气体交换参数下降的幅度减小。研究表明,高浓度CO2可减轻强光对植物尤其是C3植物光合功能的损伤,有限地缓解光抑制,但不能完全消除强光导致的大豆Pn和气孔导度(Gs)的降低。  相似文献   

3.
水淹对水芹叶片结构和光系统II光抑制的影响   总被引:3,自引:0,他引:3  
通过探讨在水淹条件下水芹(Oenanthe javanica)叶片结构的变化以及出水对其光系统II功能和光抑制的影响, 阐明水芹光合机构在水淹条件下及出水后死亡的可能原因。结果表明: 水淹条件下新生沉水功能叶光系统II(PSII)最大光化学效率(Fv/Fm) 、电子传递活性与对照叶片差异很小, 但水淹使气生功能叶的Fv/Fm显著降低; 植株总生物量呈负增长趋势; 活体弱光条件下, 沉水叶出水后2小时叶片相对含水量(RWC)和Fv/Fm无显著变化; 中等光强和强光条件下其RWC和Fv/Fm迅速降低; 离体条件下, 5小时的中等光强对沉水叶的Fv/Fm影响不显著, 在随后的弱光下能恢复到出水时的初始状态; 强光能使沉水叶的Fv/Fm大幅降低, 且弱光下不能恢复到出水时的初始水平; 在解剖结构上, 水芹沉水叶的叶片总厚度、上下表皮厚度和气孔大小都显著低于气生叶, 而且沉水叶没有明显的栅栏组织分化, 但是沉水叶上表皮的气孔密度显著高于气生叶。研究结果表明, 水淹使水芹原气生叶PSII功能迅速衰退, 但对新生沉水叶片影响很小。水芹植株出水后, 沉水叶片结构变化使其在光下保水能力下降, 而强光导致了光合机构的光抑制和反应中心失活。田间条件下两者共同作用则加剧了对叶片光合机构的破坏, 进而致使其死亡。  相似文献   

4.
通过探讨在水淹条件下水芹(Oenanthe javanica)叶片结构的变化以及出水对其光系统II功能和光抑制的影响,阐明水芹光合机构在水淹条件下及出水后死亡的可能原因。结果表明:水淹条件下新生沉水功能叶光系统Ⅱ(PSⅡ)最大光化学效率(Fv/Fm)、电子传递活性与对照叶片差异很小,但水淹使气生功能叶的Fv/Fm显著降低;植株总生物量呈负增长趋势;活体弱光条件下,沉水叶出水后2小时叶片相对含水量(RWC)和Fv/Fm无显著变化;中等光强和强光条件下其RWC和Fv/Fm迅速降低;离体条件下,5小时的中等光强对沉水叶的Fv/Fm影响不显著,在随后的弱光下能恢复到出水时的初始状态;强光能使沉水叶的Fv/Fm大幅降低,且弱光下不能恢复到出水时的初始水平;在解剖结构上,水芹沉水叶的叶片总厚度、上下表皮厚度和气孔大小都显著低于气生叶,而且沉水叶没有明显的栅栏组织分化,但是沉水叶上表皮的气孔密度显著高于气生叶。研究结果表明,水淹使水芹原气生叶PSⅡ功能迅速衰退,但对新生沉水叶片影响很小。水芹植株出水后,沉水叶片结构变化使其在光下保水能力下降,而强光导致了光合机构的光抑制和反应中心失活。田间条件下两者共同作用则加剧了对叶片光合机构的破坏,进而致使其死亡。  相似文献   

5.
苗期遮荫对花生(Arachis hypogaea L.)光合生理特性的影响   总被引:4,自引:0,他引:4  
大田条件下,以花生品种"花育22号"为材料,齐苗期设置遮荫50%和85%两个遮荫强度分别处理40d,研究了遮荫对花生光合特性的影响及遮荫解除后的光合恢复规律.结果表明:(1)与正常光照条件相比,遮荫花生叶片净光合速率(Pn)、RuBP羧化效率降低,叶绿素含量、表观量子效率及光系统Ⅱ的最大光化学效率(Fv/Fm)增加,表明花生对弱光胁迫有一定的自我调节和适应能力.(2)遮荫和自然光下生长的花生中午强光下的Fv/Fm值均明显下降,表明发生了光抑制,遮荫程度越大,光抑制愈严重.(3)Fv/Fm值和净光合速率Pn遮荫解除后5d之内持续下降,之后逐步恢复.遮荫50%处理的叶片Fv/Fm值和Pn分别于遮荫解除后8d和10d左右恢复到对照水平;遮荫85%的处理分别于遮荫解除后15d和20d左右才恢复到最大,但Pn不能恢复到对照水平,显著低于对照.  相似文献   

6.
高浓度CO2对极大螺旋藻生长和光合作用的影响   总被引:7,自引:3,他引:4  
以极大螺旋藻作为实验材料,研究了高CO2浓度对极大螺旋藻的生长和光合作用效应,结果表明在高光强下(400μmolm^-2s^-1),高浓度CO2对其生长和光合作用有明显的影响。高浓度CO2培养下,辈放荡中的比生长速率是低浓度CO2培养的1.2倍;而在低光强下,高浓度CO2对其生长和光合作用无明显影响。两种不同CO2浓度和光强下培养的极大螺旋藻,在不同的生长时期,分别测定其P-I曲线,结果表明,低光强下培养的极大螺旋藻,在5d、8d、11d,两者的Ik、α值均无显著差异,Pmax在第5d、11d差异不显著,但在第8d有显著差异。而在高光强培养条件下,第8、11d通高浓度CO2培养的极大螺旋藻,其Pmax、α值明显大于通低浓度CO2培养的极大螺旋藻,但两者在第5d无明显差异。  相似文献   

7.
高浓度CO_2对极大螺旋藻生长和光合作用的影响   总被引:6,自引:4,他引:2  
以极大螺旋藻作为实验材料 ,研究了高CO2 浓度对极大螺旋藻的生长和光合作用效应 ,结果表明在高光强下 (40 0 μmolm- 2 s- 1 ) ,高浓度CO2 对其生长和光合作用有明显的影响 ,高浓度CO2 培养下 ,螺旋藻的比生长速率是低浓度CO2 培养的 1 2倍 ;而在低光强下 ,高浓度CO2 对其生长和光合作用无明显影响。两种不同CO2 浓度和光强下培养的极大螺旋藻 ,在不同的生长时期 ,分别测定其P -I曲线 ,结果表明低光强下培养的极大螺旋藻 ,在 5d、8d、1 1d ,两者的Ik、α值均无显著差异 ,Pmax在第 5d、1 1d差异不显著 ,但在第 8d有显著差异。而在高光强培养条件下 ,第 8、1 1d通高浓度CO2 培养的极大螺旋藻 ,其Pmax、α值明显大于通低浓度CO2 培养的极大螺旋藻 ,但两者在第 5d无明显差异。  相似文献   

8.
短暂低温对佛手光合生理的影响   总被引:3,自引:0,他引:3  
佛手(Citrus medica var. sarcodactylis Swingle)是一种对冷胁迫较为敏感的观果植物,在生产中普遍存在着冷害影响植物生长的现象.通过模拟浙中地区冬季设施种植中常见的短暂低温弱光条件,研究了佛手叶片的光合生理变化.研究表明,15℃低温即显著降低佛手光合速率、气孔导度,显著提高胞间CO2浓度;引起Fv/Fm显著性下降及初始荧光Fo显著上升的拐点温度为10℃,但延长处理时间至72h情况下,15℃亦显著降低Fv/Fm;低温处理还降低佛手光合羧化效率、最大光合速率,并导致光抑制现象发生时对应光强降低;低温条件下佛手叶片质膜透性及MDA含量高于对照,SOD、POD、CAT等抗氧化酶的活性则呈下降趋势;由此可见,短暂低温弱光胁迫首先是降低核酮糖1, 5-二磷酸羧化酶(Rubisco)等碳固定关键酶活性,引起氧自由基积聚,进而引发光抑制及光合速率的下降.  相似文献   

9.
持续常温弱光(25℃/18℃,l00umol m-2 s-1)、低温弱光(12℃/12℃,100 umol m-2 s-1和7℃/7℃,l00μmolm-2s-1)均导致黄瓜生长减慢或停滞、叶绿素含量、气孔导度和净光合速率、光合电子传递速率下降以及胞间CO2浓度上升.常温弱光和12℃弱光处理对光系统II的最大光化学效率Fv/Fm无显著影响,而7℃弱光处理导致Fv/Fm的可逆性下降.常温弱光和7℃、12℃弱光处理均导致了光化学反应速率的降低以及天线热耗散和反应中心过剩能量的增加.在胁迫后,12℃弱光0比7℃弱光更有利于植株光合功能的恢复.  相似文献   

10.
以生长于不同光环境下的地木耳为材料,对其Fv/Fm的日变化、光合作用特性、叶绿素和类胡萝卜素的含量进行了研究,以了解其光适应的生理生化基础。同阴生地木耳相比,阳生地木耳的光饱和点、类胡萝卜素含量、类胡萝卜素和叶绿素的比值均比较高,但其P-I曲线光限制部分的斜率、暗呼吸速率、Fv/Fm、叶绿素、MAAs含量和单位面积干重较低。二者最大光合速率和光补偿点无明显差异,二者均无明显的光呼吸。同等条件的光抑制后,阳生地木耳在暗处能更快、更大程度地恢复其Fv/Fm活性。原位研究表明,阴生和阳生地木耳在雨后强光下均有不同程度的光抑制发生,但在弱光下或夜晚时会及时恢复。阳生和阴生地木耳的光合特性及色素含量显著不同,以此来适应不同环境中的光因子。  相似文献   

11.
Loreto F  Bongi G 《Plant physiology》1989,91(4):1580-1585
Jojoba (Simmondsia chinensis [Link] Schneider) is an important crop in desert climates. A relatively high frequency of periods of chilling and high photon flux density (PFD) in this environment makes photoinhibition likely, resulting in a reduction of assimilation capacity in overwintering leaves. This could explain the low net photosynthesis found in shoots from the field (4-6 micromoles per square meter per second) when compared to greenhouse grown plants (12-15 micromoles per square meter per second). The responses of photosynthesis and stomatal conductance to changes in absorbed PFD and in substomatal partial pressure of CO2 were measured on jojoba leaves recovering from chilling temperature (4°C) in high or low PFD. No measurable gas exchange was found immediately after chilling in either high or low PFD. For leaves chilled in low PFD, the original quantum yield was restored after 24 hours. The time course of recovery from chilling in high PFD was much longer. Quantum yield recovered to 60% of its original value in 72 hours but failed to recover fully after 1 week. Measurements of PSII chlorophyll fluorescence at 77 K showed that the reduced quantum yield was caused by photoinhibition. The ratio of variable to maximal fluorescence fell from a control level of 0.82 to 0.41 after the photoinhibitory treatment and recovery was slow. We also found a large increase in net assimilation rate and little closure of stomata as CO2 was increased from ambient partial pressure of 35 to 85 pascals. For plants grown in full light, the increase in net assimilation rate was 100%. The photosynthetic response at high CO2 concentration may constitute an ecological advantage of jojoba as a crop in the future.  相似文献   

12.
Illumination of a liquid culture of Synechococcus 6301 at high photon flux density (PFD) elicits a time-dependent first-order exponential decline in relative quantum yield of photosynthetic O2 evolution to some steady-state value. Full photosynthetic activity is restored, also as a time-dependent first-order process, when the photoinhibited culture is transferred to lower PFD. Temperature and irradiation dependence of photoinhibition were measured under conditions which precluded simultaneous recovery from photoinhibition. Also the temperature and irradiation dependence of recovery from photoinhibition were determined under conditions which precluded simultaneous photoinhibition. Kinetics of photoinhibition were sensitive to PFD but relatively independent of temperature. Kinetics of recovery saturated at low PFD but were very temperature dependent at all PFDs. A general equation can be written to predict the change in photosynthetic activity versus time when a cell culture is placed at photoinhibitory PFD, assuming that first-order exponential photoinhibition and first-order exponential recovery from photoinhibition occur simultaneously. The equation can be made specific if the values of the kinetic constant for photoinhibition and for recovery from photoinhibition are known for the particular environmental conditions to which the cells are exposed. These values can be obtained by independently measuring the kinetics of photoinhibition without simultaneous recovery and the kinetics of recovery without simultaneous photoinhibition. The curve of photosynthetic activity versus time for cells placed at high PFD, which is predicted by this equation, precisely fits the experimentally determined kinetics of photoinhibition. This correlation remains valid over a wide range of temperatures and PFDs. Identical results were obtained with the marine cyanobacterium Synechococcus 7002. We conclude that the extent of net photoinhibition over a broad range of conditions represents a sum of individual rates of simultaneous photoinhibition and recovery from photoinhibition. The results support previous proposals that a protein required for photosystem II activity becomes functionally depleted during photoinhibition because protein synthesis or assembly into the membranes cannot keep up with the rate of its inactivation at excessively high PFDs. We also conclude that photoinhibition and light-dependent chilling sensitivity are manifestations of the same phenomenon.Abbreviations CAP chloramphenicol - Chl chlorophyll - PFD photon flux density - PSII photosystem II The authors thank Rockey Butler and Donna Scott for performing many of the preliminary experiments which led to this research. This work was supported by R.A. Welch and University Research Institute Grants to J.J.B.  相似文献   

13.
D. H. Greer  W. A. Laing 《Planta》1989,180(1):32-39
Intact leaves of kiwifruit (Actinidia deliciosa (A. Chev.) C.F. Liang et A.R. Ferguson) from plants grown in a range of controlled temperatures from 15/10 to 30/25°C were exposed to a photon flux density (PFD) of 1500 μmol·m−2·s−1 at leaf temperatures between 10 and 25°C. Photoinhibition and recovery were followed at the same temperatures and at a PFD of 20 μmol·m−2·s−1, by measuring chlorophyll fluorescence at 77 K and 692 nm, by measuring the photon yield of photosynthetic O2 evolution and light-saturated net photosynthetic CO2 uptake. The growth of plants at low temperatures resulted in chronic photoinhibition as evident from reduced fluorescence and photon yields. However, low-temperature-grown plants apparently had a higher capacity to dissipate excess excitation energy than leaves from plants grown at high temperatures. Induced photoinhibition, from exposure to a PFD above that during growth, was less severe in low-temperature-grown plants, particularly at high exposure temperatures. Net changes in the instantaneous fluorescence,F 0, indicated that little or no photoinhibition occurred when low-temperature-grown plants were exposed to high-light at high temperatures. In contrast, high-temperature-grown plants were highly susceptible to photoinhibitory damage at all exposure temperatures. These data indicate acclimation in photosynthesis and changes in the capacity to dissipate excess excitation energy occurred in kiwifruit leaves with changes in growth temperature. Both processes contributed to changes in susceptibility to photoinhibition at the different growth temperatures. However, growth temperature also affected the capacity for recovery, with leaves from plants grown at low temperatures having moderate rates of recovery at low temperatures compared with leaves from plants grown at high temperatures which had negligible recovery. This also contributed to the reduced susceptibility to photoinhibition in low-temperature-grown plants. However, extreme photoinhibition resulted in severe reductions in the efficiency and capacity for photosynthesis.  相似文献   

14.
Hart JJ  Stemler A 《Plant physiology》1990,94(3):1301-1307
Triazine-resistant and -susceptible Brassica napus L. plants grown under low photon flux density (PFD) have previously been shown to exhibit a similar photon yield. In contrast, high PFD-grown resistant plants have a lower photon yield than high PFD-grown susceptible plants (JJ Hart, A Stemler [1990] Plant Physiol 94: 1295-1300). In this work we tested the hypothesis that high PFD can induce a differential decrease in photon yield in low PFD-grown plants. We measured photon yield, variable fluorescence/maximum fluorescence, and O2 flash yield in low PFD-grown resistant and susceptible leaf discs before and after exposure to high PFD exposure. The results demonstrated that high PFD exposure results in a greater decrease in photosystem II (PSII) activity in resistant plants. Characteristics of recovery and other evidence suggest that the differential decrease in PSII efficiency in resistant leaf discs is caused by photoinhibitory damage. We propose that the differential reduction in photon yield and photosynthesis often observed in resistant plants is the result of increased sensitivity to photoinhibition.  相似文献   

15.
The susceptibility of photosynthesis to photoinhibition and the rate of its recovery were studied in the cyanobacterium Anacystis nidulans grown at a low (10 micromoles per square meter per second) and a high (120 micromoles per square meter per second) photosynthetically active radiation. The rate of light limited photosynthetic O2 evolution was measured to determine levels of photoinhibition and rates of recovery. Studies of photoinhibition and recovery with and without the translation inhibitor streptomycin demonstrated the importance of a recovery process for the susceptibility of photosynthesis to photoinhibition. We concluded that the approximately 3 times lower susceptibility to photoinhibition of high light than of low light grown cells, significantly depended on high light grown cells having an approximately 3 times higher recovery capacity than low light grown cells. It is suggested that these differences in susceptibility to photoinhibition and recovery depends on high light grown cells having a higher turnover rate of photosystem II protein(s) that is(are) the primary site(s) of photodamage, than have low light grown cells. Furthermore, we demonstrated that photoinhibition of A. nidulans may occur under physiological light conditions without visible harm to the growth of the cell culture. The results give support for the hypotheses that the net photoinhibitory damage of photosystem II results from the balance between the photoinhibitory process and the operation of a recovery process; the capacity of the latter determining significant differences in the susceptibility of photosynthesis to photoinhibition of high and low light grown A. nidulans.  相似文献   

16.
In the present study, we investigated the effects of CO(2) availability on photosynthesis, photoinhibition and pigmentation in two species of amphibious plants, Lobelia cardinalis and Nesaea crassicaulis. The plants were grown emergent under atmospheric conditions and submerged under low and high CO(2) availability. Compared with Lobelia, Nesaea had thin leaves and few stomata in all CO(2) treatments. While Lobelia expressed no variation in anthocyanin content among treatments, Nesaea produced high concentrations of anthocyanin when submerged. Lobelia photosynthesis increased in response to increasing CO(2) availability, and photoinhibition was negatively related to xanthophyll content. By contrast, Nesaea photosynthesis was highest under submerged conditions, and there was no relationship between photoinhibition and the xanthophyll content. We conclude that the response of Lobelia to varying CO(2) availability is similar to that of terrestrial plants and that this species relies on the xanthophyll cycle for nonphotochemical quenching (NPQ) and protection against photoinhibition. By contrast, the thin leaves, few stomata and low levels of chlorophylls and accessory pigments in Nesaea, relative to Lobelia, suggest adaptation to a submerged habitat. While Nesaea does not seem to rely on the xanthophyll cycle or other xanthophylls for NPQ, some role of anthocyanins in the protection against photoinhibition cannot be ruled out, owing to its effect as a sunscreen and as an efficient quencher of free radicals.  相似文献   

17.
Attached intact leaves of Schefflera arboricola grown at three different photon flux densities (PFDs) were subjected to 24-h exposures to a high PFD and subsequent recovery at a low PFD. While sun leaves showed virtually no sustained effects on photosystem II (PSII), shade-grown leaves exhibited pronounced photoinhibition of PSII that required several days at low PFD to recover. Upon transfer to high PFD, levels of nonphotochemical quenching in PSII as well as levels of zeaxanthin were initially low in shade leaves but continued to increase gradually during the 24-h exposure. The xanthophyll cycle pool size rose gradually during and also subsequent to the photoinhibitory treatment in shade leaves. Upon return to low PFD, a marked and extremely long-lasting retention of zeaxanthin and antheraxanthin was observed in shade but not sun leaves. During recovery, changes in the conversion state of the xanthophyll cycle therefore closely mirrored the slow increases in PSII efficiency. This novel report of a close association between zeaxanthin retention and lasting PSII depressions in these shade leaves clearly suggests a role for zeaxanthin in photoinhibition of shade leaves. In addition, there was a decrease in β-carotene levels, some decrease in chlorophyll, but no change in lutein and neoxanthin (all per leaf area) in the shade leaves during and subsequent to the photoinhibitory treatment. These data may be consistent with a degradation of a portion of core complexes but not of peripheral light-harvesting complexes. A possible conversion of β-carotene to form additional zeaxanthin is discussed. Received: 24 October 1997 / Accepted: 12 November 1997  相似文献   

18.
Two strains of Spirulina platensis, marked Sp-G and Sp-RB, werestudied for their response to high photon flux densities (PFD).Sp-RB, a gas vacuolated strain, appeared more sensitive to thehigh PFD treatment as compared with Sp-G, a non-vacuolated strain.The loss of the photosynthetic activity due to the photoinhibitorytreatment was obtained at the level of whole cells as well asthe membrane level. Sp-RB was more sensitive than Sp-G at bothlevels. Experiments using chloramphenicol during the photoinhibitionprocess, and others in which the fate of radio-active labeledthylakoid proteins was followed, indicated that the differencebetween the strains lies in the rate of loss of the Dl polypeptidewith an electrophoretic mobility of 32–34 kDa. Both strainsrecovered from the photoinhibition when placed under low PFD.The recovery process started immediately after PFD was reduced,without any observed lag period, and was sensitive to chloramphenicol.Light was required for full recovery of activity. The rate ofrecovery of the two strains studied was very similar. 1Contribution no. 29 of the Micro-Algal Biotechnology Lab. (Received January 11, 1988; Accepted March 31, 1988)  相似文献   

19.
Sensitivity to photoinhibition under high light stress (2000 [mu]mol photons m-2 s-1 for 2 h in air) and recovery from this stress were examined in leaves of control, uninfected tobacco (Nicotiana tabacum cv Xanthi) leaves and in leaves in tobacco plants infected with tobacco mosaic virus (TMV) when grown under low light (150-200 [mu]mol photons m-2 s-1) or high light (1200 [mu]mol photons m-2 s-1) with high (8.0 mM) or low (0.5 mM) nitrate supply. Photoinhibition was monitored using the dark-adapted fluorescence parameters variable fluorescence/maximum fluorescence, an indicator of photosynthetic efficiency that correlated well with the quantum yield of photosynthetic oxygen evolution, and initial fluorescence, potentially an indicator of photoinhibitory damage. Susceptibility to photoinhibition was greater in low light- and low nitrogen-grown control plants than in high light- or high nitrogen-treated plants. Compared with uninfected controls, infection with the masked strain PV42 increased susceptibility to photoinhibition only in plants grown under low light/low nitrogen conditions. In expanding leaves, infection with severe strain TMV PV230 markedly accelerated photoinhibition under these conditions and under high light/low nitrogen conditions, even before visible symptoms were evident. High nitrogen levels during growth protected against this accelerated photoinhibitory response to virus infection during light stress and generally promoted recovery, at least prior to symptom development. As symptoms developed, the yellow regions provided evidence for chronic photoinhibitory damage, prior to and during the stress treatment, irrespective of growth conditions. Green regions of leaves showing visible symptoms were generally indistinguishable from control, uninfected plants during photoinhibitory stress and recovery. In developed leaves that remained free of visible symptoms during the experiments, in spite of the accumulation of about the same amounts of virus protein (S. Balachandran, C.B. Osmond, A. Makino [1994] Plant Physiol 104: 1043-1050) infection led to an acceleration of photoinhibition during stress treatments, especially in low light/low nitrogen treatments, in which chronic photoinhibitory damage was evident. These studies suggest a role for photoinhibitory damage in the acceleration of visible symptom development following TMV PV230 infection of expanding leaves, as well as in acceleration of senescence in developed leaves without visible symptoms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号