首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
本文采用网络药理学与分子对接法探索红花治疗缺血性脑卒中的主要活性成分及作用靶点。利用TCMSP、Genecards、Venny、DAVID等数据库检索红花与缺血性脑卒中疾病的共同靶点,绘制相互作用关系网络图,并进行GO和KEGG富集分析;通过AutoDock Tools对红花主要活性成分与关键靶点进行分子对接验证。结果从TCMSP数据库收集22种红花活性成分与459个相关靶点,并在Uniprot转换靶点基因名。最终在Venny 2.1.0中得到73个红花活性成分与缺血性脑卒中疾病共同靶点,进而构建"红花-活性成分-脑缺血共同靶点"网络图。分子对接结果表明,主要活性成分分别与关键靶点结合展现出较好的亲和力。因此推断,红花的主要活性成分与关键靶点结合,进而调控AGE-RAGE、TNF和IL-17信号通路可能是红花治疗缺血性脑卒中发挥作用的重要机制。  相似文献   

2.
本文旨在通过网络药理学和分子对接方法探讨丹参-丹皮活性成分治疗脑卒中的潜在分子机制。首先基于中药系统药理学分析平台筛选丹参、丹皮的活性成分及其作用靶点,利用CTD、TTD和GeneCards数据库收集脑卒中相关靶点。然后将药物和疾病靶点取交集,借助STRING数据库获取靶点间相互作用关系,利用R语言的ClusterProfiler包对其进行生物功能和通路富集分析。最后,通过Cytoscape软件构建蛋白质-蛋白质相互作用和成分-靶点-通路网络图,并利用AutoDock Vina软件对网络中的关键靶点及对应成分进行分子对接验证。结果显示丹参-丹皮成分作用于脑卒中的靶点67个,GO分析显示其主要参与脂多糖应答,细菌来源的分子反应,氧化应激等生物学过程。KEGG通路富集共得到149条通路(P<0.05),主要涉及AGE-RAGE信号通路、IL-17信号通路、TNF信号通路等。分子对接结果显示,筛选的主要活性成分与其对应靶蛋白均具有较好的结合活性。综上,本研究通过网络药理学预测了丹参-丹皮治疗脑卒中可能的药效物质基础及其作用机制,为进一步挖掘其药效成分和临床扩大使用范围提供科学依据。  相似文献   

3.
血管内皮细胞在维持血管生理稳态中发挥了重要的作用,其功能障碍是动脉粥样硬化、冠心病、脑卒中、肿瘤等多种重大疾病发生发展的病理基础,调节血管内皮细胞功能是防治上述疾病的主要途径之一。大量研究表明,皂苷类成分可通过改善血管内皮功能达到治疗疾病的目的。综述了近年来报道的皂苷类成分调节血管内皮功能的研究进展,旨在为皂苷类成分作用机制的阐明和相关重大疾病的防治提供一定参考。  相似文献   

4.
紧密连接存在于所有上皮或内皮细胞间连接的最顶端,是物质经过旁细胞途径进行物质转运的结构基础,具有"屏障"和"栅栏"的作用。在炎症及免疫因素介导的多种疾病中,如炎症性肠病、囊肿性纤维化、舍格伦综合征和神经系统炎症等,患者血清及疾病累及的上皮或内皮组织均出现多种促炎因子含量升高。促炎因子作用于相关的上皮或内皮组织,通过影响紧密连接蛋白的表达、结构和功能从而调控上皮或内皮的旁细胞途径通透性,是炎症性疾病的一个重要的发病机制。本文重点综述了促炎因子对肠道、呼吸道、唾液腺上皮以及脑微血管内皮紧密连接的调控及其相关分子机制。  相似文献   

5.
动脉粥样硬化和缺血性脑损伤是防治缺血性脑卒中所面临的两大难题,而细胞炎症损伤是它们的共同诱因。丙戊酸作为组蛋白去乙酰化酶抑制剂,具有抑制细胞炎症因子释放及保护神经的作用,所以丙戊酸可能是防治缺血性脑卒中的潜在治疗药物。本文从组蛋白去乙酰化酶对缺血性脑卒中的影响以及丙戊酸的抗炎机制两个方面进行综述。  相似文献   

6.
结直肠癌是消化道频发的重大恶性肿瘤,其发病率和致死率逐年攀升,严重威胁着人类生命安全。虽然多种化疗药物已广泛应用于临床,然而其潜在的毒副作用和耐药性致使患者依从性差,进而导致化疗以失败告终。基于此,亟待挖掘高效低毒的抗结直肠癌药物以应对现实的临床治疗窘境。中药单体成分作为中药发挥药效的主要效应物质,在临床抗结直肠癌方面优势凸显。与合成类化学制剂相比,其来源丰富,安全性高,在结直肠癌防治方面呈现出较大潜力。因此,本文从化学活性物质角度出发,系统总结了中药单体活性成分的抗结直肠癌作用和主要分子机制,并结合当前研究现状对中药治疗结直肠癌的相关研究进行了初步探讨,以期为中药单体成分抗结直肠癌研究及临床应用提供理论依据和参考价值。  相似文献   

7.
脑缺血后的脑微血管变化   总被引:2,自引:0,他引:2  
Tang MK  Feng WH  Xu QP 《生理科学进展》2006,37(3):236-238
大脑微血管具有独特的组织结构,这种结构对脑组织起到了保护性屏障作用,局部脑缺血可以引起这种屏障功能破坏,导致血液成分渗出,以及与炎症反应密切相关的整合素表达明显增加,促使炎性细胞以及血小板等向缺血局部聚集和迁移,从而造成局部微血管阻塞。同时,血管内皮细胞基质金属蛋白酶表达明显增加,内皮细胞和星形胶质细胞表面的结构整合素以及对应的基质配体丢失,使微血管细胞间的紧密联系破坏。以上这些变化伴随着神经细胞的损伤,同时,与血管生成和神经发生相关的受体上调,缺血局部区域出现血管生成和神经发生现象,这些过程可能与缺血后期脑功能的恢复相关。本文主要就脑缺血以后脑微血管的变化进行了综述,并对其中的问题以及今后脑血管病研究的发展进行了探讨。  相似文献   

8.
传统中药具有毒副作用低,药物资源广泛,不易产生耐药性以及多靶点协同作用等优点.然而,中药临床应用中存在的作用物质基础不清,药物吸收、分布和代谢途径不确定,活性成分作用机制不明确等问题,在很大程度上限制了中药进一步的临床应用.因此,发现和确认中药活性成分的作用靶标,阐明中药活性成分的药效物质基础和分子作用机制是中药现代化研究中亟待解决的关键科学问题.基于软电离技术的生物质谱具有高灵敏度、高特异性、高通量、低样品消耗等优势,已成为现代药物发现领域药物靶标鉴定的有力工具,在中药活性成分靶标鉴定中也得到越来越多的应用.本文总结、评述近年来应用生物质谱分析新方法、新技术,筛选鉴定中药活性成分靶标蛋白的最新研究进展,旨在阐述生物质谱技术研究中药活性成分作用机制的基本策略和取得的研究成果,以期进一步促进生物质谱技术在中药现代化研究领域中的应用.  相似文献   

9.
目的:采用网络药理学和分子对接技术揭示金银花防治猪繁殖与呼吸综合征(PRRS)的活性成分、靶点及作用机制.方法:中药系统药理学数据库与分析平台(TCMSP)筛选得到金银花的潜在活性成分及作用靶点,使用比较毒理基因组学数据库(CTD)收集PRRS疾病基因,映射后的交集靶点利用String构建蛋白互作网络,使用Cyto?s...  相似文献   

10.
筛选靶向结合炎症相关蛋白5-LOX(5-lipoxygenase,5-脂氧合酶)的中药黄酮类天然产物,分析与5-LOX结合的黄酮类成分及其来源中药的共性规律。本研究借助Discovery Studio 2017 R2分子对接和药效团构建模块,结合SPR分子筛选实验,以及关联网络构建的方法进行研究。研究结果显示,来源于17种中药的18个黄酮类小分子中有11个能够与5-LOX结合,并从分子对接以及药效团构建研究中发现其作用的3种方式和共性特征:(1)部分中药黄酮成分(如木犀草素等)通过结构中的B环与5-LOX在活性位点ASP243形成静电中心相结合;(2)部分中药黄酮成分(如芹菜素等)是通过结构中的A环与活性位点VAL520形成疏水键、与活性位点ASP243形成氢键与5-LOX结合;(3)杨梅苷等黄酮类成分由于极性较强,在没有形成疏水键的情况下,也是通过形成静电中心与5-LOX在活性位点ASP243产生相互作用。此外还发现靶向5-LOX的活性中药黄酮类化合物,大多来源于具有利湿、退黄等功效,性味甘苦寒的景天科中药中。本研究发现了部分靶向5-LOX的中药黄酮类成分及其作用方式和共性规律,为开发靶向5-LOX抗肿瘤新药提供思路和方法。  相似文献   

11.
Previous studies have provided evidence that, in the early hours of ischemic stroke, a luminal membrane blood-brain barrier (BBB) Na-K-Cl cotransporter (NKCC) participates in ischemia-induced cerebral edema formation. Inhibition of BBB NKCC activity by intravenous bumetanide significantly reduces edema and infarct in the rat permanent middle cerebral artery occlusion model of ischemic stroke. We demonstrated previously that the BBB cotransporter is stimulated by hypoxia, aglycemia, and AVP, factors present during cerebral ischemia. However, the underlying mechanisms have not been known. Ischemic conditions have been shown to activate p38 and JNK MAP kinases (MAPKs) in brain, and the p38 and JNK inhibitors SB-239063 and SP-600125, respectively, have been found to reduce brain damage following middle cerebral artery occlusion and subarachnoid hemorrhage, respectively. The present study was conducted to determine whether one or both of these MAPKs participates in ischemic factor stimulation of BBB NKCC activity. Cultured cerebral microvascular endothelial cell NKCC activity was evaluated as bumetanide-sensitive (86)Rb influx. Activities of p38 and JNK were assessed by Western blot and immunofluorescence methods using antibodies that detect total vs. phosphorylated (activated) p38 or JNK. We report that p38 and JNK are present in cultured cerebral microvascular endothelial cells and in BBB endothelial cells in situ and that hypoxia (7% O(2) and 2% O(2)), aglycemia, AVP, and O(2)-glucose deprivation (5- to 120-min exposures) all rapidly activate p38 and JNK in the cells. We also provide evidence that SB-239063 and SP-600125 reduce or abolish ischemic factor stimulation of BBB NKCC activity. These findings support the hypothesis that ischemic factor stimulation of the BBB NKCC involves activation of p38 and JNK MAPKs.  相似文献   

12.
BackgroundThe initial factor in the occurrence, development, and prognosis of cerebral ischemia is vascular dysfunction in the brain, and vascular remodeling of the brain is the key therapeutic target and strategy for ischemic tissue repair. Catalpol is the main active component of the radix of Rehmannia glutinosa Libosch, and it exhibits potential pleiotropic protective effects in many brain-related diseases, including stroke.PurposeThe present study was designed to investigate whether catalpol protects vascular structure and promotes angiogenesis in cerebral ischemic rats and to identify its possible mechanisms in vivo and in vitro.Study designCerebral ischemic rats and oxygen-glucose deprivation-exposed brain microvascular endothelial cells were used to study the therapeutic potential of catalpol in vivo and in vitro.MethodsFirst, neurological deficits, histopathological morphology, infarct volume, vascular morphology, vessel density, and angiogenesis in focal cerebral ischemic rats were observed to test the potential treatment effects of catalpol. Then, oxygen-glucose deprivation-exposed brain microvascular endothelial cells were used to mimic the pathological changes in vessels during ischemia to study the effects and possible mechanisms of catalpol in protecting vascular structure and promoting angiogenesis.ResultsThe in vivo results showed that catalpol reduced neurological deficit scores and infarct volume, protected vascular structure, and promoted angiogenesis in cerebral ischemic rats. The in vitro results showed that catalpol improved oxygen-glucose deprivation-induced damage and promoted proliferation, migration, and in vitro tube formation of brain microvascular endothelial cells. The HIF-1α (hypoxia-inducible factor 1α)/VEGF (vascular endothelial growth factor) pathway was activated by catalpol both in the brains of cerebral ischemic rats and in primary brain microvascular endothelial cells, and the activating effects of catalpol were inhibited by SU1498.ConclusionThe results of both the in vivo and in vitro studies proved that catalpol protects vascular structure and promotes angiogenesis in focal cerebral ischemic rats and that the mechanism is dependent on HIF-1α/VEGF.  相似文献   

13.
Summary 1. Cerebral ischemia and reperfusion induce several changes on the endothelial cells at the microcirculatory level.2. Vasogenic brain edema due to compromised blood–brain barrier, transformation of the endothelial cell surface from an anticoagulant to a procoagulant property are important factors in the pathogenesis of ischemic stroke.3. Release of prostaglandins, endothelin-1, complement proteins, and matrix metalloproteinase-9 by microvascular endothelial cells are other components in the complex mechanism of brain ischemia/hypoxia.4. Ultrastructural studies documented the opened paracellular avenues in the course of vasogenic edema in different experimental models.5. Tight junctions of endothelial cells have been characterized with freeze fracture electron microscopy, and the process of transvesiculation was analyzed using rapid freeze and freeze substitution procedure before electron microscopy studies.6. In endothelial cell-culture experiments, we used rodent and later human brains.7. Endothelial cells co-cultured with astroglia resulted in an elaborate tight junctional complex.8. This co-culture technique becomes the basis of in vitro blood–brain barrier studies. On endothelial cells of human brain origin, different regulatory factors found to be responsible for the complex mechanism of ischemic stroke.This paper is dedicated to the memory of F. Joó, the good friend and pioneer in endothelial cell research.This revised article was published online in May 2005 with a February 2005 cover date.  相似文献   

14.
Despite increased risk of a recurrent stroke following a minor stroke, information is minimal regarding the interaction between injurious mild cerebral ischemic episodes and the possible treatments which might be effective. The aim of the current study was to investigate recurrent ischemic stroke and whether resveratrol, a nutritive polyphenol with promising cardio- and neuro- protective properties, could ameliorate the associated brain damage. Experiments in adult rats demonstrated that a mild ischemic stroke followed by a second mild cerebral ischemia exacerbated brain damage, and, daily oral resveratrol treatment after the first ischemic insult reduced ischemic cell death with the recurrent insult (P<0.002). Further investigation demonstrated reduction of both inflammatory changes and markers of oxidative stress in resveratrol treated animals. The protection observed with resveratrol treatment could not be explained by systemic effects of resveratrol treatment including effects either on blood pressure or body temperature measured telemetrically. Investigation of resveratrol effects on the blood-brain barrier in vivo demonstrated that resveratrol treatment reduced blood-brain barrier disruption and edema following recurrent stroke without affecting regional cerebral blood flow. Investigation of the mechanism in primary cell culture studies demonstrated that resveratrol treatment significantly protected endothelial cells against an in vitro ‘ischemia’ resulting in improved viability against oxygen and glucose deprivation (39.6±6.6% and 81.3±9.5% in vehicle and resveratrol treated cells, respectively). An inhibition of nitric oxide synthesis did not prevent the improved cell viability following oxygen glucose deprivation but SIRT-1 inhibition with sirtinol partially blocked the protection (P<0.001) suggesting endothelial protection is to some extent SIRT-1 dependent. Collectively, the results support that oral resveratrol treatment provides a low risk strategy to protect the brain from enhanced damage produced by recurrent stroke which is mediated in part by a protective effect of resveratrol on the endothelium of the cerebrovasculature.  相似文献   

15.
Microglia, the resident microphages of the CNS, are rapidly activated after ischemic stroke. Inhibition of microglial activation may protect the brain by attenuating blood-brain barrier damage and neuronal apoptosis after ischemic stroke. However, the mechanisms by which microglia is activated following cerebral ischemia is not well defined. In this study, we investigated the expression of PI3Kγ in normal and ischemic brains and found that PI3Kγ mRNA and protein are constitutively expressed in normal brain microvessels, but significantly upregulated in postischemic brain primarily in activated microglia following cerebral ischemia. In vitro, the expression of PI3Kγ mRNA and protein was verified in mouse brain endothelial and microglial cell lines. Importantly, absence of PI3Kγ blocked the early microglia activation (at 4 h) and subsequent expansion (at 24-72 h) in PI3Kγ knockout mice. The results suggest that PI3Kγ is an ischemia-responsive gene in brain microglia and contributes to ischemia-induced microglial activation and expansion.  相似文献   

16.
Wang X  Lee SR  Arai K  Lee SR  Tsuji K  Rebeck GW  Lo EH 《Nature medicine》2003,9(10):1313-1317
Although thrombolysis with tissue plasminogen activator (tPA) is a stroke therapy approved by the US Food and Drug Administration, its efficacy may be limited by neurotoxic side effects. Recently, proteolytic damage involving matrix metalloproteinases (MMPs) have been implicated. In experimental embolic stroke models, MMP inhibitors decreased cerebral hemorrhage and injury after treatment with tPA. MMPs comprise a family of zinc endopeptidases that can modify several components of the extracellular matrix. In particular, the gelatinases MMP-2 and MMP-9 can degrade neurovascular matrix integrity. MMP-9 promotes neuronal death by disrupting cell-matrix interactions, and MMP-9 knockout mice have reduced blood-brain barrier leakage and infarction after cerebral ischemia. Hence it is possible that tPA upregulates MMPs in the brain, and that subsequent matrix degradation causes brain injury. Here we show that tPA upregulates MMP-9 in cell culture and in vivo. MMP-9 levels were lower in tPA knockouts compared with wild-type mice after focal cerebral ischemia. In human cerebral microvascular endothelial cells, MMP-9 was upregulated when recombinant tPA was added. RNA interference (RNAi) suggested that this response was mediated by the low-density lipoprotein receptor-related protein (LRP), which avidly binds tPA and possesses signaling properties. Targeting the tPA-LRP signaling pathway in brain may offer new approaches for decreasing neurotoxicity and improving stroke therapy.  相似文献   

17.
This study investigated the effects of streptozotocin-induced diabetes on the functional integrity of the blood-brain barrier in the rat at 7, 28, 56, and 90 days, using vascular space markers ranging in size from 342 to 65,000 Da. We also examined the effect of insulin treatment of diabetes on the formation and progression of cerebral microvascular damage and determined whether observed functional changes occurred globally throughout the brain or within specific brain regions. Results demonstrate that streptozotocin-induced diabetes produced a progressive increase in blood-brain barrier permeability to small molecules from 28 to 90 days and these changes in blood-brain barrier permeability were region specific, with the midbrain most susceptible to diabetes-induced microvascular damage. In addition, results showed that insulin treatment of diabetes attenuated blood-brain barrier disruption, especially during the first few weeks; however, as diabetes progressed, it was evident that microvascular damage occurred even when hyperglycemia was controlled. Overall, results of this study suggest that diabetes-induced perturbations to cerebral microvessels may disrupt homeostasis and contribute to long-term cognitive and functional deficits of the central nervous system.  相似文献   

18.
《Cryobiology》2008,56(3):279-284
Pericytes are essential components of the blood–brain barrier together with endothelial cells and astrocytes. Any disturbance of brain perfusion may result in blood–brain barrier dysfunction due to pericyte migration from the microvascular wall. The neuroprotective influence of hypothermia on ischemic brain injury has been clearly shown in models of both global and focal ischemia. Leakage of plasma proteins contributes to the extension of neuronal injury and hypothermia has a neuroprotective influence during the ischemic insult. This line of thinking impelled us to investigate the possible role of the pericytes in the occurrence of hypothermic protection during cerebral ischemia.In this study, we examined at the ultrastructural level the effect of moderate hypothermia on microvascular pericyte responses using a rat model of permanent middle cerebral artery occlusion. Twenty rats were divided into four groups. Middle cerebral artery occlusion was performed in all rats except the control group (first group), which was used to determine the pericyte morphology under normal conditions. In the second group, pericyte response to irreversible ischemia under normothermic conditions was examined at the end of the first hour. In the third group, pericyte response to hypoxia was examined under normothermic conditions three hours after ischemia. In the fourth group, temporalis muscle temperature was maintained at 27–29 °C for 1 h after middle cerebral artery occlusion and pericyte response was then examined at the ultrastructural level. In ischemic normothermic conditions at the end of the first hour (Group 2), a separation was observed between pericytes and the basement membrane and this was interpreted as pericyte migration from the microvascular wall. In ischemic normothermic conditions at the end of the third hour (Group 3), basement membrane disorganization and increased space between the basement membranes were seen in addition to the differentiation of second group. In ischemic hypothermic conditions at the end of the first hour (Group 4), pericyte separation or migration from basement membrane were not seen and the blood–brain barrier remained firm. These findings were interpreted by the authors as a possible relationship between pericyte behavior and neural protection during hypothermia. We suggest that hypothermia may delay the pericyte response but not necessarily attenuate it, and should be associated with hypothermic protection.  相似文献   

19.
Duz B  Oztas E  Erginay T  Erdogan E  Gonul E 《Cryobiology》2007,55(3):279-284
Pericytes are essential components of the blood–brain barrier together with endothelial cells and astrocytes. Any disturbance of brain perfusion may result in blood–brain barrier dysfunction due to pericyte migration from the microvascular wall. The neuroprotective influence of hypothermia on ischemic brain injury has been clearly shown in models of both global and focal ischemia. Leakage of plasma proteins contributes to the extension of neuronal injury and hypothermia has a neuroprotective influence during the ischemic insult. This line of thinking impelled us to investigate the possible role of the pericytes in the occurrence of hypothermic protection during cerebral ischemia.In this study, we examined at the ultrastructural level the effect of moderate hypothermia on microvascular pericyte responses using a rat model of permanent middle cerebral artery occlusion. Twenty rats were divided into four groups. Middle cerebral artery occlusion was performed in all rats except the control group (first group), which was used to determine the pericyte morphology under normal conditions. In the second group, pericyte response to irreversible ischemia under normothermic conditions was examined at the end of the first hour. In the third group, pericyte response to hypoxia was examined under normothermic conditions three hours after ischemia. In the fourth group, temporalis muscle temperature was maintained at 27–29 °C for 1 h after middle cerebral artery occlusion and pericyte response was then examined at the ultrastructural level. In ischemic normothermic conditions at the end of the first hour (Group 2), a separation was observed between pericytes and the basement membrane and this was interpreted as pericyte migration from the microvascular wall. In ischemic normothermic conditions at the end of the third hour (Group 3), basement membrane disorganization and increased space between the basement membranes were seen in addition to the differentiation of second group. In ischemic hypothermic conditions at the end of the first hour (Group 4), pericyte separation or migration from basement membrane were not seen and the blood–brain barrier remained firm. These findings were interpreted by the authors as a possible relationship between pericyte behavior and neural protection during hypothermia. We suggest that hypothermia may delay the pericyte response but not necessarily attenuate it, and should be associated with hypothermic protection.  相似文献   

20.
Inflammatory damage plays an important role in cerebral ischemic pathogenesis and represents a new target for treatment of stroke. Shikonin has gained attention for its prominent anti-inflammatory property, but up to now little is known about shikonin treatment in acute ischemic stroke. The aim of this study was to evaluate the potential neuroprotective role of shikonin in cerebral ischemic injury, and investigate whether shikonin modulated inflammatory responses after stroke. Focal cerebral ischemia in male ICR mice was induced by transient middle cerebral artery occlusion. Shikonin (10 and 25 mg/kg) was administered by gavage once a day for 3 days before surgery and another dosage after operation. Neurological deficit, infarct volume, brain edema, blood–brain barrier (BBB) dysfunction, and inflammatory mediators were evaluated at 24 and 72 h after stroke. Compared with vehicle group, 25 mg/kg shikonin significantly improved neurological deficit, decreased infarct volume and edema both at 24 and 72 h after transient ischemic stroke, our data also showed that shikonin inhibited the pro-inflammatory mediators, including TLR4, TNF-α, NF-κB, and phosphorylation of p38MAPK in ischemic cortex. In addition, shikonin effectively alleviated brain leakage of Evans blue, up-regulated claudin-5 expression, and inhibited the over-expressed MMP-9 in ischemic brain. These results suggested that shikonin effectively protected brain against ischemic damage by regulating inflammatory responses and ameliorating BBB permeability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号