首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The vomeronasal system (VNS) serves crucial functions for detecting olfactory clues often related to social and sexual behaviour. Intriguingly, two of the main components of the VNS, the vomeronasal organ (VNO) and the accessory olfactory bulb, are regressed in aquatic mammals, several bats and primates, likely due to adaptations to different ecological niches. To detect genomic changes that are associated with the convergent reduction of the VNS, we performed the first systematic screen for convergently inactivated protein‐coding genes associated with convergent VNS reduction, considering 106 mammalian genomes. Extending previous studies, our results support that Trpc2, a cation channel that is important for calcium signalling in the VNO, is a predictive molecular marker for the presence of a VNS. Our screen also detected the convergent inactivation of the calcium‐binding protein S100z, the aldehyde oxidase Aox2 that is involved in odorant degradation, and the uncharacterized Mslnl gene that is expressed in the VNO and olfactory epithelium. Furthermore, we found that Trpc2 and S100z or Aox2 are also inactivated in otters and Phocid seals for which no morphological data about the VNS are available yet. This predicts a VNS reduction in these semi‐aquatic mammals. By examining the genomes of 115 species in total, our study provides a detailed picture of how the convergent reduction of the VNS coincides with gene inactivation in placental mammals. These inactivated genes provide experimental targets for studying the evolution and biological significance of the olfactory system under different environmental conditions.  相似文献   

2.
The vomeronasal organ (VNO) detects pheromones via 2 large families of receptors: vomeronasal receptor 1, associated with the protein Giα2, and vomeronasal receptor 2, associated with Goα. We investigated the distribution of Goα in the developing and adult VNO and adult olfactory bulb of a marsupial, the tammar wallaby. Some cells expressed Goα as early as day 5 postpartum, but by day 30, Goα expressing cells were distributed throughout the receptor epithelium of the VNO. In the adult tammar, Goα appeared to be expressed in sensory neurons whose nuclei were mostly basally located in the vomeronasal receptor epithelium. Goα expressing vomeronasal receptor cells led to all areas of the accessory olfactory bulb (AOB). The lack of regionally restricted projection of the vomeronasal receptor cell type 2 in the tammar was similar to the uniform type, with the crucial difference that the uniform type only shows expression of Giα2 and no expression of Goα. The observed Goα staining pattern suggests that the tammar may have a third accessory olfactory type that could be intermediate to the segregated and uniform types already described.  相似文献   

3.
The mechanisms that underlie axonal pathfinding of vomeronasal neurons from the vomeronasal organ (VNO) in the periphery to select glomeruli in the accessory olfactory bulb (AOB) are not well understood. Neuropilin-2, a receptor for secreted semaphorins, is expressed in V1R- and V3R-expressing, but not V2R-expressing, postnatal vomeronasal neurons. Analysis of the vomeronasal nerve in neuropilin-2 (npn-2) mutant mice reveals pathfinding defects at multiple choice points. Vomeronasal sensory axons are severely defasciculated and a subset innervates the main olfactory bulb (MOB). While most axons of V1R-expressing neurons reach the AOB and converge into distinct glomeruli in stereotypic locations, they are no longer restricted to their normal anterior AOB target zone. Thus, Npn-2 and candidate pheromone receptors play distinct and complementary roles in promoting the wiring and patterning of sensory neurons in the accessory olfactory system.  相似文献   

4.
A map of pheromone receptor activation in the mammalian brain   总被引:10,自引:0,他引:10  
Belluscio L  Koentges G  Axel R  Dulac C 《Cell》1999,97(2):209-220
In mammals, the detection of pheromones is mediated by the vomeronasal system. We have employed gene targeting to visualize the pattern of projections of axons from vomeronasal sensory neurons in the accessory olfactory bulb. Neurons expressing a specific receptor project to multiple glomeruli that reside within spatially restricted domains. The formation of this sensory map in the accessory olfactory bulb and the survival of vomeronasal organ sensory neurons require the expression of pheromone receptors. In addition, we observe individual glomeruli in the accessory olfactory bulb that receive input from more than one type of sensory neuron. These observations indicate that the organization of the vomeronasal sensory afferents is dramatically different from that of the main olfactory system, and these differences have important implications for the logic of olfactory coding in the vomeronasal organ.  相似文献   

5.
The main olfactory and the accessory olfactory systems are both anatomically and functionally distinct chemosensory systems. The primary sensory neurones of the accessory olfactory system are sequestered in the vomeronasal organ (VNO), where they express pheromone receptors, which are unrelated to the odorant receptors expressed in the principal nasal cavity. We have identified a 240 kDa glycoprotein (VNO(240)) that is selectively expressed by sensory neurones in the VNO but not in the main olfactory neuroepithelium of mouse. VNO(240) is first expressed at embryonic day 20.5 by a small subpopulation of sensory neurones residing within the central region of the crescent-shaped VNO. Although VNO(240) was detected in neuronal perikarya at this age, it was not observed in the axons in the accessory olfactory bulb until postnatal day 3.5. This delayed appearance in the accessory olfactory bulb suggests that VNO(240) is involved in the functional maturation of VNO neurones rather than in axon growth and targeting to the bulb. During the first 2 postnatal weeks, the population of neurones expressing VNO(240) spread peripherally, and by adulthood all primary sensory neurones in the VNO appeared to be expressing this molecule. Similar patterns of expression were also observed for NOC-1, a previously characterized glycoform of the neural cell adhesion molecule NCAM. To date, differential expression of VNO-specific molecules has only been reported along the rostrocaudal axis or at different apical-basal levels in the neuroepithelium. This is the first demonstration of a centroperipheral wave of expression of molecules in the VNO. These results indicate that mechanisms controlling the molecular differentiation of VNO neurones must involve spatial cues organised, not only about orthogonal axes, but also about a centroperipheral axis. Moreover, expression about this centroperipheral axis also involves a temporal component because the subpopulation of neurones expressing VNO(240) and NOC-1 increases during postnatal maturation.  相似文献   

6.
Previously, we reported that male Wistar rats release alarm pheromone from their perianal region, which aggravates stress-induced hyperthermia (SIH) in pheromone-recipient rats. The subsequent discovery that this pheromone could be trapped in water enabled us to expose recipients to the pheromone in their home cages. Despite its apparent influence on autonomic and behavioral functions, we still had no clear evidence as to whether the alarm pheromone was perceived by the main olfactory system (MOS) or by the vomeronasal system. In this study, we investigated this question by exposing 3 types of recipients to alarm pheromone in their home cages: intact males (Intact), vomeronasal organ-excised males (VNX), and sham-operated males (Sham). The Intact and Sham recipients showed aggravated SIH in response to alarm pheromone, whereas the VNX recipients did not. In addition, the results of the habituation/dishabituation test and soybean agglutinin binding to the accessory olfactory bulb verified the complete ablation of the vomeronasal organ (VNO) with a functional MOS in the pheromone recipients. These results strongly suggest that male rats perceive alarm pheromone with the VNO.  相似文献   

7.
Summary In order to begin to understand how primary olfactory and vomeronasal organ (VNO) axons target specific regions of the olfactory bulb, we examined the sorting behaviour of these axons following neonatal unilateral olfactory bulbectomy. Bulbectomy induced widespread ipsilateral death of the primary olfactory and VNO neurons. After 4 weeks, many new sensory axons had re-grown into the cranial cavity and established a prominent plexus with evidence of dense tufts that were similar in gross appearance to glomeruli. Axons expressing the cell adhesion molecule OCAM, which normally innervate the ventrolateral and rostral halves of the main and accessory olfactory bulbs, respectively, sorted out and segregated from those axons not expressing this molecule within the plexus. In addition, VNO axons formed large discrete bundles that segregated from main olfactory axons within the plexus. Thus, VNO and primary olfactory axons as well as discrete subpopulations of both are able to sort out and remain segregated in the absence of the olfactory bulb. Sorting and convergence of axons therefore occur independently of the olfactory bulb and are probably attributable either to inherent properties of the axons themselves or to interactions between the axons and accompanying glial ensheathing cells.  相似文献   

8.
Primary sensory neurons in the vomeronasal organ (VNO) project axons to the glomeruli of the accessory olfactory bulb (AOB) where they form connections with mitral cell dendrites. We demonstrate here that monoclonal antibodies to specific carbohydrate antigens define stage- and position-specific events during the development of the vomeronasal system (VN). CC1 monoclonal antibodies react with specific N-acetyl galactosamine containing glycolipids. In the embryo, CC1 antigens are expressed throughout the VNO and on vomeronasal nerves. Beginning approximately at birth and continuing into adults, CC1 expression is spatially restricted in the VNO to centrally located cell bodies. In the postnatal AOB, CC1 is expressed in the nerve layer and glomeruli, but only in the rostral half of the AOB. These data suggest that CC1 antigens may participate in the targeting of axons from centrally located VNO neurons to rostral glomeruli in the AOB. In contrast, CC2 monoclonal antibodies, which recognize complex α-galactosyl and α-fucosyl glycoproteins and glycolipids, react with all VNO cell bodies and VN nerves from embryonic (E) day 15 to adults. CC2 antibodies do not distinguish rostral from caudal regions of the AOB, nor are the CC2 glycoconjugates developmentally regulated. P-Path monoclonal antibodies, which recognize 9-O-acetyl sialic acid, react with cell bodies in the VNO and nerve fibers from E13 to postnatal (P) day 2. P-Path immunoreactivity disappears from the VNO system almost completely by P14, when only a few P-Path reactive nerve fibers can be seen. These studies suggest that specific cell surface glycoconjugates may participate in spatially and temporally selective cell–cell interactions during development and maintenance of vomeronasal connections.  相似文献   

9.
The vomeronasal projection conveys information provided by pheromones and detected by neurones in the vomeronasal organ (VNO) to the accessory olfactory bulb (AOB) and thence to other regions of the brain such as the amygdala. The VNO-AOB projection is topographically organised such that axons from apical and basal parts of the VNO terminate in the anterior and posterior AOB respectively. We provide evidence that the Slit family of axon guidance molecules and their Robo receptors contribute to the topographic targeting of basal vomeronasal axons. Robo receptor expression is confined largely to basal VNO axons, while Slits are differentially expressed in the AOB with a higher concentration in the anterior part, which basal axons do not invade. Immunohistochemistry using a Robo-specific antibody reveals a zone-specific targeting of VNO axons in the AOB well before cell bodies of these neurones in the VNO acquire their final zonal position. In vitro assays show that Slit1-Slit3 chemorepel VNO axons, suggesting that basal axons are guided to the posterior AOB due to chemorepulsive activity of Slits in the anterior AOB. These data in combination with recently obtained other data suggest a model for the topographic targeting in the vomeronasal projection where ephrin-As and neuropilins guide apical VNO axons, while Robo/Slit interactions are important components in the targeting of basal VNO axons.  相似文献   

10.
Individual recognition is an important component of behaviors, such as mate choice and maternal bonding that are vital for reproductive success. This article highlights recent developments in our understanding of the chemosensory cues and the neural pathways involved in individuality discrimination in rodents. There appear to be several types of chemosensory signal of individuality that are influenced by the highly polymorphic families of major histocompatibility complex (MHC) proteins or major urinary proteins (MUPs). Both have the capability of binding small molecules and may influence the individual profile of these chemosignals in biological fluids such as urine, skin secretions, or saliva. Moreover, these proteins, or peptides associated with them, can be taken up into the vomeronasal organ (VNO) where they can potentially interact directly with the vomeronasal receptors. This is particularly interesting given the expression of major histocompatibility complex Ib proteins by the V2R class of vomeronasal receptor and the highly selective responses of accessory olfactory bulb (AOB) mitral cells to strain identity. These findings are consistent with the role of the vomeronasal system in mediating individual discrimination that allows mate recognition in the context of the pregnancy block effect. This is hypothesized to involve a selective increase in the inhibitory control of mitral cells in the accessory olfactory bulb at the first level of processing of the vomeronasal stimulus.  相似文献   

11.
啮齿动物的犁鼻器和副嗅球与社会通讯和生殖行为有关,主嗅球影响其觅食行为。达乌尔黄鼠(Spermophilus dauricus)是一种具有较低社会行为的储脂类冬眠动物。本研究用组织学和免疫组织化学方法探究了其犁鼻器和副嗅球的结构特点及嗅球神经元活动对季节变化的适应。结果发现,达乌尔黄鼠犁鼻器具有较大的血管,犁鼻器管腔外侧为非感觉性的呼吸上皮(Respiratory epithelium,RE),内侧为感觉上皮(Sensory epithelium,SE),RE较SE薄,靠近管腔处为假复层柱状上皮。选取犁鼻器中间部位比较,发现SE的厚度、长度及感觉细胞密度均无性别差异。副嗅球位于主嗅球后方背内侧,由6层细胞构成。侧嗅束穿过副嗅球,位于颗粒细胞层之上。雄性达乌尔黄鼠较雌性有更长的僧帽细胞层和颗粒细胞层。春季(3月)和冬季(1月)达乌尔黄鼠主嗅球的嗅小球层、僧帽细胞层和颗粒细胞层的c-Fos-ir神经元密度显著低于夏季(7月)和秋季(10月),且冬季外网织层的c-Fos-ir神经元密度显著低于夏季和秋季,说明达乌尔黄鼠在冬季和春季的嗅觉神经活动较弱,呈现出对冬眠的生理性适应。这些结果丰富了动物犁鼻器和副嗅球的形态学资料,并有助于理解冬眠动物嗅觉系统对季节变化和冬眠的适应。  相似文献   

12.
In mammals, olfactory sensory perception is mediated by two anatomically and functionally distinct sensory organs: the main olfactory epithelium (MOE) and the vomeronasal organ (VNO). Pheromones activate the VNO and elicit a characteristic array of innate reproductive and social behaviors, along with dramatic neuroendocrine responses. Recent approaches have provided new insights into the molecular biology of sensory transduction in the vomeronasal organ. Differential screening of cDNA libraries constructed from single sensory neurons from the rat VNO has led to the isolation of a family of genes which are likely to encode mammalian pheromone receptors. The isolation of these receptors from the vomeronasal organ might permit the analysis of the molecular events which translate the bindings of pheromones into innate stereotypic behaviors and help to elucidate the logic of pheromone perception in mammals.  相似文献   

13.
14.
Grooming is a common behavior of some mammals. Previous studies have shown that grooming is a means by which animals clean themselves, remove ectoparasites, and lower their body temperature. It is also involved in olfactory communication. Bats belong to the order Chiroptera and, like most mammals, are the natural host of many ectoparasites. Bat grooming, including licking and scratching, is one of the ways to reduce the adverse effects caused by ectoparasites. Bat grooming may also be induced by exogenous odor. In this study, we used lesser flat‐headed bats (Tylonycteris pachypus) to test the hypothesis that exogenous odor affects the self‐grooming behavior of bats. Results showed that external odor from distantly related species caused lesser flat‐headed bats to spend more time in self‐grooming. Lesser flat‐headed bats that received odor from humans spent the longest time in self‐grooming, followed by those that received odor from a different species of bats (T. robustula). Lesser flat‐headed bats that received odor form the same species of bats, either from the same or a different colony, spent the least amount of time in self‐grooming. These results suggest that bats can recognize conspecific and heterospecific through body scent.  相似文献   

15.
Primary sensory neurons in the vomeronasal organ (VNO) project axons to the glomeruli of the accessory olfactory bulb (AOB) where they form connections with mitral cell dendrites. We demonstrate here that monoclonal antibodies to specific carbohydrate antigens define stage- and position-specific events during the development of the vomeronasal system (VN). CC1 monoclonal antibodies react with specific N-acetyl galactosamine containing glycolipids. In the embryo, CC1 antigens are expressed throughout the VNO and on vomeronasal nerves. Beginning approximately at birth and continuing into adults, CC1 expression is spatially restricted in the VNO to centrally located cell bodies. In the postnatal AOB, CC1 is expressed in the nerve layer and glomeruli, but only in the rostral half of the AOB. These data suggest that CC1 antigens may participate in the targeting of axons from centrally located VNO neurons to rostral glomeruli in the AOB. In contrast, CC2 monoclonal antibodies, which recognize complex alpha-galactosyl and alpha-fucosyl glycoproteins and glycolipids, react with all VNO cell bodies and VN nerves from embryonic (E) day 15 to adults. CC2 antibodies do not distinguish rostral from caudal regions of the AOB, nor are the CC2 glycoconjugates developmentally regulated. P-Path monoclonal antibodies, which recognize 9-O-acetyl sialic acid, react with cell bodies in the VNO and nerve fibers from E13 to postnatal (P) day 2. P-Path immunoreactivity disappears from the VNO system almost completely by P14, when only a few P-Path reactive nerve fibers can be seen. These studies suggest that specific cell surface glycoconjugates may participate in spatially and temporally selective cell-cell interactions during development and maintenance of vomeronasal connections.  相似文献   

16.
棕色田鼠雄性幼体不同发育期犁鼻器和副嗅球的组织结构   总被引:1,自引:0,他引:1  
通过对出生后不同发育时期雄性棕色田鼠犁鼻器和副嗅球进行组织学观察, 探讨棕色田鼠出生后犁鼻器和副嗅球的发育规律。实验以出生后当天(0 日龄) , 5 日龄, 15 日龄, 25 日龄以及成年棕色田鼠为研究对象,副嗅球采用Pischinger 氏染色法染色, 犁鼻器用H. E. 染色法染色后进行组织学观察。结果显示, 棕色田鼠出生时, 犁鼻器和副嗅球就已具有成体的基本结构, 随着动物个体的发育, 犁鼻上皮逐渐增厚, 犁鼻管变长, 犁鼻上皮中神经元密度增加; 腺体逐渐增大, 犁鼻管腔填充物增多, 犁鼻管背外侧的静脉血管逐日增大, 管腔周围出现越来越多的血管; 副嗅球长宽都增加, 僧帽细胞层和颗粒细胞层逐渐增长, 各层细胞密度变化稍有不同;出生后15 日内, 僧帽细胞层细胞密度增加, 15 日龄以后又开始降低, 25 日龄及成体的僧帽细胞层细胞密度与5日龄的相似; 颗粒细胞层细胞密度持续增高。实验结果提示, 棕色田鼠5 日龄时, 犁鼻器和副嗅球已具有了完整的结构, 到25 日龄时可能达到了功能上的成熟。  相似文献   

17.
The morphological development of the accessory olfactory bulb of the fetal pig was studied by classical and histo-chemical methods, and the vomeronasal organ and nasal septum were studied histochemically. Specimens were obtained from an abattoir and their ages estimated from their crown-to-rump length. The accessory olfactory bulb was structurally mature in fetuses of crown-to-rump length 21-23 cm, by which time the lectin Lycopersicum esculentum agglutinin stained the same structures as in adults (in particular, the entire sensory epithelium of the vomeronasal organ, the vomeronasal nerves, and the nervous and glomerular layers of the accessory olfactory bulb). These results suggest that the vomeronasal system of the pig may, like that of vertebrates such as snakes, be functional at birth.  相似文献   

18.
The vomeronasal system is involved in the detection of pheromones in many mammals. Vomeronasal sensory neurons encode the behaviorally relevant information into action potentials that are directly transmitted to the accessory olfactory bulb. We developed a model of the electrical activity of mouse basal vomeronasal sensory neurons, which mimics both the voltage-gated current properties and the firing behavior of these neurons in their near-native state, using a minimal number of parameters. Data were obtained by recordings with the whole-cell voltage-clamp or current-clamp techniques from mouse basal vomeronasal sensory neurons in acute slice preparations. The resting potential ranged from -50 to -70 mV, and current injections of less than 2-10 pA induced tonic firing in most neurons. The experimentally determined firing frequency as a function of injected current was well described by a Michaelis-Menten equation and was exactly reproduced by the model, which could be used in combination with future models that will include details of the mouse vomeronasal transduction cascade.  相似文献   

19.
The Grueneberg ganglion (GG) is a cluster of neurones present in the vestibule of the anterior nasal cavity. Although its function is still elusive, recent studies have shown that cells of the GG transcribe the gene encoding the olfactory marker protein (OMP) and project their axons to glomeruli of the olfactory bulb, suggesting that they may have a chemosensory function. Chemosensory responsiveness of olfactory neurones in the main olfactory epithelium (MOE) and the vomeronasal organ (VNO) is based on the expression of either odorant receptors or vomeronasal putative pheromone receptors. To scrutinize its presumptive olfactory nature, the GG was assessed for receptor expression by extensive RT-PCR analyses, leading to the identification of a distinct vomeronasal receptor which was expressed in the majority of OMP-positive GG neurones. Along with this receptor, these cells expressed the G proteins Go and Gi, both of which are also present in sensory neurones of the vomeronasal organ. Odorant receptors were expressed by very few cells during prenatal and perinatal stages; a similar number of cells expressed adenylyl cyclase type III and G(olf/s), characteristic signalling elements of the main olfactory system. The findings of the study support the notion that the GG is in fact a subunit of the complex olfactory system, comprising cells with either a VNO-like or a MOE-like phenotype. Moreover, expression of a vomeronasal receptor indicates that the GG might serve to detect pheromones.  相似文献   

20.
Developmental studies examining the changes in oxidative metabolic activity are useful for understanding how and if the vomeronasal and olfactory systems respond to stimulation during embryogenesis. Garter snakes are good candidates for examining the potential functionality of the vomeronasal system in utero. In adult garter snakes, the vomeronasal system mediates many behaviors. Neonatal garter snakes exhibit these same behaviors, and the vomeronasal system has been shown to mediate feeding behavior in neonates. Using cytochrome oxidase histochemistry, we examined changes in the oxidative metabolic activity of main and accessory olfactory bulbs of embryonic and neonatal garter snakes (Thamnophis sirtalis sirtalis and T. s. parietalis). Cytochrome oxidase staining is greater in the accessory olfactory bulb than in the main olfactory bulb of embryonic garter snakes. However, neonates show no differences in the staining of the accessory and main olfactory bulbs, suggesting a change in the stimulation of the main olfactory bulb after birth. This is the first report of cytochrome oxidase histochemistry in reptiles and in the vomeronasal system of embryonic vertebrates. © 1993 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号