首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
棕色田鼠与沼泽田鼠犁鼻器和副嗅球的组织结构   总被引:8,自引:0,他引:8  
用组织学方法研究了棕色田鼠(Microtus mandarinus)、沼泽田鼠(M.fastis)副嗅球和犁鼻器的结构及其在两种鼠间的差异,以此探讨两种田鼠的进化机制与适应功能。两种田鼠的犁鼻器位于鼻腔前端鼻中隔基部的两侧,呈管状结构;沿着犁鼻器的长轴犁鼻管呈现不同的形态学特征,犁鼻管直接开口于鼻腔,从前向后沿着长轴旋转,中间管壁(犁鼻粘膜)变成底部,侧面管壁(假覆层上皮)变成犁鼻管顶壁,最终犁鼻管变小成为一个腺体的分支,不同部位具有不同的组织学特征。通过选取中间相似部位对两种田鼠进行比较研究,发现棕色田鼠犁鼻粘膜比沼泽田鼠厚,而其长度却短于沼泽田鼠。棕色田鼠副嗅球颗粒细胞带宽和僧帽细胞带宽均大于沼泽田鼠,而带长却小于沼泽田鼠。相关分析发现,犁鼻器和副嗅球形态有一定的对应关系,这可能和两个结构之间存在着神经投射有关。棕色田鼠幼体的犁鼻粘膜、神经细胞核、假覆层上皮、血管面积均小于成体[动物学报49(2):248—255,2003]。  相似文献   

2.
啮齿动物的犁鼻器和副嗅球与社会通讯和生殖行为有关,主嗅球影响其觅食行为。达乌尔黄鼠(Spermophilus dauricus)是一种具有较低社会行为的储脂类冬眠动物。本研究用组织学和免疫组织化学方法探究了其犁鼻器和副嗅球的结构特点及嗅球神经元活动对季节变化的适应。结果发现,达乌尔黄鼠犁鼻器具有较大的血管,犁鼻器管腔外侧为非感觉性的呼吸上皮(Respiratory epithelium,RE),内侧为感觉上皮(Sensory epithelium,SE),RE较SE薄,靠近管腔处为假复层柱状上皮。选取犁鼻器中间部位比较,发现SE的厚度、长度及感觉细胞密度均无性别差异。副嗅球位于主嗅球后方背内侧,由6层细胞构成。侧嗅束穿过副嗅球,位于颗粒细胞层之上。雄性达乌尔黄鼠较雌性有更长的僧帽细胞层和颗粒细胞层。春季(3月)和冬季(1月)达乌尔黄鼠主嗅球的嗅小球层、僧帽细胞层和颗粒细胞层的c-Fos-ir神经元密度显著低于夏季(7月)和秋季(10月),且冬季外网织层的c-Fos-ir神经元密度显著低于夏季和秋季,说明达乌尔黄鼠在冬季和春季的嗅觉神经活动较弱,呈现出对冬眠的生理性适应。这些结果丰富了动物犁鼻器和副嗅球的形态学资料,并有助于理解冬眠动物嗅觉系统对季节变化和冬眠的适应。  相似文献   

3.
本文运用免疫组化显示Fos蛋白的方法首次研究了棕色田鼠脑和行为不同发育阶段副嗅球和主嗅球的细胞活动。当不同年龄阶段的幼鼠同时暴露于自己家庭的熟悉底物和另一家庭的陌生底物时 ,嗅闻和呆在自己熟悉底物上的时间较多 ,直到产后 15d、 2 0d和 2 5d时 ,幼鼠探究不同底物的行为显示出显著性差异。脑的大小随着日龄增加而增加 ,但从产后 1到 15d ,脑重、脑宽和嗅球大小随着日龄增加特别显著。当不同日龄幼鼠暴露于陌生底物或者暴露于自己的熟悉底物时 ,从产后 5到 15日龄 ,主嗅球僧帽细胞层、颗粒细胞层、副嗅球僧帽细胞层和颗粒细胞层Fos免疫阳性细胞随着日龄明显增加 ,但直到 15和 30日龄时 ,和对照组相比 ,陌生底物可引起幼鼠主嗅球Fos免疫阳性细胞明显增加 ,从 2 0日龄起 ,陌生底物可引起副嗅球Fos免疫阳性细胞明显增加。主嗅球颗粒细胞层Fos免疫阳性细胞随着日龄的增加从边缘到中心逐渐出现 ,而副嗅球Fos免疫阳性细胞随着日龄的增加从顶部到底部逐渐出现。以上结果说明产后第 1d到 15d左右可能是棕色田鼠脑结构发育的重要阶段 ,而从此以后棕色田鼠主嗅球和副嗅球就具有区别熟悉气味和陌生气味的能力 ,表明棕色田鼠行为、脑发育和细胞活动间有紧密关系  相似文献   

4.
本实验利用免疫组织化学方法,以FOS阳性反应作为神经元活动的标志,研究了棕色田鼠在受到同性和异性尿液刺激后主嗅球和副嗅球的神经元活动,表明两大嗅觉系统均有感知社会性化学信号的功能.通过比较棕色田鼠在同性和异性尿液刺激后副嗅球和主嗅球的嗅小球细胞层(GL)、僧帽细胞层(MIT)、颗粒细胞层(GRL)中FOS阳性神经元数量,发现不同性别尿液刺激后棕色田鼠的副嗅球各细胞层FOS阳性神经元数量比对照组明显增加;棕色田鼠受到异性尿液刺激后其副嗅球各细胞层的FOS阳性神经元数量均多于同性尿液刺激组.不同性别尿液刺激后棕色田鼠的主嗅球各细胞层FOS阳性神经元数量相较于对照组有增加或增加显著;异性尿液刺激组主嗅球各细胞层的FOS阳性神经元数量均多于同性尿液刺激组.说明棕色田鼠的副嗅球和主嗅球均参与了通过尿液介导的性别个体的识别.  相似文献   

5.
用光镜观察了秦岭蝮Gloydius qinlingensis嗅觉系统和犁鼻系统的组织结构.结果显示秦岭蝮嗅觉系统主要包括嗅器和嗅球,犁鼻系统主要包括犁鼻器和副嗅球,并且嗅器和犁鼻器已经完全分离形成两个独立的囊,犁鼻器位于嗅器的内侧.嗅器粘膜上皮进一步分化为嗅上皮和呼吸上皮,背侧嗅上皮下的固有层内有丰富的Bowmans腺,腹侧呼吸上皮内有大量的杯状细胞,其固有层未见有Bowmans腺.鼻腔的中段出现了发达的犁鼻器,犁鼻上皮明显比嗅上皮厚,其固有层内未见有犁鼻腺,在犁鼻腔内还有蘑菇体.  相似文献   

6.
视觉对动物的生活习性尤其是取食具有重要意义。本文对根田鼠视网膜的胚后发育进行了研究,结果表明:出生3d内根田鼠视网膜分化程度较低,神经节母细胞层尚未分化,占据了视网膜层的一半以上;5日龄时,外网层开始出现;6日龄时,外网层开始清晰,外核层与内核层更加清晰;18日龄时,视网膜结构与成年根田鼠结构相似,各层结构清晰可见。测量了神经节细胞层和外核层的细胞密度以及核层厚度,结果表明:随着个体发育,外核层细胞层厚度及细胞密度不断增加;而神经节细胞层厚度及细胞密度不断减少。与褐家鼠、黑线姬鼠、大仓鼠、棕色田鼠、甘肃鼢鼠、达乌尔黄鼠、岩松鼠视网膜相比,根田鼠视网膜结构介于夜行性与昼行性鼠类之间[动物学报52(2):376-382,2006]。  相似文献   

7.
G蛋白亚单位以前被认为在味蕾中特异性的表达,和味导素、苦味受体共表达于味蕾的II型细胞。目前的研究发现,Gγ13(G proteinγ-subunit Gγ13)在小鼠不同发育时期嗅上皮和梨鼻均存在表达,包括胚胎期15.5 d(E15.5)、生后期第0 d(P0)、生后期第5 d(P5)、生后期第10 d(P10)、生后期第21 d(P21)和成年期(P40)。研究也表明,Gγ13可能是一个成熟嗅神经和梨鼻神经的分子标记物。m RNA原位杂交表明,Gγ13和Gα亚单位Gαolf(Gαolf在成熟嗅神经细胞中表达)的表达模式在嗅上皮是一致的,Gγ13和Gα亚单位Gαi2(Gαi2在成熟梨鼻嗅神经细胞中表达)在梨鼻上皮共定位。Gγ13的分布不同于标记细胞发育的标记物GAP43(growth associated protein 43)在嗅上皮的分布,它的表达也不同于另外一个G蛋白亚单位Gγ8的表达分布。在P21的嗅觉系统,Gγ13蛋白在嗅上皮嗅毛中表达丰富,在梨鼻的嗅毛表达也丰富。在主嗅球,在颗粒细胞带、外网层、僧帽细胞带均发现Gγ13的阳性信号。而且,m RNA原位杂交也显示,Gγ13在僧帽细胞带表达,表明Gγ13可能参与到僧帽细胞向大脑嗅皮质区的信号输送。在副嗅球,在颗粒细胞层发现微弱的阳性信号。总之,目前的研究表明,Gγ13可能参与嗅上皮和梨鼻的嗅分子信号传导过程。  相似文献   

8.
用组织学方法研究家犬嗅球的结构,观察家犬嗅球内结构的性别和年龄差异,依据常规HE染色法及数理统计学原理对家犬嗅球各层宽度,主要细胞的数量进行比较统计学分析,探讨嗅球内部结构的发育过程以及性别差异对雌雄动物嗅觉差异的影响。结果表明:雌雄幼年家犬嗅球内各层结构差异不显著;成年家犬也表现出同样的结果,但是成年动物的僧帽细胞形态、数量差异极显著。分析发现,幼年家犬嗅球各层结构都已比较明显,成年家犬嗅球体积和重量明显增加,各层宽度明显变宽,各层细胞密度显著降低,说明嗅球也处在不断的发育完善过程之中。同时僧帽细胞的差异可能是造成雌雄动物嗅觉差别的原因之一。  相似文献   

9.
嗅感受器主要感知外界环境中化学信号分子.本文采用银染、NADPH-组化染色和电镜技术来观察黑斑侧褶蛙(Petophylax nigromaculatus)的嗅器和犁鼻器的功能差异及细胞组成.银染法可对嗅上皮和犁鼻上皮的细胞进行分类及区分.其中,支持细胞胞核深染成黑色,嗅细胞胞核银染为花斑状.细胞计数显示,犁鼻上皮的嗅神经细胞含量百分比显著高于嗅上皮.组化结果显示,黑斑侧褶蛙嗅上皮和犁鼻上皮对NADPH-d表达模式差异显著,前者表达明显高于后者.电镜结果显示,黑斑侧褶蛙嗅上皮和犁鼻上皮的支持细胞由两种类型的细胞组成,分别为纤毛型和颗粒型支持细胞.  相似文献   

10.
有鳞类(蛇和蜥蜴)具有较发达的嗅器和犁鼻器,对其不同种类嗅觉结构的认识有助于阐明爬行动物化学感觉的进化。本文采用组织学方法比较了草原沙蜥(Phrynocephalus frontalis)、荒漠沙蜥(P. przewalskii)、密点麻蜥(Eremias multiocellata)和秦岭滑蜥(Scincella tsinlingensis)的嗅器及犁鼻器。结果发现,草原沙蜥的鼻腔较为狭长,秦岭滑蜥呈梨形,其他两种蜥蜴的鼻腔略成圆形。秦岭滑蜥的嗅上皮最厚,其次是密点麻蜥和草原沙蜥,荒漠沙蜥最薄。犁鼻器主要由犁鼻腔、犁鼻感觉上皮、犁鼻神经及蘑菇体等组成,没有腺体。草原沙蜥和荒漠沙蜥的犁鼻腔较为宽阔,密点麻蜥和秦岭滑蜥的较窄。4种蜥蜴的犁鼻感觉上皮均较嗅上皮厚,蘑菇体向后逐渐缩小至消失,犁鼻感觉上皮成闭环状,包围犁鼻腔。密点麻蜥和秦岭滑蜥的犁鼻感觉上皮位于犁鼻器的背侧,蘑菇体位于腹侧;与此不同,两种沙蜥的犁鼻感觉上皮偏向于犁鼻器的腹内侧,蘑菇体位于背外侧。密点麻蜥的犁鼻感觉上皮最厚,其次为秦岭滑蜥,两种沙蜥最薄;秦岭滑蜥犁鼻感觉上皮的感觉细胞密度最高,其次是密点麻蜥,两种沙蜥最低。这些结果提示,密点麻蜥和秦岭滑蜥对嗅觉信号的依赖和投入较两种沙蜥多;4种蜥蜴犁鼻器的结构差异间接地佐证了有鳞类犁鼻器系统发生的特异性。  相似文献   

11.
Sexual dimorphisms of the vomeronasal organ (VNO) and the accessory olfactory bulb (AOB) of the mandarin voleMicrotus mandarinus Milne-Edwards, 1871 and reed voleM. fortis Büchner, 1889 are reported for the first time in the present work. The thickness and length of the vomeronasal epithelium (VE) and the nuclear size of the receptor cells, the width and length of the granule cell zone, the width and length of the mitral cell zone, and the density of the mitral cells were surveyed. The thickness and length of the vomeronasal epithelium (VE), the length of the granule cell zone and the mitral cell zone, and the densities of mitral cells were significantly different between male and female reed voles. Male and female mandarin voles had no significant differences in any of these parameters. Polygamous reed voles had a greater degree of sexual dimorphism in VNO and AOB than did monogamous mandarin voles. The present results provide evidence to the hypothesis that the degree of sexual dimorphism may be related to the mating system.  相似文献   

12.
Primary sensory neurons in the vomeronasal organ (VNO) project axons to the glomeruli of the accessory olfactory bulb (AOB) where they form connections with mitral cell dendrites. We demonstrate here that monoclonal antibodies to specific carbohydrate antigens define stage- and position-specific events during the development of the vomeronasal system (VN). CC1 monoclonal antibodies react with specific N-acetyl galactosamine containing glycolipids. In the embryo, CC1 antigens are expressed throughout the VNO and on vomeronasal nerves. Beginning approximately at birth and continuing into adults, CC1 expression is spatially restricted in the VNO to centrally located cell bodies. In the postnatal AOB, CC1 is expressed in the nerve layer and glomeruli, but only in the rostral half of the AOB. These data suggest that CC1 antigens may participate in the targeting of axons from centrally located VNO neurons to rostral glomeruli in the AOB. In contrast, CC2 monoclonal antibodies, which recognize complex alpha-galactosyl and alpha-fucosyl glycoproteins and glycolipids, react with all VNO cell bodies and VN nerves from embryonic (E) day 15 to adults. CC2 antibodies do not distinguish rostral from caudal regions of the AOB, nor are the CC2 glycoconjugates developmentally regulated. P-Path monoclonal antibodies, which recognize 9-O-acetyl sialic acid, react with cell bodies in the VNO and nerve fibers from E13 to postnatal (P) day 2. P-Path immunoreactivity disappears from the VNO system almost completely by P14, when only a few P-Path reactive nerve fibers can be seen. These studies suggest that specific cell surface glycoconjugates may participate in spatially and temporally selective cell-cell interactions during development and maintenance of vomeronasal connections.  相似文献   

13.
Primary sensory neurons in the vomeronasal organ (VNO) project axons to the glomeruli of the accessory olfactory bulb (AOB) where they form connections with mitral cell dendrites. We demonstrate here that monoclonal antibodies to specific carbohydrate antigens define stage- and position-specific events during the development of the vomeronasal system (VN). CC1 monoclonal antibodies react with specific N-acetyl galactosamine containing glycolipids. In the embryo, CC1 antigens are expressed throughout the VNO and on vomeronasal nerves. Beginning approximately at birth and continuing into adults, CC1 expression is spatially restricted in the VNO to centrally located cell bodies. In the postnatal AOB, CC1 is expressed in the nerve layer and glomeruli, but only in the rostral half of the AOB. These data suggest that CC1 antigens may participate in the targeting of axons from centrally located VNO neurons to rostral glomeruli in the AOB. In contrast, CC2 monoclonal antibodies, which recognize complex α-galactosyl and α-fucosyl glycoproteins and glycolipids, react with all VNO cell bodies and VN nerves from embryonic (E) day 15 to adults. CC2 antibodies do not distinguish rostral from caudal regions of the AOB, nor are the CC2 glycoconjugates developmentally regulated. P-Path monoclonal antibodies, which recognize 9-O-acetyl sialic acid, react with cell bodies in the VNO and nerve fibers from E13 to postnatal (P) day 2. P-Path immunoreactivity disappears from the VNO system almost completely by P14, when only a few P-Path reactive nerve fibers can be seen. These studies suggest that specific cell surface glycoconjugates may participate in spatially and temporally selective cell–cell interactions during development and maintenance of vomeronasal connections.  相似文献   

14.
The vomeronasal projection conveys information provided by pheromones and detected by neurones in the vomeronasal organ (VNO) to the accessory olfactory bulb (AOB) and thence to other regions of the brain such as the amygdala. The VNO-AOB projection is topographically organised such that axons from apical and basal parts of the VNO terminate in the anterior and posterior AOB respectively. We provide evidence that the Slit family of axon guidance molecules and their Robo receptors contribute to the topographic targeting of basal vomeronasal axons. Robo receptor expression is confined largely to basal VNO axons, while Slits are differentially expressed in the AOB with a higher concentration in the anterior part, which basal axons do not invade. Immunohistochemistry using a Robo-specific antibody reveals a zone-specific targeting of VNO axons in the AOB well before cell bodies of these neurones in the VNO acquire their final zonal position. In vitro assays show that Slit1-Slit3 chemorepel VNO axons, suggesting that basal axons are guided to the posterior AOB due to chemorepulsive activity of Slits in the anterior AOB. These data in combination with recently obtained other data suggest a model for the topographic targeting in the vomeronasal projection where ephrin-As and neuropilins guide apical VNO axons, while Robo/Slit interactions are important components in the targeting of basal VNO axons.  相似文献   

15.
Wagner S  Gresser AL  Torello AT  Dulac C 《Neuron》2006,50(5):697-709
Pheromone detection by the vomeronasal organ (VNO) is thought to rely on activation of specific receptors from the V1R and V2R gene families, but the central representation of pheromone receptor activation remains poorly understood. We generated transgenic mouse lines in which projections from multiple populations of VNO neurons, each expressing a distinct V1R, are differentially labeled with fluorescent proteins. This approach revealed that inputs from neurons expressing closely related V1Rs intermingle within shared, spatially conserved domains of the accessory olfactory bulb (AOB). Mitral cell-glomerular connectivity was examined by injecting intracellular dyes into AOB mitral cells and monitoring dendritic contacts with genetically labeled glomeruli. We show that individual mitral cells extend dendrites to glomeruli associated with different, but likely closely related, V1Rs. This organization differs from the labeled line of OR signaling in the main olfactory system and suggests that integration of information may already occur at the level of the AOB.  相似文献   

16.
The mechanisms that underlie axonal pathfinding of vomeronasal neurons from the vomeronasal organ (VNO) in the periphery to select glomeruli in the accessory olfactory bulb (AOB) are not well understood. Neuropilin-2, a receptor for secreted semaphorins, is expressed in V1R- and V3R-expressing, but not V2R-expressing, postnatal vomeronasal neurons. Analysis of the vomeronasal nerve in neuropilin-2 (npn-2) mutant mice reveals pathfinding defects at multiple choice points. Vomeronasal sensory axons are severely defasciculated and a subset innervates the main olfactory bulb (MOB). While most axons of V1R-expressing neurons reach the AOB and converge into distinct glomeruli in stereotypic locations, they are no longer restricted to their normal anterior AOB target zone. Thus, Npn-2 and candidate pheromone receptors play distinct and complementary roles in promoting the wiring and patterning of sensory neurons in the accessory olfactory system.  相似文献   

17.
Pheromones from urine of unfamiliar conspecific male animals can reinitiate a female's estrus cycle to cause pregnancy block through the vomeronasal organ (VNO)‐accessory olfactory bulb (AOB)‐hypothalamic pathway. This phenomenon is called the Bruce effect. Pheromones from the mate of the female, however, do not trigger re‐entrance of the estrus cycle because an olfactory memory toward its mate is formed. The activity of the VNO‐AOB‐hypothalamic pathway is negatively modulated by GABAergic granule cells in the AOB. Since these cells are constantly replenished by neural stem cells in the subventricular zone (SVZ) of the lateral ventricle throughout adulthood and adult neurogenesis is required for mate recognition and fertility, we tested the hypothesis that pheromones from familiar and unfamiliar males may have different effects on adult AOB neurogenesis in female mice. When female mice were exposed to bedding used by a male or lived with one, cell proliferation and neuroblast production in the SVZ were increased. Furthermore, survival of newly generated cells in the AOB was enhanced. This survival effect was transient and mediated by norepinephrine. Interestingly, male bedding‐induced newborn cell survival in the AOB but not cell proliferation in the SVZ was attenuated when females were subjected to bedding from an unfamiliar male. Our results indicate that male pheromones from familiar and unfamiliar males exert different effects on neurogenesis in the adult female AOB. Given that adult neurogenesis is required for reproductive behaviors, these divergent pheromonal effects may provide a mechanism for the Bruce effect. © 2013 Wiley Periodicals, Inc. Develop Neurobiol 73: 632–645, 2013  相似文献   

18.
The neuronal organization of the accessory olfactory bulb (AOB), which receives sensory information from the vomeronasal organ, was described in a squamate reptile (Podarcis hispanica) by means of light microscopy. Using the Golgi-impregnation method, seven neuronal types could be distinguished: Periglomerular cells constitute a morphologically heterogeneous population of small neurons located between and around the glomeruli. The mitral cells are diffusely distributed in the AOB. Their cell bodies are usually located within the mitral cell layer, but some of them could be also observed in the plexiform layers. Mitral cells were classified into three subgroups on the basis of their sizes and dendritic tree morphologies. Thus, the “outer mitral cells” have the biggest cell bodies, and their distal secondary dendrites are mainly distributed rostrocaudally in the external plexiform layer. The “inner mitral cells” have large cell bodies, and their secondary dendrites are distributed dorsoventrally and are located deeper than those of the other two subgroups. The third type, the “small mitral cells,” is the smallest one among mitral cells in the AOB, and from their cell bodies, only two main dendritic trunks arise. The granule cells are composed of several categories based on their different cell body locations and dendritic tree morphologies. Thus, the “superficial granule cells” are located exclusively in the external plexiform layer and have small dendritic fields. The “middle granule cells” have fusiform cell bodies—situated in the internal plexiform layer—and present a wide dendritic projection area. Finally, the “deep granule cells” are distributed throughout the granule cell layer and include a great variety of dendritic tree morphologies. The distribution and morphological features of all neuronal types constituting the AOB of Podarcis were compared with those reported on other vertebrates. The results suggest that the lamination pattern and neuronal organization of the AOB in lizards are more similar to that of mammals than to that of the remaining vertebrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号