首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Understanding the vulnerability of tree species to anthropogenic threats is important for the efficient planning of restoration and conservation efforts. We quantified and compared the effects of future climate change and four current threats (fire, habitat conversion, overgrazing and overexploitation) on the 50 most common tree species of the tropical dry forests of northwestern Peru and southern Ecuador. We used an ensemble modelling approach to predict species distribution ranges, employed freely accessible spatial datasets to map threat exposures, and developed a trait‐based scoring approach to estimate species‐specific sensitivities, using differentiated trait weights in accordance with their expected importance in determining species sensitivities to specific threats. Species‐specific vulnerability maps were constructed from the product of the exposure maps and the sensitivity estimates. We found that all 50 species face considerable threats, with an average of 46% of species’ distribution ranges displaying high or very high vulnerability to at least one of the five threats. Our results suggest that current levels of habitat conversion, overexploitation and overgrazing pose larger threats to most of the studied species than climate change. We present a spatially explicit planning strategy for species‐specific restoration and conservation actions, proposing management interventions to focus on (a) in situ conservation of tree populations and seed collection for tree planting activities in areas with low vulnerability to climate change and current threats; (b) ex situ conservation or translocation of populations in areas with high climate change vulnerability; and (c) active planting or assisted regeneration in areas under high current threat vulnerability but low climate change vulnerability, provided that interventions are in place to lower threat pressure. We provide an online, user‐friendly tool to visualize both the vulnerability maps and the maps indicating priority restoration and conservation actions.  相似文献   

2.
Anticipating species movement under climate change is a major focus in conservation. Bioclimate models are one of the few predictive tools for adaptation planning, but are limited in accounting for (i) climatic tolerances in preadult life stages that are potentially more vulnerable to warming; and (ii) local‐scale movement and use of climatic refugia as an alternative or complement to large‐scale changes in distribution. To assess whether these shortfalls can be addressed with field demographic data, we used California valley oak (Quercus lobata Nee), a long‐lived species with juvenile life stages known to be sensitive to climate. We hypothesized that the valley oak bioclimate model, based on adults, would overpredict the species' ability to remain in the projected persisting area, due to higher climate vulnerability of young life stages; and underpredict the potential for the species to remain in the projected contracting area in local‐scale refugia. We assessed the bioclimate model projections against actual demographic patterns in natural populations. We found that saplings were more constricted around surface water than adults in the projected contracting area. We also found that the climate envelope for saplings is narrower than that for adults. Saplings disappeared at a summer maximum temperature 3 °C below that associated with adults. Our findings indicate that rather than a complete shift northward and upward, as predicted by the species bioclimate model, valley oaks are more likely to experience constriction around water bodies, and eventual disappearance from areas exceeding a threshold of maximum temperature. Ours is the first study we know of to examine the importance of discrete life stage climate sensitivities in determining bioclimate modeling inputs, and to identify current climate change‐related constriction of a species around microrefugia. Our findings illustrate that targeted biological fieldwork can be central to understanding climate change‐related movement for long‐lived, sessile species.  相似文献   

3.
It is argued that the inclusion of spatially heterogeneous environments in biodiversity reserves will be an effective means of encouraging ecosystem resilience and plant community conservation under climate change. However, the resilience and resistance of plant populations to global change, the specific life‐history traits involved and the spatial scale at which environmentally driven demographic variation is expressed remains largely unknown for most plant groups. Here we address these questions by reporting an empirical investigation into the impacts of an unprecedented 3‐year drought on the demography, population growth rates (λ) and biogeographical distribution of core populations of the perennial grassland species Austrostipa aristiglumis in semiarid Australia. We use life‐history analysis and periodic matrix population models to specifically test the hypothesis that patch‐ and habitat‐scale variation in vital life‐history parameters result in spatial differences in the resilience and resistance of A. aristiglumis populations to extreme drought. We show that the development of critical soil water deficits during drought resulted in collapse of adult A. aristiglumis populations (λ?1), rapid interhabitat phytosociological change and overall contraction towards mesic refugia where populations were both more resistant and resilient to perturbation. Population models, combined with climatic niche analysis, suggest that, even in core areas, a significant reduction in size and habitat range of A. aristiglumis populations is likely under climate change expected this century. Remarkably, however, we show that even minor topographic variation (0.2–3 m) can generate significant variation in demographic parameters that confer population‐level resilience and resistance to drought. Our findings support the hypothesis that extreme climatic events have the capacity to induce rapid, landscape‐level shifts in core plant populations, but that the protection of topographically heterogeneous environments, even at small spatial scales, may play a key role in conserving biodiversity under climate change in the coming century.  相似文献   

4.

Aim

This study presents a bioclimate modelling approach, using responses to extreme climate events, rather than historical distributional associations, to project future species vulnerability and refugia. We aim to illustrate the compounding effects of groundwater loss and climate on species vulnerability.

Location

California, USA.

Methods

As a case study, we used the 2012–2015 California drought and resulting extensive dieback of blue oak (Quercus douglasii). We used aerial dieback surveys, downscaled climate data and subsurface water change data to develop boosted regression tree models identifying key thresholds associated with dieback throughout the blue oak distribution. We (1) combined observed dieback–climatic threshold relationships with climate futures to anticipate future areas of vulnerability and (2) used satellite‐derived measurements of subsurface water loss in drought/dieback modelling to capture the mediating effect of groundwater on species response to climatic drought.

Results

A model including climate, climate anomalies and subsurface water change explained 46% of the variability in dieback. Precipitation in 2015 and subsurface water change accounted for 62.6% of the modelled probability of dieback. We found an interaction between precipitation and subsurface water in which dieback probability increased with low precipitation and subsurface water loss. The relationship between precipitation and dieback was nonlinear, with 99% of dieback occurring in areas that received <363 mm precipitation. Based on a MIROC_rcp85 future climate scenario, relative to historical conditions, 13% of the blue oak distribution is predicted to experience more frequent years below this precipitation threshold by mid‐century and 81% by end of century.

Main conclusions

As ongoing climate change and extreme events impact ecological processes, the identification of thresholds associated with observed dieback may be combined with climate futures to help identify vulnerable populations and refugia and prioritize climate change‐related conservation efforts.  相似文献   

5.
Growth models can be used to assess forest vulnerability to climate warming. If global warming amplifies water deficit in drought‐prone areas, tree populations located at the driest and southernmost distribution limits (rear‐edges) should be particularly threatened. Here, we address these statements by analyzing and projecting growth responses to climate of three major tree species (silver fir, Abies alba; Scots pine, Pinus sylvestris; and mountain pine, Pinus uncinata) in mountainous areas of NE Spain. This region is subjected to Mediterranean continental conditions, it encompasses wide climatic, topographic and environmental gradients, and, more importantly, it includes rear‐edges of the continuous distributions of these tree species. We used tree‐ring width data from a network of 110 forests in combination with the process‐based Vaganov–Shashkin‐Lite growth model and climate–growth analyses to forecast changes in tree growth during the 21st century. Climatic projections were based on four ensembles CO2 emission scenarios. Warm and dry conditions during the growing season constrain silver fir and Scots pine growth, particularly at the species rear‐edge. By contrast, growth of high‐elevation mountain pine forests is enhanced by climate warming. The emission scenario (RCP 8.5) corresponding to the most pronounced warming (+1.4 to 4.8 °C) forecasted mean growth reductions of ?10.7% and ?16.4% in silver fir and Scots pine, respectively, after 2050. This indicates that rising temperatures could amplify drought stress and thus constrain the growth of silver fir and Scots pine rear‐edge populations growing at xeric sites. Contrastingly, mountain pine growth is expected to increase by +12.5% due to a longer and warmer growing season. The projections of growth reduction in silver fir and Scots pine portend dieback and a contraction of their species distribution areas through potential local extinctions of the most vulnerable driest rear‐edge stands. Our modeling approach provides accessible tools to evaluate forest vulnerability to warmer conditions.  相似文献   

6.
Assessing the effect of global warming on forest growth requires a better understanding of species‐specific responses to climate change conditions. Norway spruce and European beech are among the dominant tree species in Europe and are largely used by the timber industry. Their sensitivity to changes in climate and extreme climatic events, however, endangers their future sustainability. Identifying the key climatic factors limiting their growth and survival is therefore crucial for assessing the responses of these two species to ongoing climate change. We studied the vulnerability of beech and spruce to warmer and drier conditions by transplanting saplings from the top to the bottom of an elevational gradient in the Jura Mountains in Switzerland. We (1) demonstrated that a longer growing season due to warming could not fully account for the positive growth responses, and the positive effect on sapling productivity was species‐dependent, (2) demonstrated that the contrasting growth responses of beech and spruce were mainly due to different sensitivities to elevated vapor–pressure deficits (VPD), (3) determined the species‐specific limits to VPD above which growth rate began to decline, and (4) demonstrated that models incorporating extreme climatic events could account for the response of growth to warming better than models using only average values. These results support that the sustainability of forest trees in the coming decades will depend on how extreme climatic events will change, irrespective of the overall warming trend.  相似文献   

7.
The rapid ecological shifts that are occurring due to climate change present major challenges for managers and policymakers and, therefore, are one of the main concerns for environmental modelers and evolutionary biologists. Species distribution models (SDM) are appropriate tools for assessing the relationship between species distribution and environmental conditions, so being customarily used to forecast the biogeographical response of species to climate change. A serious limitation of species distribution models when forecasting the effects of climate change is that they normally assume that species behavior and climatic tolerances will remain constant through time. In this study, we propose a new methodology, based on fuzzy logic, useful for incorporating the potential capacity of species to adapt to new conditions into species distribution models. Our results demonstrate that it is possible to include different behavioral responses of species when predicting the effects of climate change on species distribution. Favorability models offered in this study show two extremes: one considering that the species will not modify its present behavior, and another assuming that the species will take full advantage of the possibilities offered by an increase in environmental favorability. This methodology may mean a more realistic approach to the assessment of the consequences of global change on species' distribution and conservation. Overlooking the potential of species' phenotypical plasticity may under‐ or overestimate the predicted response of species to changes in environmental drivers and its effects on species distribution. Using this approach, we could reinforce the science behind conservation planning in the current situation of rapid climate change.  相似文献   

8.
Aim The dimensions of species vulnerability to climate change are complex, and this impedes efforts to provide clear advice for conservation planning. In this study, we used a formal framework to assess species vulnerability to climate change quantifying exposure, sensitivity and adaptive capacity and then used this information to target areas for reducing vulnerability at a regional scale. Location The 6500‐km2 Mount Lofty Ranges region in South Australia. Methods We quantified the vulnerability of 171 plant species in a fragmented yet biologically important agro‐ecological landscape, typical of many temperate zones globally. We specified exposure, using three climate change scenarios; sensitivity, as the adverse impact of climate change on species’ spatial distribution; and adaptive capacity, as the ability of species to migrate calculated using dispersal kernels. Priority areas for reducing vulnerability were then identified by incorporating these various components into a single priority index. Results Climate change had a variable impact on species distributions. Those species whose range decreased or shifted geographically were attributed higher sensitivity than those species that increased geographic range or remained unchanged. The ability to adapt to range changes in response to shifting climates varies both spatially and between species. Areas of highest priority for reducing vulnerability were found at higher altitudes and lower latitudes with increasing severity of climate change. Main conclusions Our study demonstrates the use of a single spatially explicit index that identifies areas in the landscape for targeting specific conservation and restoration actions to reduce species vulnerability to climate change. Our index can be transferred to other regions around the world in which climate change poses an increasing threat to native species.  相似文献   

9.
Climate change vulnerability assessments are an important tool for understanding the threat that climate change poses to species and populations, but do not generally yield insight into the spatial variation in vulnerability throughout a species’ habitat. We demonstrate how to adapt the method of ecological‐niche factor analysis (ENFA) to objectively quantify aspects of species sensitivity to climate change. We then expand ENFA to quantify aspects of exposure and vulnerability to climate change as well, using future projections of global climate models. This approach provides spatially‐explicit insight into geographic patterns of vulnerability, relies only on readily‐available spatial data, is suitable for a wide range of species and habitats, and invites comparison between different species. We apply our methods to a case study of two species of montane mammals, the American pika Ochotona princeps and the yellow‐bellied marmot Marmota flaviventris.  相似文献   

10.
Drought extent and severity have increased and are predicted to continue to increase in many parts of the world. Understanding tree vulnerability to drought at both individual and species levels is key to ongoing forest management and preparation for future transitions in community composition. The influence of subsurface hydrologic processes is particularly important in water‐limited ecosystems, and is an under‐studied aspect of tree drought vulnerability. With California's 2013–2016 extraordinary drought as a natural experiment, we studied four co‐occurring woodland tree species, blue oak (Quercus douglasii), valley oak (Quercus lobata), gray pine (Pinus sabiniana), and California juniper (Juniperus californica), examining drought vulnerability as a function of climate, lithology and hydrology using regional aerial dieback surveys and site‐scale field surveys. We found that in addition to climatic drought severity (i.e., rainfall), subsurface processes explained variation in drought vulnerability within and across species at both scales. Regionally for blue oak, severity of dieback was related to the bedrock lithology, with higher mortality on igneous and metamorphic substrates, and to regional reductions in groundwater. At the site scale, access to deep subsurface water, evidenced by stem water stable isotope composition, was related to canopy condition across all species. Along hillslope gradients, channel locations supported similar environments in terms of water stress across a wide climatic gradient, indicating that subsurface hydrology mediates species’ experience of drought, and that areas associated with persistent access to subsurface hydrologic resources may provide important refugia at species’ xeric range edges. Despite this persistent overall influence of the subsurface environment, individual species showed markedly different response patterns. We argue that hydrologic niche segregation can be a useful lens through which to interpret these differences in vulnerability to climatic drought and climate change.  相似文献   

11.
Worldwide ecosystems are modified by human activities and climate change. To be able to predict future changes, it is necessary to understand their respective role on population dynamics. Among the most threatened species are top predators because of their position in the food web. Albatross populations are potentially affected by both human activities, especially longline fisheries, and climatic fluctuations. Based on long‐term data (1985–2006), we conducted through a comparative approach a demographic analysis (adult survival and breeding success) on four albatross species breeding on the Indian Ocean sub‐Antarctic Islands to assess the relative impact of climate and fisheries during and outside the breeding season. The study revealed that adult survival of almost all species was not affected by climate, and therefore probably canalized against climatic variations, but was negatively affected by tuna longlining effort in three species. Breeding success was affected by climate, with contrasted effects between species, with Southern Oscillation Index having an impact on all species but one. Differences in demographic responses depended on the foraging zone and season. In order to predict population trajectories of seabirds such as albatrosses, our results show the importance of assessing the relative influence of fishing and climate impacts on demography.  相似文献   

12.
In climate change ecology, simplistic research approaches may yield unrealistically simplistic answers to often more complicated problems. In particular, the complexity of vegetation responses to global climate change begs a better understanding of the impacts of concomitant changes in several climatic drivers, how these impacts vary across different climatic contexts, and of the demographic processes underlying population changes. Using a replicated, factorial, whole‐community transplant experiment, we investigated regional variation in demographic responses of plant populations to increased temperature and/or precipitation. Across four perennial forb species and 12 sites, we found strong responses to both temperature and precipitation change. Changes in population growth rates were mainly due to changes in survival and clonality. In three of the four study species, the combined increase in temperature and precipitation reflected nonadditive, antagonistic interactions of the single climatic changes for population growth rate and survival, while the interactions were additive and synergistic for clonality. This disparity affects the persistence of genotypes, but also suggests that the mechanisms behind the responses of the vital rates differ. In addition, survival effects varied systematically with climatic context, with wetter and warmer + wetter transplants showing less positive or more negative responses at warmer sites. The detailed demographic approach yields important mechanistic insights into how concomitant changes in temperature and precipitation affect plants, which makes our results generalizable beyond the four study species. Our comprehensive study design illustrates the power of replicated field experiments in disentangling the complex relationships and patterns that govern climate change impacts across real‐world species and landscapes.  相似文献   

13.
Predicting climate change impacts on population size requires detailed understanding of how climate influences key demographic rates, such as survival. This knowledge is frequently unavailable, even in well‐studied taxa such as birds. In temperate regions, most research into climatic effects on annual survival in resident passerines has focussed on winter temperature. Few studies have investigated potential precipitation effects and most assume little impact of breeding season weather. We use a 19‐year capture–mark–recapture study to provide a rare empirical analysis of how variation in temperature and precipitation throughout the entire year influences adult annual survival in a temperate passerine, the long‐tailed tit Aegithalos caudatus. We use model averaging to predict longer‐term historical survival rates, and future survival until the year 2100. Our model explains 73% of the interannual variation in survival rates. In contrast to current theory, we find a strong precipitation effect and no effect of variation in winter weather on adult annual survival, which is correlated most strongly to breeding season (spring) weather. Warm springs and autumns increase annual survival, but wet springs reduce survival and alter the form of the relationship between spring temperature and annual survival. There is little evidence for density dependence across the observed variation in population size. Using our model to estimate historical survival rates indicates that recent spring warming has led to an upward trend in survival rates, which has probably contributed to the observed long‐term increase in the UK long‐tailed tit population. Future climate change is predicted to further increase survival, under a broad range of carbon emissions scenarios and probabilistic climate change outcomes, even if precipitation increases substantially. We demonstrate the importance of considering weather over the entire annual cycle, and of considering precipitation and temperature in combination, in order to develop robust predictive models of demographic responses to climate change. Synthesis Prediction of climate change impacts demands understanding of how climate influences key demographic rates. In our 19‐year mark‐recapture study of long‐tailed tits Aegithalos caudatus, weather explained 73% of the inter‐annual variation in adult survival; warm springs and autumns increased survival, wet springs reduced survival, but winter weather had little effect. Robust predictions thus require consideration of the entire annual cycle and should not focus solely on temperature. Unexpectedly, survival appeared not to be strongly density‐dependent, so we use historical climate data to infer that recent climate change has enhanced survival over the four decades in which the UK long‐tailed tit population has more than doubled. Furthermore, survival rates in this species are predicted to further increase under a wide range of future climate scenarios.  相似文献   

14.
Determining demographic rates in wild animal populations and understanding why rates vary are important challenges in population ecology and conservation. Whereas reproductive success is reported frequently for many songbird species, there are relatively few corresponding estimates of annual survival for widespread populations of the same migratory species. We incorporated mark–recapture data into Cormack–Jolly–Seber models to estimate annual apparent survival and recapture rates of adult male and female tree swallows Tachycineta bicolor in eight local breeding populations across North America for periods of 7–33 yr. We found strong site‐specific and annual variation in apparent survival rates of adult swallows, and evidence of higher survival or site fidelity among males than females. There were no strong associations between putative overwintering region and survival. Strength and patterns of winter climate‐apparent survival relationships varied across four sites monitored for >15 yr; at one site, spring pond conditions, local spring precipitation and, to a lesser extent, winter North Atlantic Oscillation Index were credible predictors of annual apparent survival. Further work is needed to evaluate how survival is related to environmental conditions throughout the annual cycle and how these factors affect population dynamics of swallows and related species of conservation concern.  相似文献   

15.
Few studies have quantitatively projected changes in demography in response to climate change, yet doing so can provide important insights into the processes that may lead to population declines and changes in species distributions. Using a long‐term mark‐recapture data set, we examined the influence of multiple direct and indirect effects of weather on adult and juvenile survival for a population of Song Sparrows (Melospiza melodia) in California. We found evidence for a positive, direct effect of winter temperature on adult survival, and a positive, indirect effect of prior rainy season precipitation on juvenile survival, which was consistent with an effect of precipitation on food availability during the breeding season. We used these relationships, and climate projections of significantly warmer and slightly drier winter weather by the year 2100, to project a significant increase in mean adult survival (12–17%) and a slight decrease in mean juvenile survival (4–6%) under the B1 and A2 climate change scenarios. Together with results from previous studies on seasonal fecundity and postfledging survival in this population, we integrated these results in a population model and projected increases in the population growth rate under both climate change scenarios. Our results underscore the importance of considering multiple, direct, and indirect effects of weather throughout the annual cycle, as well as differences in the responses of each life stage to climate change. Projecting demographic responses to climate change can identify not only how populations will be affected by climate change but also indicate the demographic process(es) and specific mechanisms that may be responsible. This information can, in turn, inform climate change adaptation plans, help prioritize future research, and identify where limited conservation resources will be most effectively and efficiently spent.  相似文献   

16.
Climate change may reduce forest growth and increase forest mortality, which is connected to high carbon costs through reductions in gross primary production and net ecosystem exchange. Yet, the spatiotemporal patterns of vulnerability to both short‐term extreme events and gradual environmental changes are quite uncertain across the species’ limits of tolerance to dryness. Such information is fundamental for defining ecologically relevant upper limits of species tolerance to drought and, hence, to predict the risk of increased forest mortality and shifts in species composition. We investigate here to what extent the impact of short‐ and long‐term environmental changes determines vulnerability to climate change of three evergreen conifers (Scots pine, silver fir, Norway spruce) and two deciduous hardwoods (European beech, sessile oak) tree species at their southernmost limits of distribution in the Mediterranean Basin. Finally, we simulated future forest growth under RCP 2.6 and 8.5 emission scenarios using a multispecies generalized linear mixed model. Our analysis provides four key insights into the patterns of species’ vulnerability to climate change. First, site climatic marginality was significantly linked to the growth trends: increasing growth was related to less climatically limited sites. Second, estimated species‐specific vulnerability did not match their a priori rank in drought tolerance: Scots pine and beech seem to be the most vulnerable species among those studied despite their contrasting physiologies. Third, adaptation to site conditions prevails over species‐specific determinism in forest response to climate change. And fourth, regional differences in forests vulnerability to climate change across the Mediterranean Basin are linked to the influence of summer atmospheric circulation patterns, which are not correctly represented in global climate models. Thus, projections of forest performance should reconsider the traditional classification of tree species in functional types and critically evaluate the fine‐scale limitations of the climate data generated by global climate models.  相似文献   

17.
Climate change is expected to influence the viability of populations both directly and indirectly, via species interactions. The effects of large‐scale climate change are also likely to interact with local habitat conditions. Management actions designed to preserve threatened species therefore need to adapt both to the prevailing climate and local conditions. Yet, few studies have separated the direct and indirect effects of climatic variables on the viability of local populations and discussed the implications for optimal management. We used 30 years of demographic data to estimate the simultaneous effects of management practice and among‐year variation in four climatic variables on individual survival, growth and fecundity in one coastal and one inland population of the perennial orchid Dactylorhiza lapponica in Norway. Current management, mowing, is expected to reduce competitive interactions. Statistical models of how climate and management practice influenced vital rates were incorporated into matrix population models to quantify effects on population growth rate. Effects of climate differed between mown and control plots in both populations. In particular, population growth rate increased more strongly with summer temperature in mown plots than in control plots. Population growth rate declined with spring temperature in the inland population, and with precipitation in the coastal population, and the decline was stronger in control plots in both populations. These results illustrate that both direct and indirect effects of climate change are important for population viability and that net effects depend both on local abiotic conditions and on biotic conditions in terms of management practice and intensity of competition. The results also show that effects of management practices influencing competitive interactions can strongly depend on climatic factors. We conclude that interactions between climate and management should be considered to reliably predict future population viability and optimize conservation actions.  相似文献   

18.
Plant hydraulic traits capture the impacts of drought stress on plant function, yet vegetation models lack sufficient information regarding trait coordination and variation with climate‐of‐origin across species. Here, we investigated key hydraulic and carbon economy traits of 12 woody species in Australia from a broad climatic gradient, with the aim of identifying the coordination among these traits and the role of climate in shaping cross‐species trait variation. The influence of environmental variation was minimized by a common garden approach, allowing us to factor out the influence of environment on phenotypic variation across species. We found that hydraulic traits (leaf turgor loss point, stomatal sensitivity to drought [Pgs], xylem vulnerability to cavitation [Px], and branch capacitance [Cbranch]) were highly coordinated across species and strongly related to rainfall and aridity in the species native distributional range. In addition, trade‐offs between drought tolerance and plant growth rate were observed across species. Collectively, these results provide critical insight into the coordination among hydraulic traits in modulating drought adaptation and will significantly advance our ability to predict drought vulnerability in these dominant trees species.  相似文献   

19.
A transnational network of genetic conservation units for forest trees was recently documented in Europe aiming at the conservation of evolutionary processes and the adaptive potential of natural or man‐made tree populations. In this study, we quantified the vulnerability of individual conservation units and the whole network to climate change using climate favourability models and the estimated velocity of climate change. Compared to the overall climate niche of the analysed target species populations at the warm and dry end of the species niche are underrepresented in the network. However, by 2100, target species in 33–65 % of conservation units, mostly located in southern Europe, will be at the limit or outside the species' current climatic niche as demonstrated by favourabilities below required model sensitivities of 95%. The highest average decrease in favourabilities throughout the network can be expected for coniferous trees although they are mainly occurring within units in mountainous landscapes for which we estimated lower velocities of change. Generally, the species‐specific estimates of favourabilities showed only low correlations to the velocity of climate change in individual units, indicating that both vulnerability measures should be considered for climate risk analysis. The variation in favourabilities among target species within the same conservation units is expected to increase with climate change and will likely require a prioritization among co‐occurring species. The present results suggest that there is a strong need to intensify monitoring efforts and to develop additional conservation measures for populations in the most vulnerable units. Also, our results call for continued transnational actions for genetic conservation of European forest trees, including the establishment of dynamic conservation populations outside the current species distribution ranges within European assisted migration schemes.  相似文献   

20.
Climate change has been identified as one of the most important drivers of wildlife population dynamics. The in‐depth knowledge of the complex relationships between climate and population sizes through density dependent demographic processes is important for understanding and predicting population shifts under climate change, which requires integrated population models (IPMs) that unify the analyses of demography and abundance data. In this study we developed an IPM based on Gaussian approximation to dynamic N‐mixture models for large scale population data. We then analyzed four decades (1972–2013) of mallard Anas platyrhynchos breeding population survey, band‐recovery and climate data covering a large spatial extent from North American prairies through boreal habitat to Alaska. We aimed to test the hypothesis that climate change will cause shifts in population dynamics if climatic effects on demographic parameters that have substantial contribution to population growth vary spatially. More specifically, we examined the spatial variation of climatic effects on density dependent population demography, identified the key demographic parameters that are influential to population growth, and forecasted population responses to climate change. Our results revealed that recruitment, which explained more variance of population growth than survival, was sensitive to the temporal variation of precipitation in the southern portion of the study area but not in the north. Survival, by contrast, was insensitive to climatic variation. We then forecasted a decrease in mallard breeding population density in the south and an increase in the northwestern portion of the study area, indicating potential shifts in population dynamics under future climate change. Our results implied that different strategies need to be considered across regions to conserve waterfowl populations in the face of climate change. Our modelling approach can be adapted for other species and thus has wide application to understanding and predicting population dynamics in the presence of global change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号