首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
A rapidly changing climate has the potential to interfere with the timing of environmental cues that ectothermic organisms rely on to initiate and regulate life history events. Short‐lived ectotherms that exhibit plasticity in their life history could increase the number of generations per year under warming climate. If many individuals successfully complete an additional generation, the population experiences an additional opportunity to grow, and a warming climate could lead to a demographic bonanza. However, these plastic responses could become maladaptive in temperate regions, where a warmer climate could trigger a developmental pathway that cannot be completed within the growing season, referred to as a developmental trap. Here we incorporated detailed demography into commonly used photothermal models to evaluate these demographic consequences of phenological shifts due to a warming climate on the formerly widespread, multivoltine butterfly (Pieris oleracea). Using species‐specific temperature‐ and photoperiod‐sensitive vital rates, we estimated the number of generations per year and population growth rate over the set of climate conditions experienced during the past 38 years. We predicted that populations in the southern portion of its range have added a fourth generation in recent years, resulting in higher annual population growth rates (demographic bonanzas). We predicted that populations in the Northeast United States have experienced developmental traps, where increases in the thermal window initially caused mortality of the final generation and reduced growth rates. These populations may recover if more growing degree days are added to the year. Our framework for incorporating detailed demography into commonly used photothermal models demonstrates the importance of using both demography and phenology to predict consequences of phenological shifts.  相似文献   

2.
Phenological changes in response to climate change have been recorded in many taxa, but the population‐level consequences of these changes are largely unknown. If phenological change influences demography, it may underpin the changes in range size and distribution that have been associated with climate change in many species. Over the last century, Icelandic black‐tailed godwits (Limosa limosa islandica) have increased 10‐fold in numbers, and their breeding range has expanded throughout lowland Iceland, but the environmental and demographic drivers of this expansion remain unknown. Here, we explore the potential for climate‐driven shifts in phenology to influence demography and range expansion. In warmer springs, Icelandic black‐tailed godwits lay their clutches earlier, resulting in advances in hatching dates in those years. Early hatching is beneficial as population‐wide tracking of marked individuals shows that chick recruitment to the adult population is greater for early hatched individuals. Throughout the last century, this population has expanded into progressively colder breeding areas in which hatch dates are later, but temperatures have increased throughout Iceland since the 1960s. Using these established relationships between temperature, hatching dates and recruitment, we show that these warming trends have the potential to have fueled substantial increases in recruitment throughout Iceland, and thus to have contributed to local population growth and expansion across the breeding range. The demographic consequences of temperature‐mediated phenological changes, such as the advances in lay dates and increased recruitment associated with early hatching reported here, may therefore be key processes in driving population size and range changes in response to climate change.  相似文献   

3.
Worldwide ecosystems are modified by human activities and climate change. To be able to predict future changes, it is necessary to understand their respective role on population dynamics. Among the most threatened species are top predators because of their position in the food web. Albatross populations are potentially affected by both human activities, especially longline fisheries, and climatic fluctuations. Based on long‐term data (1985–2006), we conducted through a comparative approach a demographic analysis (adult survival and breeding success) on four albatross species breeding on the Indian Ocean sub‐Antarctic Islands to assess the relative impact of climate and fisheries during and outside the breeding season. The study revealed that adult survival of almost all species was not affected by climate, and therefore probably canalized against climatic variations, but was negatively affected by tuna longlining effort in three species. Breeding success was affected by climate, with contrasted effects between species, with Southern Oscillation Index having an impact on all species but one. Differences in demographic responses depended on the foraging zone and season. In order to predict population trajectories of seabirds such as albatrosses, our results show the importance of assessing the relative influence of fishing and climate impacts on demography.  相似文献   

4.
It is argued that the inclusion of spatially heterogeneous environments in biodiversity reserves will be an effective means of encouraging ecosystem resilience and plant community conservation under climate change. However, the resilience and resistance of plant populations to global change, the specific life‐history traits involved and the spatial scale at which environmentally driven demographic variation is expressed remains largely unknown for most plant groups. Here we address these questions by reporting an empirical investigation into the impacts of an unprecedented 3‐year drought on the demography, population growth rates (λ) and biogeographical distribution of core populations of the perennial grassland species Austrostipa aristiglumis in semiarid Australia. We use life‐history analysis and periodic matrix population models to specifically test the hypothesis that patch‐ and habitat‐scale variation in vital life‐history parameters result in spatial differences in the resilience and resistance of A. aristiglumis populations to extreme drought. We show that the development of critical soil water deficits during drought resulted in collapse of adult A. aristiglumis populations (λ?1), rapid interhabitat phytosociological change and overall contraction towards mesic refugia where populations were both more resistant and resilient to perturbation. Population models, combined with climatic niche analysis, suggest that, even in core areas, a significant reduction in size and habitat range of A. aristiglumis populations is likely under climate change expected this century. Remarkably, however, we show that even minor topographic variation (0.2–3 m) can generate significant variation in demographic parameters that confer population‐level resilience and resistance to drought. Our findings support the hypothesis that extreme climatic events have the capacity to induce rapid, landscape‐level shifts in core plant populations, but that the protection of topographically heterogeneous environments, even at small spatial scales, may play a key role in conserving biodiversity under climate change in the coming century.  相似文献   

5.
Multiple pathways exist for species to respond to changing climates. However, responses of dispersal‐limited species will be more strongly tied to ability to adapt within existing populations as rates of environmental change will likely exceed movement rates. Here, we assess adaptive capacity in Plethodon cinereus, a dispersal‐limited woodland salamander. We quantify plasticity in behavior and variation in demography to observed variation in environmental variables over a 5‐year period. We found strong evidence that temperature and rainfall influence P. cinereus surface presence, indicating changes in climate are likely to affect seasonal activity patterns. We also found that warmer summer temperatures reduced individual growth rates into the autumn, which is likely to have negative demographic consequences. Reduced growth rates may delay reproductive maturity and lead to reductions in size‐specific fecundity, potentially reducing population‐level persistence. To better understand within‐population variability in responses, we examined differences between two common color morphs. Previous evidence suggests that the color polymorphism may be linked to physiological differences in heat and moisture tolerance. We found only moderate support for morph‐specific differences for the relationship between individual growth and temperature. Measuring environmental sensitivity to climatic variability is the first step in predicting species' responses to climate change. Our results suggest phenological shifts and changes in growth rates are likely responses under scenarios where further warming occurs, and we discuss possible adaptive strategies for resulting selective pressures.  相似文献   

6.
Understanding the ability of plants to spread is important for assessing conservation strategies, landscape dynamics, invasiveness and ability to cope with climate change. While long‐distance seed dispersal is often viewed as a key process in population spread, the importance of inter‐specific variation in demography is less explored. Indeed, the relative importance of demography vs seed dispersal in determining population spread is still little understood. We modelled species’ potential for population spread in terms of annual migration rates for a set of species inhabiting dry grasslands of central Europe. Simultaneously, we estimated the importance of demographic (population growth rate) versus long‐distance dispersal (99th percentile dispersal distance) characteristics for among‐species differences in modelled population spread. In addition, we assessed how well simple proxy measures related to demography (the number and survival of seedlings, the survival of flowering individuals) and dispersal (plant height, terminal velocity and wind speed during dispersal) predicted modelled spread rates. We found that species’ demographic rates were the more powerful predictors of species’ modelled potential to spread than dispersal. Furthermore, our simple proxies were correlated with modelled species spread rates and together their predictive power was high. Our findings highlight that for understanding variation among species in their potential for population spread, detailed information on local demography and dispersal might not always be necessary. Simple proxies or assumptions that are based primarily on species demography could be sufficient.  相似文献   

7.
Studies of the phenological responses of animals to climate change typically emphasize the initiation of breeding although climatic effects on the cessation and length of the breeding period may be as or more influential of fitness. We quantified links between climate, the cessation and length of the breeding period, and individual survival and reproduction using a 34‐year study of a resident song sparrow (Melospiza melodia) population subject to dramatic variation in climate. We show that the cessation and length of the breeding period varied strongly across years, and predicted female annual fecundity but not survival. Breeding period length was more influential of fecundity than initiation or cessation of breeding alone. Warmer annual temperature and drier winters and summers predicted an earlier cessation of breeding. Population density, the date breeding was initiated, a female's history of breeding success, and the number of breeding attempts initiated previously also predicted the cessation of breeding annually, indicating that climatic, population, and individual factors may interact to affect breeding phenology. Linking climate projections to our model results suggests that females will both initiate and cease breeding earlier in the future; this will have opposite effects on individual reproductive rate because breeding earlier is expected to increase fecundity, whereas ceasing breeding earlier should reduce it. Identifying factors affecting the cessation and length of the breeding period in multiparous species may be essential to predicting individual fitness and population demography. Given a rich history of studies on the initiation of breeding in free‐living species, re‐visiting those data to estimate climatic effects on the cessation and length of breeding should improve our ability to predict the impacts of climate change on multiparous species.  相似文献   

8.
Species interactions have a spatiotemporal component driven by environmental cues, which if altered by climate change can drive shifts in community dynamics. There is insufficient understanding of the precise time windows during which inter‐annual variation in weather drives phenological shifts and the consequences for mismatches between interacting species and resultant population dynamics—particularly for insects. We use a 20 year study on a tri‐trophic system: sycamore Acer pseudoplatanus, two associated aphid species Drepanosiphum platanoidis and Periphyllus testudinaceus and their hymenopteran parasitoids. Using a sliding window approach, we assess climatic drivers of phenology in all three trophic levels. We quantify the magnitude of resultant trophic mismatches between aphids and their plant hosts and parasitoids, and then model the impacts of these mismatches, direct weather effects and density dependence on local‐scale aphid population dynamics. Warmer temperatures in mid‐March to late‐April were associated with advanced sycamore budburst, parasitoid attack and (marginally) D. platanoidis emergence. The precise time window during which spring weather advances phenology varies considerably across each species. Crucially, warmer temperatures in late winter delayed the emergence of both aphid species. Seasonal variation in warming rates thus generates marked shifts in the relative timing of spring events across trophic levels and mismatches in the phenology of interacting species. Despite this, we found no evidence that aphid population growth rates were adversely impacted by the magnitude of mismatch with their host plants or parasitoids, or direct impacts of temperature and precipitation. Strong density dependence effects occurred in both aphid species and probably buffered populations, through density‐dependent compensation, from adverse impacts of the marked inter‐annual climatic variation that occurred during the study period. These findings explain the resilience of aphid populations to climate change and uncover a key mechanism, warmer winter temperatures delaying insect phenology, by which climate change drives asynchronous shifts between interacting species.  相似文献   

9.
1. A central question in ecology is to separate the relative contribution of density dependence and stochastic influences to annual fluctuations in population size. Here we estimate the deterministic and stochastic components of the dynamics of different European populations of white stork Ciconia ciconia. We then examined whether annual changes in population size was related to the climate during the breeding period (the 'tap hypothesis' sensu Saether, Sutherland & Engen (2004, Advances in Ecological Research, 35, 185 209) or during the nonbreeding period, especially in the winter areas in Africa (the 'tube hypothesis'). 2. A general characteristic of the population dynamics of this long-distance migrant is small environmental stochasticity and strong density regulation around the carrying capacity with short return times to equilibrium. 3. Annual changes in the size of the eastern European populations were correlated by rainfall in the wintering areas in Africa as well as local weather in the breeding areas just before arrival and in the later part of the breeding season and regional climate variation (North Atlantic Oscillation). This indicates that weather influences the population fluctuations of white storks through losses of sexually mature individuals as well as through an effect on the number of individuals that manages to establish themselves in the breeding population. Thus, both the tap and tube hypothesis explains climate influences on white stork population dynamics. 4. The spatial scale of environmental noise after accounting for the local dynamics was 67 km, suggesting that the strong density dependence reduces the synchronizing effects of climate variation on the population dynamics of white stork. 5. Several climate variables reduced the synchrony of the residual variation in population size after accounting for density dependence and demographic stochasticity, indicating that these climate variables had a synchronizing effect on the population fluctuations. In contrast, other climatic variables acted as desynchronizing agents. 6. Our results illustrate that evaluating the effects of common environmental variables on the spatio-temporal variation in population dynamics require estimates and modelling of their influence on the local dynamics.  相似文献   

10.
Understanding the role of interactions between intrinsic feedback loops and external climatic forces is one of the central challenges within the field of population ecology. For rodent dynamics, the seasonal structure of the environment necessitates changes between two stages: reproductive and non-reproductive. Nevertheless, the interactions between seasonality, climate, density dependence and predators have been generally ignored. We demonstrate that direct climate effects, the nonlinear effect of predators and the nonlinear first-order feedback embedded in a seasonal structure are key elements underlying the large and irregular fluctuations in population numbers exhibited by a small rodent in a semi-arid region of central Chile. We found that factors influencing population growth rates clearly differ between breeding and non-breeding seasons. In addition, we detected nonlinear density dependencies as well as nonlinear and differential effects of generalist and specialist predators. Recent climatic changes may account for dramatic perturbations of the rodent's population dynamics. Changes in the predator guild induced by climate are likely to result, through the food web, in a large impact on small rodent demography and population dynamics. Assuming such interactions to be typical of ecological systems, we conclude that appropriate predictions of the ecological consequences of climate change will depend on having an in-depth understanding of the community-weather system.  相似文献   

11.
Developing conservation strategies for threatened species increasingly requires understanding vulnerabilities to climate change, in terms of both demographic sensitivities to climatic and other environmental factors, and exposure to variability in those factors over time and space. We conducted a range‐wide, spatially explicit climate change vulnerability assessment for Eastern Massasauga (Sistrurus catenatus), a declining endemic species in a region showing strong environmental change. Using active season and winter adult survival estimates derived from 17 data sets throughout the species' range, we identified demographic sensitivities to winter drought, maximum precipitation during the summer, and the proportion of the surrounding landscape dominated by agricultural and urban land cover. Each of these factors was negatively associated with active season adult survival rates in binomial generalized linear models. We then used these relationships to back‐cast adult survival with dynamic climate variables from 1950 to 2008 using spatially explicit demographic models. Demographic models for 189 population locations predicted known extant and extirpated populations well (AUC = 0.75), and models based on climate and land cover variables were superior to models incorporating either of those effects independently. These results suggest that increasing frequencies and severities of extreme events, including drought and flooding, have been important drivers of the long‐term spatiotemporal variation in a demographic rate. We provide evidence that this variation reflects nonadaptive sensitivity to climatic stressors, which are contributing to long‐term demographic decline and range contraction for a species of high‐conservation concern. Range‐wide demographic modeling facilitated an understanding of spatial shifts in climatic suitability and exposure, allowing the identification of important climate refugia for a dispersal‐limited species. Climate change vulnerability assessment provides a framework for linking demographic and distributional dynamics to environmental change, and can thereby provide unique information for conservation planning and management.  相似文献   

12.
Current understanding of life‐history evolution and how demographic parameters contribute to population dynamics across species is largely based on assumptions of either constant environments or stationary environmental variation. Meanwhile, species are faced with non‐stationary environmental conditions (changing mean, variance, or both) created by climate and landscape change. To close the gap between contemporary reality and demographic theory, we develop a set of transient life table response experiments (LTREs) for decomposing realised population growth rates into contributions from specific vital rates and components of population structure. Using transient LTREs in a theoretical framework, we reveal that established concepts in population biology will require revision because of reliance on approaches that do not address the influence of unstable population structure on population growth and mean fitness. Going forward, transient LTREs will enhance understanding of demography and improve the explanatory power of models used to understand ecological and evolutionary dynamics.  相似文献   

13.
Recent ecological forecasts predict that ~25% of species worldwide will go extinct by 2050. However, these estimates are primarily based on environmental changes alone and fail to incorporate important biological mechanisms such as genetic adaptation via evolution. Thus, environmental change can affect population dynamics in ways that classical frameworks can neither describe nor predict. Furthermore, often due to a lack of data, forecasting models commonly describe changes in population demography by summarizing changes in fecundity and survival concurrently with the intrinsic growth rate (r). This has been shown to be an oversimplification as the environment may impose selective pressure on specific demographic rates (birth and death) rather than directly on r (the difference between the birth and death rates). This differential pressure may alter population response to density, in each demographic rate, further diluting the information combined to produce r. Thus, when we consider the potential for persistence via adaptive evolution, populations with the same r can have different abilities to persist amidst environmental change. Therefore, we cannot adequately forecast population response to climate change without accounting for demography and selection on density dependence. Using a continuous‐time Markov chain model to describe the stochastic dynamics of the logistic model of population growth and allow for trait evolution via mutations arising during birth events, we find persistence via evolutionary tracking more likely when environmental change alters birth rather than the death rate. Furthermore, species that evolve responses to changes in the strength of density dependence due to environmental change are less vulnerable to extinction than species that undergo selection independent of population density. By incorporating these key demographic considerations into our predictive models, we can better understand how species will respond to climate change.  相似文献   

14.
As climate change continues to alter temperature and precipitation patterns, numerous species have declined. However, populations of some species that show responses to climate change, such as eastern bluebirds (Sialia sialis), have increased or remained stable nationwide. To understand how species are adapting to climate change, we estimated demographic parameters and their responses to climatic variability, using nesting and banding-recapture data between 2003 and 2018 in a northeastern Arkansas eastern bluebird population. Increasing variability in precipitation in the nonbreeding season negatively affected hatchability. Hatching success was negatively affected by increasing variability in maximum temperatures and the number of hot days during the breeding season, but positively affected by increasing winter snow depth. Adult survival was positively affected by increasing snow depth and variability in the number of hot days during the breeding season, but negatively affected by increasing variability in nonbreeding season temperatures. Our results demonstrate that for this study population, annual breeding parameters, though canalized against interannual environmental variation, were affected by seasonal climatic variability. Although climate change may benefit bluebird survival due to increasing variability in winter temperatures and the number of hot days, climatic variability negatively affected breeding parameters and is expected to increase. Because breeding parameters are typically the drivers of population growth rate in short-lived species, these results raise concern for the future of this population of eastern bluebirds.  相似文献   

15.
Criticism has been levelled at climate‐change‐induced forecasts of species range shifts that do not account explicitly for complex population dynamics. The relative importance of such dynamics under climate change is, however, undetermined because direct tests comparing the performance of demographic models vs. simpler ecological niche models are still lacking owing to difficulties in evaluating forecasts using real‐world data. We provide the first comparison of the skill of coupled ecological‐niche‐population models and ecological niche models in predicting documented shifts in the ranges of 20 British breeding bird species across a 40‐year period. Forecasts from models calibrated with data centred on 1970 were evaluated using data centred on 2010. We found that more complex coupled ecological‐niche‐population models (that account for dispersal and metapopulation dynamics) tend to have higher predictive accuracy in forecasting species range shifts than structurally simpler models that only account for variation in climate. However, these better forecasts are achieved only if ecological responses to climate change are simulated without static snapshots of historic land use, taken at a single point in time. In contrast, including both static land use and dynamic climate variables in simpler ecological niche models improve forecasts of observed range shifts. Despite being less skilful at predicting range changes at the grid‐cell level, ecological niche models do as well, or better, than more complex models at predicting the magnitude of relative change in range size. Therefore, ecological niche models can provide a reasonable first approximation of the magnitude of species' potential range shifts, especially when more detailed data are lacking on dispersal dynamics, demographic processes underpinning population performance, and change in land cover.  相似文献   

16.
Predicting climate change impacts on population size requires detailed understanding of how climate influences key demographic rates, such as survival. This knowledge is frequently unavailable, even in well‐studied taxa such as birds. In temperate regions, most research into climatic effects on annual survival in resident passerines has focussed on winter temperature. Few studies have investigated potential precipitation effects and most assume little impact of breeding season weather. We use a 19‐year capture–mark–recapture study to provide a rare empirical analysis of how variation in temperature and precipitation throughout the entire year influences adult annual survival in a temperate passerine, the long‐tailed tit Aegithalos caudatus. We use model averaging to predict longer‐term historical survival rates, and future survival until the year 2100. Our model explains 73% of the interannual variation in survival rates. In contrast to current theory, we find a strong precipitation effect and no effect of variation in winter weather on adult annual survival, which is correlated most strongly to breeding season (spring) weather. Warm springs and autumns increase annual survival, but wet springs reduce survival and alter the form of the relationship between spring temperature and annual survival. There is little evidence for density dependence across the observed variation in population size. Using our model to estimate historical survival rates indicates that recent spring warming has led to an upward trend in survival rates, which has probably contributed to the observed long‐term increase in the UK long‐tailed tit population. Future climate change is predicted to further increase survival, under a broad range of carbon emissions scenarios and probabilistic climate change outcomes, even if precipitation increases substantially. We demonstrate the importance of considering weather over the entire annual cycle, and of considering precipitation and temperature in combination, in order to develop robust predictive models of demographic responses to climate change. Synthesis Prediction of climate change impacts demands understanding of how climate influences key demographic rates. In our 19‐year mark‐recapture study of long‐tailed tits Aegithalos caudatus, weather explained 73% of the inter‐annual variation in adult survival; warm springs and autumns increased survival, wet springs reduced survival, but winter weather had little effect. Robust predictions thus require consideration of the entire annual cycle and should not focus solely on temperature. Unexpectedly, survival appeared not to be strongly density‐dependent, so we use historical climate data to infer that recent climate change has enhanced survival over the four decades in which the UK long‐tailed tit population has more than doubled. Furthermore, survival rates in this species are predicted to further increase under a wide range of future climate scenarios.  相似文献   

17.
Although it is widely predicted that the geographic distributions of tree species and forest types will undergo substantial shifts in future, modelling approaches used to date are largely unable to project the pace at which forest distributions will respond to environmental change. The expansion and contraction of forest distributions act against considerable demographic inertia in the present composition and size‐structure of forest stands as climate‐induced changes in growth, mortality, and recruitment alter population dynamics through time. We aimed to better understand how shifts in forest distributions reflect long‐term changes in tree demographic rates and population dynamics, and how such shifts are influenced by 1) disturbance from forest harvesting and 2) local environmental heterogeneity. Using a simple, data‐constrained gap model, we simulated regional forest dynamics in the eastern United States over the next 500 yr. We then compared the geographic distributions of five different forest types through time under present and altered climatic conditions, in scenarios that variously included and excluded forest harvesting and environmental heterogeneity. Although we held climate fixed after 100 yr, it took another 160 yr after this for these forest types to collectively experience 90% of their eventual climate‐related distribution gains and losses. Competition strongly affected the nature of responses to climate change. Harvesting accelerated and amplified gains by an early‐successional forest type at the expense of a late‐successional one, but these gains did not occur faster than those for other forest types. Environmental heterogeneity had little effect on distribution gains or losses through time. These findings indicate that forest distributions should respond quite slowly to climate change, with the leading and trailing edges of different forest types shifting over a span of centuries. Disturbances can expedite some transitions, but are unlikely to lead to wholesale changes in forest types in the coming decades.  相似文献   

18.
For an understanding of the effect of climate change on animal population dynamics, it is crucial to be able to identify which climatologic parameters affect which demographic rate, and what the underlying mechanistic links are. An important reason for why the interactions between demography and climate still are poorly understood is that the effects of climate vary both geographically and taxonomically. Here, we analyse interspecifically how different climate variables affect the breeding success of North Atlantic seabird species along latitudinal and longitudinal gradients. By approaching the problem comparatively, we are able to generalize across populations and species. We find a strong interactive effect of climate and latitude on breeding success. Of the climatic variables considered, local sea surface temperatures during the breeding season tend to be more relevant than the North Atlantic Oscillation (NAO). However, the effect of NAO on breeding success shows a clear geographic pattern, changing in sign from positive in the south to negative in the north. If this interaction is taken account of, the model explains more variation than any model with sea surface temperature. This superiority of the NAO index is due to its ability to capture effects of more than one season in a single parameter. Mechanistically, however, several lines of evidence suggest that sea surface temperature is the biologically most relevant explanatory variable.  相似文献   

19.
Predicting the effects of the expected changes in climate on the dynamics of populations require that critical periods for climate‐induced changes in population size are identified. Based on time series analyses of 26 Swiss ibex (Capra ibex) populations, we show that variation in winter climate affected the annual changes in population size of most of the populations after accounting for the effects of density dependence and demographic stochasticity. In addition, precipitation during early summer also influenced the population fluctuations. This suggests that the major influences of climate on ibex population dynamics operated either through loss of individuals during winter or early summer, or through an effect on fecundity. However, spatial covariation in these climate variables was not able to synchronize the population fluctuations of ibex over larger distances, probably due to large spatial heterogeneity in the effects of single climate variables on different populations. Such spatial variation in the influence of the same climate variable on the local population dynamics suggests that predictions of influences of climate change need to account for local differences in population dynamical responses to climatic conditions.  相似文献   

20.
Aim It has been qualitatively understood for a long time that climate change will have widely varying effects on human well‐being in different regions of the world. The spatial complexities underlying our relationship to climate and the geographical disparities in human demographic change have, however, precluded the development of global indices of the predicted regional impacts of climate change on humans. Humans will be most negatively affected by climate change in regions where populations are strongly dependent on climate and favourable climatic conditions decline. Here we use the relationship between the distribution of human population density and climate as a basis to develop the first global index of predicted impacts of climate change on human populations. Location Global. Methods We use spatially explicit models of the present relationship between human population density and climate along with forecasted climate change to predict climate vulnerabilities over the coming decades. We then globally represent regional disparities in human population dynamics estimated with our ecological niche model and with a demographic forecast and contrast these disparities with CO2 emissions data to quantitatively evaluate the notion of moral hazard in climate change policies. Results Strongly negative impacts of climate change are predicted in Central America, central South America, the Arabian Peninsula, Southeast Asia and much of Africa. Importantly, the regions of greatest vulnerability are generally distant from the high‐latitude regions where the magnitude of climate change will be greatest. Furthermore, populations contributing the most to greenhouse gas emissions on a per capita basis are unlikely to experience the worst impacts of climate change, satisfying the conditions for a moral hazard in climate change policies. Main conclusions Regionalized analysis of relationships between distribution of human population density and climate provides a novel framework for developing global indices of human vulnerability to climate change. The predicted consequences of climate change on human populations are correlated with the factors causing climate change at the regional level, providing quantitative support for many qualitative statements found in international climate change assessments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号