首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Elevated atmospheric CO2 may alter decomposition rates through changes in plant material quality and through its impact on soil microbial activity. This study examines whether plant material produced under elevated CO2 decomposes differently from plant material produced under ambient CO2. Moreover, a long‐term experiment offered a unique opportunity to evaluate assumptions about C cycling under elevated CO2 made in coupled climate–soil organic matter (SOM) models. Trifolium repens and Lolium perenne plant materials, produced under elevated (60 Pa) and ambient CO2 at two levels of N fertilizer (140 vs. 560 kg ha?1 yr?1), were incubated in soil for 90 days. Soils and plant materials used for the incubation had been exposed to ambient and elevated CO2 under free air carbon dioxide enrichment conditions and had received the N fertilizer for 9 years. The rate of decomposition of L. perenne and T. repens plant materials was unaffected by elevated atmospheric CO2 and rate of N fertilization. Increases in L. perenne plant material C : N ratio under elevated CO2 did not affect decomposition rates of the plant material. If under prolonged elevated CO2 changes in soil microbial dynamics had occurred, they were not reflected in the rate of decomposition of the plant material. Only soil respiration under L. perenne, with or without incorporation of plant material, from the low‐N fertilization treatment was enhanced after exposure to elevated CO2. This increase in soil respiration was not reflected in an increase in the microbial biomass of the L. perenne soil. The contribution of old and newly sequestered C to soil respiration, as revealed by the 13C‐CO2 signature, reflected the turnover times of SOM–C pools as described by multipool SOM models. The results do not confirm the assumption of a negative feedback induced in the C cycle following an increase in CO2, as used in coupled climate–SOM models. Moreover, this study showed no evidence for a positive feedback in the C cycle following additional N fertilization.  相似文献   

2.
Soil organic matter (SOM) mineralization processes are central to the functioning of soils in relation to feedbacks with atmospheric CO2 concentration, to sustainable nutrient supply, to structural stability and in supporting biodiversity. Recognition that labile C‐inputs to soil (e.g. plant‐derived) can significantly affect mineralization of SOM (‘priming effects’) complicates prediction of environmental and land‐use change effects on SOM dynamics and soil C‐balance. The aim of this study is to construct response functions for SOM priming to labile C (glucose) addition rates, for four contrasting soils. Six rates of glucose (3 atm% 13C) addition (in the range 0–1 mg glucose g?1 soil day?1) were applied for 8 days. Soil CO2 efflux was partitioned into SOM‐ and glucose‐derived components by isotopic mass balance, allowing quantification of SOM priming over time for each soil type. Priming effects resulting from pool substitution effects in the microbial biomass (‘apparent priming’) were accounted for by determining treatment effects on microbial biomass size and isotopic composition. In general, SOM priming increased with glucose addition rate, approaching maximum rates specific for each soil (up to 200%). Where glucose additions saturated microbial utilization capacity (>0.5 mg glucose g?1 soil), priming was a soil‐specific function of glucose mineralization rate. At low to intermediate glucose addition rates, the magnitude (and direction) of priming effects was more variable. These results are consistent with the view that SOM priming is supported by the availability of labile C, that priming is not a ubiquitous function of all components of microbial communities and that soils differ in the extent to which labile C stimulates priming. That priming effects can be represented as response functions to labile C addition rates may be a means of their explicit representation in soil C‐models. However, these response functions are soil‐specific and may be affected by several interacting factors at lower addition rates.  相似文献   

3.
The increasing input of anthropogenically derived nitrogen (N) to ecosystems raises a crucial question: how does available N modify the decomposer community and thus affects the mineralization of soil organic matter (SOM). Moreover, N input modifies the priming effect (PE), that is, the effect of fresh organics on the microbial decomposition of SOM. We studied the interactive effects of C and N on SOM mineralization (by natural 13C labelling adding C4‐sucrose or C4‐maize straw to C3‐soil) in relation to microbial growth kinetics and to the activities of five hydrolytic enzymes. This encompasses the groups of parameters governing two mechanisms of priming effects – microbial N mining and stoichiometric decomposition theories. In sole C treatments, positive PE was accompanied by a decrease in specific microbial growth rates, confirming a greater contribution of K‐strategists to the decomposition of native SOM. Sucrose addition with N significantly accelerated mineralization of native SOM, whereas mineral N added with plant residues accelerated decomposition of plant residues. This supports the microbial mining theory in terms of N limitation. Sucrose addition with N was accompanied by accelerated microbial growth, increased activities of β‐glucosidase and cellobiohydrolase, and decreased activities of xylanase and leucine amino peptidase. This indicated an increased contribution of r‐strategists to the PE and to decomposition of cellulose but the decreased hemicellulolytic and proteolytic activities. Thus, the acceleration of the C cycle was primed by exogenous organic C and was controlled by N. This confirms the stoichiometric decomposition theory. Both K‐ and r‐strategists were beneficial for priming effects, with an increasing contribution of K‐selected species under N limitation. Thus, the priming phenomenon described in ‘microbial N mining’ theory can be ascribed to K‐strategists. In contrast, ‘stoichiometric decomposition’ theory, that is, accelerated OM mineralization due to balanced microbial growth, is explained by domination of r‐strategists.  相似文献   

4.
Vegetation growth characteristics influence ecosystem biogeochemistry and must be incorporated in models used to project biogeochemical responses to climate variations. We used a multiple-element limitation model (MEL) to examine how variations in nutrient use efficiency (NUE) and net primary production to biomass ratio (nPBR) affect changes in ecosystem C stocks after an increase in temperature and atmospheric CO2. nPBR influences the initial rates of response, but the magnitude and direction of long-term responses are determined by NUE. MEL was used to simulate responses to climate change in communities composed of two species differing in nPBR and/or NUE. When only nPBR differed between the species, the high-nPBR species outgrew the low-nPBR species early in the simulations, but the shift in dominance was transitory because of secondary N limitations. High-NUE species were less affected by secondary N limitations and were therefore favored under elevated CO2. Increased temperature stimulated N release from soil organic matter (SOM) and therefore favored low-NUE species. The combined release from C and N limitation under the combination of increased temperature and elevated CO2 favored high-NUE species. High C:N litter from high-NUE species limited the N-supply rate from SOM, which favors the dominance of the high-NUE species in the short term. However, in the long term increased litter production resulted in SOM accumulation, which reestablished a N supply rate favorable to the reestablishment and dominance of the low-NUE species. Conditions then reverted to a state favorable to the high-NUE species. Received 8 October 1998; accepted 9 April 1999.  相似文献   

5.
Climate change has consequences for terrestrial functioning, but predictions of plant responses remain uncertain because of the gaps in the representation of nutrient cycles and C–N–P interactions in ecosystem models. Here, we review the processes that are included in ecosystem models, but focus on coupled C–N–P cycle models. We highlight important plant adjustments to climate change, elevated atmospheric CO2, and/or nutrient limitations that are currently not—or only partially—incorporated in ecosystem models by reviewing experimental studies and compiling data. Plant adjustments concern C:N:P stoichiometry, photosynthetic capacity, nutrient resorption rates, allocation patterns, symbiotic N2 fixation and root exudation (phosphatases, carboxylates) and the effect of root exudation on nutrient mobilization in the soil rhizosphere (P solubilization, biochemical mineralization of organic P and priming effect). We showed that several plant adjustments could be formulated and calibrated using existing experimental data in the literature. Finally, we proposed a roadmap for future research because improving ecosystem models necessitate specific data and collaborations between modelers and empiricists.  相似文献   

6.
A major uncertainty in predicting long-term ecosystem C balance is whether stimulation of net primary production will be sustained in future atmospheric CO2 scenarios. Immobilization of nutrients (N in particular) in plant biomass and soil organic matter (SOM) provides negative feedbacks to plant growth and may lead to progressive N limitation (PNL) of plant response to CO2 enrichment. Soil microbes mediate N availability to plants by controlling litter decomposition and N transformations as well as dominating biological N fixation. CO2-induced changes in C inputs, plant nutrient demand and water use efficiency often have interactive and contrasting effects on microbes and microbially mediated N processes. One critical question is whether CO2-induced N accumulation in plant biomass and SOM will result in N limitation of microbes and subsequently cause them to obtain N from alternative sources or to alter the ecosystem N balance. We reviewed the experimental results that examined elevated CO2 effects on microbial parameters, focusing on those published since 2000. These results in general show that increased C inputs dominate the CO2 impact on microbes, microbial activities and their subsequent controls over ecosystem N dynamics, potentially enhancing microbial N acquisition and ecosystem N retention. We reason that microbial mediation of N availability for plants under future CO2 scenarios will strongly depend on the initial ecosystem N status, and the nature and magnitude of external N inputs. Consequently, microbial processes that exert critical controls over long-term N availability for plants would be ecosystem-specific. The challenge remains to quantify CO2-induced changes in these processes, and to extrapolate the results from short-term studies with step-up CO2 increases to native ecosystems that are already experiencing gradual changes in the CO2 concentration.  相似文献   

7.
A significant challenge in predicting terrestrial ecosystem response to global changes comes from the relatively poor understanding of the processes that control pools and fluxes of plant nutrients in soil. In addition, individual global changes are often studied in isolation, despite the potential for interactive effects among them on ecosystem processes. We studied the response of gross N mineralization and microbial respiration after 6 years of application of three global change factors in a grassland field experiment in central Minnesota (the BioCON experiment). BioCON is a factorial manipulation of plant species diversity (1, 4, 9 and 16 prairie species), atmospheric [CO2] (ambient and elevated: 560 μmol mol?1), and N inputs (ambient and ambient +4 g N m?2 yr?1). We hypothesized that gross N mineralization would increase with increasing levels of all factors because of stimulated plant productivity and thus greater organic inputs to soils. However, we also hypothesized that N addition would enhance, while elevated [CO2] and greater diversity would temper, gross N mineralization responses because of increased and reduced plant tissue N concentrations, respectively. In partial support of our hypothesis, gross N mineralization increased with greater diversity and N addition, but not with elevated [CO2]. The ratio of gross N mineralization to microbial respiration (i.e. the ‘yield’ of inorganic N mineralized per unit C respired) declined with greater diversity and [CO2] suggesting increasing limitation of microbial processes by N relative to C in these treatments. Based on these results, we conclude that the plant supply of organic matter primarily controls gross N mineralization and microbial respiration, but that the concentration of N in organic matter input secondarily influences these processes. Thus, in systems where N limits plant productivity these global change factors could cause different long‐term ecosystem trajectories because of divergent effects on soil N and C cycling.  相似文献   

8.
To determine how plant species richness impacts microbial assimilation of new photosynthate, and how this may be modified by atmospheric N deposition, we analyzed the microbial assimilation of recent photosynthate in a 6-year-long field experiment in which plant species richness, atmospheric N deposition, and atmospheric CO2 concentration were manipulated in concert. The depleted δ13C of fumigation CO2 enabled us to investigate the effect of plant species richness and atmospheric N deposition on the metabolism of soil microbial communities in the elevated CO2 treatment. To accomplish this, we determined the δ13C of bacterial, actinobacterial, and fungal phospholipid fatty acids (PLFAs). In the elevated CO2 conditions of this study, the δ13C of bacterial PLFAs (i15:0, i16:0, 16:1ω7c, 16:1ω9c, 10Me16:0, and 10Me18:0) and the fungal PLFA 18:1ω9c was significantly lower in species-rich plant communities than in species-poor plant communities, indicating that microbial incorporation of new C increased with plant species richness. Despite an increase in plant production, total PLFA decreased under N deposition. Moreover, N deposition also decreased fungal relative abundance in species-rich plant communities. In our study, plant species richness directly increased microbial incorporation of new photosynthate, providing a mechanistic link between greater plant detritus production in species-rich plant communities and larger and more active soil microbial community.  相似文献   

9.
We report changes in nitrogen cycling in Florida scrub oak in response to elevated atmospheric CO2 during the first 14 months of experimental treatment. Elevated CO2 stimulated above-ground growth, nitrogen mass, and root nodule production of the nitrogen-fixing vine, Galactia elliottii Nuttall. During this period, elevated CO2 reduced rates of gross nitrogen mineralization in soil, and resulted in lower recovery of nitrate on resin lysimeters. Elevated CO2 did not alter nitrogen in the soil microbial biomass, but increased the specific rate of ammonium immobilization (NH4+ immobilized per unit microbial N) measured over a 24-h period. Increased carbon input to soil through greater root growth combined with a decrease in the quality of that carbon in elevated CO2 best explains these changes. These results demonstrate that atmospheric CO2 concentration influences both the internal cycling of nitrogen (mineralization, immobilization, and nitrification) as well as the processes that regulate total ecosystem nitrogen mass (nitrogen fixation and nitrate leaching) in Florida coastal scrub oak. If these changes in nitrogen cycling are sustained, they could cause long-term feedbacks to the growth responses of plants to elevated CO2. Greater nitrogen fixation and reduced leaching could stimulate nitrogen-limited plant growth by increasing the mass of labile nitrogen in the ecosystem. By contrast, reduced nitrogen mineralization and increased immobilization will restrict the supply rate of plant-available nitrogen, potentially reducing plant growth. Thus, the net feedback to plant growth will depend on the balance of these effects through time.  相似文献   

10.
程淑兰  方华军  徐梦  耿静  何舜  于光夏  曹子铖 《生态学报》2018,38(23):8285-8295
大气氮沉降增加倾向于促进受氮限制陆地生态系统地上生物量,但是对地下碳过程和土壤碳截存的影响结果迥异,导致陆地生态系统“氮促碳汇”的评估存在很大的不确定性。大气氮沉降输入直接影响微生物活性或间接影响底物质量,改变凋落物和土壤有机质(SOM)的分解速率和分解程度,进而影响土壤有机碳(SOC)的积累与损耗过程。过去相关研究主要集中在土壤碳转化过程和碳储量动态方面,缺乏植物-微生物-SOM交互作用的理解,对土壤碳截存调控的生物化学和微生物学机理尚不清楚。本文以地下碳循环过程为主线,分别综述了氮沉降增加对植物地下碳分配、SOC激发效应、微生物群落碳代谢过程的影响,深入分析SOM化学稳定性与微生物群落动态的关系。该领域研究的薄弱环节体现在:(1)增氮倾向于降低根系的生长和周转,对根际沉积碳分配(数量和格局)的影响及驱动因素不明确;(2)虽然认识到氮素有效性影响土壤激发效应的方向和强度,但是氧化态NO-3和还原态NH+4输入对有机质激发效应的差异性影响及潜在机理知之甚少;(3)微生物碳利用效率(CUE)是微生物群落碳代谢的关键表征,能够很好地解释土壤碳的积累与损耗过程;由于缺乏适宜的测定方法,难以准确量化土壤微生物的CUE及微生物生物量的周转时间;(4)增氮会抑制土壤真菌群落及其胞外酶活性,对细菌群落组成的影响尚未定论,有关SOM化学质量与土壤微生物群落活性、组成之间的耦合关系尚不清楚。未来研究应基于长期的氮添加控制实验平台,结合碳氧稳定性同位素示踪、有机质化学、分子生物学和宏基因组学等方法,深入分析植物同化碳的地下分配规律、微生物碳代谢和周转、有机质化学结构与功能微生物群落的耦合关系等关键环节。上述研究将有助于揭示植物-土壤-微生物交互作用对SOC动态的调控机制,完善陆地生态系统碳-氮耦合循环模型,有效降低区域陆地碳汇评估的不确定性,并可为陆地生态系统应对全球变化提供科学依据。  相似文献   

11.
Soil organic matter (SOM) dynamics ultimately govern the ability of soil to provide long‐term C sequestration and the nutrients required for ecosystem productivity. Predicting belowground responses to elevated CO2 requires an integrated understanding of SOM transformations and the microbial activity that governs them. It remains unclear how the microorganisms upon which these transformations depend will function in an elevated CO2 world. This study examines SOM transformations and microbial metabolism in soils from the Duke Free Air Carbon Enrichment site in North Carolina, USA. We assessed microbial respiration and net nitrogen (N) mineralization in soils with and without elevated CO2 exposure during a 100‐day incubation. We also traced the depleted C isotopic signature of the supplemental CO2 into SOM and the soils' phospholipid fatty acids (PLFA), which serve as biomarkers for living cells. Cumulative net N mineralization in elevated CO2 soils was 50% that in control soils after a 100‐day incubation. Respiration was not altered with elevated CO2. C : N ratios of bulk SOM did not change with elevated CO2, but incubation data suggest that the C : N ratios of mineralized organic matter increased with elevated CO2. Values of SOM δ13C were depleted with elevated CO2 (?26.7±0.2 vs. ?30.2±0.3‰), reflecting the depleted signature of the supplemental CO2. We compared δ13C of individual PLFA with the δ13C of SOM to discern incorporation of the depleted C isotopic signature into soil microbial groups in elevated CO2 plots. PLFA i15:0, a15:0, and 10Met18:0 reflected significant incorporation of recently produced photosynthate, suggesting that the bacterial groups defined by these biomarkers are active metabolizers in elevated CO2 soils. At least one of these groups (actinomycetes, 10Met18:0) specializes in metabolizing less labile substrates. Because control plots did not receive an equivalent 13C tracer, we cannot determine from these data whether this group of organisms was stimulated by elevated CO2 compared with these organisms in control soils. Stimulation of this group, if it occurred in the elevated CO2 plot, would be consistent with a decline in the availability of mineralizable organic matter with elevated CO2, which incubation data suggest may be the case in these soils.  相似文献   

12.
In this paper we present a conceptual model of integrated plant-soil interactions which illustrates the importance of identifying the primary belowground feedbacks, both positive and negative, which can simultaneously affect plant growth responses to elevated CO2. The primary negative feedbacks share the common feature of reducing the amount of nutrients available to plants. These negative feedbacks include increased litter C/N ratios, and therefore reduced mineralization rates, increased immobilization of available nutrients by a larger soil microbial pool, and increased storage of nutrients in plant biomass and detritus due to increases in net primary productivity (NPP). Most of the primary positive feedbacks share the common feature of being plant mediated feedbacks, the only exception being Zak et al.'s hypothesis that increased microbial biomass will be accompanied by increased mineralization rates. Plant nutrient uptake may be increased through alterations in root architecture, physiology, or mycorrhizal symbioses. Further, the increased C/N ratios of plant tissue mean that a given level of NPP can be achieved with a smaller supply of nitrogen.Identification of the net plant-soil feedbacks to enhanced productivity with elevated CO2 are a critical first step for any ecosystem. It is necessary, however, that we first identify how universally applicable the results are from one study of one ecosystem before ecosystem models incorporate this information. The effect of elevated CO2 on plant growth (including NPP, tissue quality, root architecture, mycorrhizal symbioses) can vary greatly for different species and environmental conditions. Therefore it is reasonable to expect that different ecosystems will show different patterns of interacting positive and negative feedbacks within the plant-soil system. This inter-ecosystem variability in the potential for long-term growth responses to rising CO2 levels implies that we need to parameterize mechanistic models of the impact of elevated CO2 on ecosystem productivity using a detailed understanding of each ecosystem of interest.  相似文献   

13.
Extreme drought events have the potential to cause dramatic changes in ecosystem structure and function, but the controls upon ecosystem stability to drought remain poorly understood. Here we used model systems of two commonly occurring, temperate grassland communities to investigate the short-term interactive effects of a simulated 100-year summer drought event, soil nitrogen (N) availability and plant species diversity (low/high) on key ecosystem processes related to carbon (C) and N cycling. Whole ecosystem CO2 fluxes and leaching losses were recorded during drought and post-rewetting. Litter decomposition and C/N stocks in vegetation, soil and soil microbes were assessed 4 weeks after the end of drought. Experimental drought caused strong reductions in ecosystem respiration and net ecosystem CO2 exchange, but ecosystem fluxes recovered rapidly following rewetting irrespective of N and species diversity. As expected, root C stocks and litter decomposition were adversely affected by drought across all N and plant diversity treatments. In contrast, drought increased soil water retention, organic nutrient leaching losses and soil fertility. Drought responses of above-ground vegetation C stocks varied depending on plant diversity, with greater stability of above-ground vegetation C to drought in the high versus low diversity treatment. This positive effect of high plant diversity on above-ground vegetation C stability coincided with a decrease in the stability of microbial biomass C. Unlike species diversity, soil N availability had limited effects on the stability of ecosystem processes to extreme drought. Overall, our findings indicate that extreme drought events promote post-drought soil nutrient retention and soil fertility, with cascading effects on ecosystem C fixation rates. Data on above-ground ecosystem processes underline the importance of species diversity for grassland function in a changing environment. Furthermore, our results suggest that plant–soil interactions play a key role for the short-term stability of above-ground vegetation C storage to extreme drought events.  相似文献   

14.
The impact of anthropogenic CO2 emissions on climate change may be mitigated in part by C sequestration in terrestrial ecosystems as rising atmospheric CO2 concentrations stimulate primary productivity and ecosystem C storage. Carbon will be sequestered in forest soils if organic matter inputs to soil profiles increase without a matching increase in decomposition or leaching losses from the soil profile, or if the rate of decomposition decreases because of increased production of resistant humic substances or greater physical protection of organic matter in soil aggregates. To examine the response of a forest ecosystem to elevated atmospheric CO2 concentrations, the Duke Forest Free‐Air CO2 Enrichment (FACE) experiment in North Carolina, USA, has maintained atmospheric CO2 concentrations 200 μL L?1 above ambient in an aggrading loblolly pine (Pinus taeda) plantation over a 9‐year period (1996–2005). During the first 6 years of the experiment, forest‐floor C and N pools increased linearly under both elevated and ambient CO2 conditions, with significantly greater accumulations under the elevated CO2 treatment. Between the sixth and ninth year, forest‐floor organic matter accumulation stabilized and C and N pools appeared to reach their respective steady states. An additional C sink of ~30 g C m?2 yr?1 was sequestered in the forest floor of the elevated CO2 treatment plots relative to the control plots maintained at ambient CO2 owing to increased litterfall and root turnover during the first 9 years of the study. Because we did not detect any significant elevated CO2 effects on the rate of decomposition or on the chemical composition of forest‐floor organic matter, this additional C sink was likely related to enhanced litterfall C inputs. We also failed to detect any statistically significant treatment effects on the C and N pools of surface and deep mineral soil horizons. However, a significant widening of the C : N ratio of soil organic matter (SOM) in the upper mineral soil under both elevated and ambient CO2 suggests that N is being transferred from soil to plants in this aggrading forest. A significant treatment × time interaction indicates that N is being transferred at a higher rate under elevated CO2 (P=0.037), suggesting that enhanced rates of SOM decomposition are increasing mineralization and uptake to provide the extra N required to support the observed increase in primary productivity under elevated CO2.  相似文献   

15.
Grassland ecosystems store an estimated 30% of the world's total soil C and are frequently disturbed by wildfires or fire management. Aboveground litter decomposition is one of the main processes that form soil organic matter (SOM). However, during a fire biomass is removed or partially combusted and litter inputs to the soil are substituted with inputs of pyrogenic organic matter (py‐OM). Py‐OM accounts for a more recalcitrant plant input to SOM than fresh litter, and the historical frequency of burning may alter C and N retention of both fresh litter and py‐OM inputs to the soil. We compared the fate of these two forms of plant material by incubating 13C‐ and 15N‐labeled Andropogon gerardii litter and py‐OM at both an annually burned and an infrequently burned tallgrass prairie site for 11 months. We traced litter and py‐OM C and N into uncomplexed and organo‐mineral SOM fractions and CO2 fluxes and determined how fire history affects the fate of these two forms of aboveground biomass. Evidence from CO2 fluxes and SOM C:N ratios indicates that the litter was microbially transformed during decomposition while, besides an initial labile fraction, py‐OM added to SOM largely untransformed by soil microbes. Additionally, at the N‐limited annually burned site, litter N was tightly conserved. Together, these results demonstrate how, although py‐OM may contribute to C and N sequestration in the soil due to its resistance to microbial degradation, a long history of annual removal of fresh litter and input of py‐OM infers N limitation due to the inhibition of microbial decomposition of aboveground plant inputs to the soil. These results provide new insight into how fire may impact plant inputs to the soil, and the effects of py‐OM on SOM formation and ecosystem C and N cycling.  相似文献   

16.
Stimulation of grassland nitrogen cycling under carbon dioxide enrichment   总被引:1,自引:0,他引:1  
 Nitrogen (N) limits plant growth in many terrestrial ecosystems, potentially constraining terrestrial ecosystem response to elevated CO2. In this study, elevated CO2 stimulated gross N mineralization and plant N uptake in two annual grasslands. In contrast to other studies that have invoked increased C input to soil as the mechanism altering soil N cycling in response to elevated CO2, increased soil moisture, due to decreased plant transpiration in elevated CO2, best explains the changes we observed. This study suggests that atmospheric CO2 concentration may influence ecosystem biogeochemistry through plant control of soil moisture. Received: 18 December 1995 / Accepted: 19 June 1996  相似文献   

17.
Soil microbial response in tallgrass prairie to elevated CO2   总被引:3,自引:0,他引:3  
Terrestrial responses to increasing atmospheric CO2 are important to the global carbon budget. Increased plant production under elevated CO2 is expected to increase soil C which may induce N limitations. The objectives of this study were to determine the effects of increased CO2 on 1) the amount of carbon and nitrogen stored in soil organic matter and microbial biomass and 2) soil microbial activity. A tallgrass prairie ecosystem was exposed to ambient and twice-ambient CO2 concentrations in open-top chambers in the field from 1989 to 1992 and compared to unchambered ambient CO2 during the entire growing season. During 1990 and 1991, N fertilizer was included as a treatment. The soil microbial response to CO2 was measured during 1991 and 1992. Soil organic C and N were not significantly affected by enriched atmospheric CO2. The response of microbial biomass to CO2 enrichment was dependent upon soil water conditions. In 1991, a dry year, CO2 enrichment significantly increased microbial biomass C and N. In 1992, a wet year, microbial biomass C and N were unaffected by the CO2 treatments. Added N increased microbial C and N under CO2 enrichment. Microbial activity was consistently greater under CO2 enrichment because of better soil water conditions. Added N stimulated microbial activity under CO2 enrichment. Increased microbial N with CO2 enrichment may indicate plant production could be limited by N availability. The soil system also could compensate for the limited N by increasing the labile pool to support increased plant production with elevated atmospheric CO2. Longer-term studies are needed to determine how tallgrass prairie will respond to increased C input.  相似文献   

18.
It is uncertain whether elevated atmospheric CO2 will increase C storage in terrestrial ecosystems without concomitant increases in plant access to N. Elevated CO2 may alter microbial activities that regulate soil N availability by changing the amount or composition of organic substrates produced by roots. Our objective was to determine the potential for elevated CO2 to change N availability in an experimental plant-soil system by affecting the acquisition of root-derived C by soil microbes. We grew Populus tremuloides (trembling aspen) cuttings for 2 years under two levels of atmospheric CO2 (36.7 and 71.5 Pa) and at two levels of soil N (210 and 970 μg N g–1). Ambient and twice-ambient CO2 concentrations were applied using open-top chambers, and soil N availability was manipulated by mixing soils differing in organic N content. From June to October of the second growing season, we measured midday rates of soil respiration. In August, we pulse-labeled plants with 14CO2 and measured soil 14CO2 respiration and the 14C contents of plants, soils, and microorganisms after a 6-day chase period. In conjunction with the August radio-labeling and again in October, we used 15N pool dilution techniques to measure in situ rates of gross N mineralization, N immobilization by microbes, and plant N uptake. At both levels of soil N availability, elevated CO2 significantly increased whole-plant and root biomass, and marginally increased whole-plant N capital. Significant increases in soil respiration were closely linked to increases in root biomass under elevated CO2. CO2 enrichment had no significant effect on the allometric distribution of biomass or 14C among plant components, total 14C allocation belowground, or cumulative (6-day) 14CO2 soil respiration. Elevated CO2 significantly increased microbial 14C contents, indicating greater availability of microbial substrates derived from roots. The near doubling of microbial 14C contents at elevated CO2 was a relatively small quantitative change in the belowground C cycle of our experimental system, but represents an ecologically significant effect on the dynamics of microbial growth. Rates of plant N uptake during both 6-day periods in August and October were significantly greater at elevated CO2, and were closely related to fine-root biomass. Gross N mineralization was not affected by elevated CO2. Despite significantly greater rates of N immobilization under elevated CO2, standing pools of microbial N were not affected by elevated CO2, suggesting that N was cycling through microbes more rapidly. Our results contained elements of both positive and negative feedback hypotheses, and may be most relevant to young, aggrading ecosystems, where soil resources are not yet fully exploited by plant roots. If the turnover of microbial N increases, higher rates of N immobilization may not decrease N availability to plants under elevated CO2. Received: 12 February 1999 / Accepted: 2 March 2000  相似文献   

19.
To assess how heterotrophic microorganisms may alter their activities and thus their CO2‐C return to the atmosphere with elevated CO2 and changing N availability, we examined soil organic matter (SOM) dynamics at the Duke Free Air Carbon Enrichment (FACE) site, after N fertilizer was applied. We measured heterotrophic respiration during early and late stages of SOM mineralization in soil incubations to capture activity on relatively labile and refractory SOM pools. We also measured δ13C of respired CO2‐C and phospholipid fatty acids (PLFAs) during early mineralization stages to track the microbial groups involved in substrate use. We calculated , a measure of δ13CPLFA normalized by respired δ13CO2, to assess microbial function with C substrates formed with elevated CO2 and altered N availability, via the distinct δ13C of the supplemental CO2. We also quantified extracellular enzyme activity (EEA) during labile and recalcitrant SOM mineralization. Early in the incubations, increased N availability reduced heterotrophic CO2‐C release. By the later stages of SOM mineralization, elevated CO2 soils with fertilization had respired 72% of the CO2‐C respired by all other soils. values suggest that fungi in elevated CO2 plots took up C substrates possessing the δ13C signature of recently formed SOM, and added N promoted the activity of Gram‐negative bacteria and reduced that of Gram‐positive bacteria, particularly actinomycetes. Consistent with this, the enzyme responsible for the degradation of peptidoglycan and chitin, compounds produced by Gram‐positive bacteria and fungi, respectively, experienced a decline in activity with N fertilization. If patterns observed in this study with N additions are reversed with progressive N limitation at this site, actinomycetes and other Gram‐positive bacteria responsible for mineralizing relatively recalcitrant substrates may experience increases in their activity. Such shifts in microbial functioning may result in increased turnover of, and C release from, relatively decay‐resistant material.  相似文献   

20.
Rising carbon dioxide (CO2) concentrations and temperatures are expected to stimulate plant productivity and ecosystem C sequestration, but these effects require a concurrent increase in N availability for plants. Plants might indirectly promote N availability as they release organic C into the soil (e.g., by root exudation) that can increase microbial soil organic matter (SOM) decomposition (“priming effect”), and possibly the enzymatic breakdown of N-rich polymers, such as proteins, into bio-available units (“N mining”). We tested the adjustment of protein depolymerization to changing soil C and N availability in a laboratory experiment. We added easily available C or N sources to six boreal forest soils, and determined soil organic C mineralization, gross protein depolymerization and gross ammonification rates (using 15N pool dilution assays), and potential extracellular enzyme activities after 1 week of incubation. Added C sources were 13C-labelled to distinguish substrate from soil derived C mineralization. Observed effects reflect short-term adaptations of non-symbiotic soil microorganisms to increased C or N availability. Although C input promoted microbial growth and N demand, we did not find indicators of increased N mobilization from SOM polymers, given that none of the soils showed a significant increase in protein depolymerization, and only one soil showed a significant increase in N-targeting enzymes. Instead, our findings suggest that microorganisms immobilized the already available N more efficiently, as indicated by decreased ammonification and inorganic N concentrations. Likewise, although N input stimulated ammonification, we found no significant effect on protein depolymerization. Although our findings do not rule out in general that higher plant-soil C allocation can promote microbial N mining, they suggest that such an effect can be counteracted, at least in the short term, by increased microbial N immobilization, further aggravating plant N limitation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号