首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
一种自动化的植物细胞壁伸展性能测定仪及其应用   总被引:1,自引:0,他引:1  
应用实验室常用仪器和电子部件,包括直流稳压电源、等臂双盘天平、记录仪、恒流泵、程控信仪、线性可变差动变压器(LVDT)、是磁阀等,改装和配置成的植物细胞壁菜性能性能测定仪,具有操作简便、测量准确和灵敏度高等优点;对大豆幼苗下胚轴生长区细胞壁的内源伸展活性和重组伸展活性的实测结果与文献报告相符,表明该仪器是一种较为理想的测定植物细胞伸展性能的自动化仪器。  相似文献   

2.
大豆幼苗下胚轴扩张蛋白的存在及其特性   总被引:7,自引:0,他引:7  
用离体细胞壁伸展活性重组法,对大豆(Glycinemax(L.)Mer.)幼苗下胚轴细胞壁特异性扩张蛋白的活性鉴定和特性研究结果表明,大豆幼苗下胚轴的延伸生长,既与扩张蛋白的活性升高有关,也与其细胞壁对扩张蛋白的敏感性增加有关;热钝化大豆下胚轴细胞壁的伸展活性,一旦被外源扩张蛋白所恢复,用酸性缓冲液(pH4.5)代替扩张蛋白提取液,伸展活性不受影响;但若换用中性缓冲液(pH6.8),伸展活性丧失殆尽,且与活细胞壁一样,随缓冲液的交替更换而反复逆转;大豆和黄瓜幼苗扩张蛋白可以与其热钝化的细胞壁相互交叉重组。另外,重组的细胞壁伸展活性对扩张蛋白浓度和pH的依赖性,符合一般酶的催化特征,说明扩张蛋白不仅在植物细胞的延伸生长过程中起着极为重要的作用,而且还暗示植物细胞壁的内源伸展就是该蛋白介导的一种生物化学过程。  相似文献   

3.
植物细胞壁中的伸展蛋白   总被引:1,自引:0,他引:1  
随着实验技术的发展尤其是分子生物学技术的应用 ,植物细胞壁的研究已取得丰硕的成果。植物细胞壁中最重要的结构蛋白———伸展蛋白 ,是高等植物细胞壁中一族富含羟脯氨酸的糖蛋白 ,起强固细胞壁的作用。本文综述了近几十年对伸展蛋白的分离纯化、结构、生物合成、功能作用及其基因和表达的控制方面的研究  相似文献   

4.
扩张蛋白(expansin)在细胞扩张和果实成熟中起着极为重要的作用。植物细胞壁伸展测定仪是研究扩张蛋白必不可少的仪器。为此以电涡流传感器为核心部件装配了一种具有结构简单、操作方便和测量准确等优点的新型测定仪,并利用该仪器研究了蚕豆(Vicia faba)扩张蛋白的特性。结果表明蚕豆根、茎、上胚轴和成熟叶片中均存在扩张蛋白,而且叶片和幼根的扩张蛋白活性最强;免疫印迹证实在蚕豆根、茎、上胚轴和成熟叶片中确实存在扩张蛋白。以上结果说明本仪器灵敏且可靠,用此仪器首次发现在成熟叶片中存在扩张蛋白。  相似文献   

5.
植物细胞壁伸展测定仪在蚕豆扩张蛋白特性研究中的应用   总被引:2,自引:0,他引:2  
扩张蛋白(expansin)在细胞扩张和果实成熟中起着极为重要的作用.植物细胞壁伸展测定仪是研究扩张蛋白必不可少的仪器.为此以电涡流传感器为核心部件装配了一种具有结构简单、操作方便和测量准确等优点的新型测定仪,并利用该仪器研究了蚕豆(Vicia faba)扩张蛋白的特性.结果表明蚕豆根、茎、上胚轴和成熟叶片中均存在扩张蛋白,而且叶片和幼根的扩张蛋白活性最强;免疫印迹证实在蚕豆根、茎、上胚轴和成熟叶片中确实存在扩张蛋白.以上结果说明本仪器灵敏且可靠,用此仪器首次发现在成熟叶片中存在扩张蛋白.  相似文献   

6.
伸展蛋白是高等植物细胞壁中一族富含羟脯氨酸的糖蛋白,在植物细胞壁中发挥着重要的生理功能。综述了近几十年对伸展蛋白结构、功能、基因家族以及生物合成与基因表达调节的研究进展。  相似文献   

7.
Expansin(细胞壁松弛蛋白)的发展   总被引:6,自引:0,他引:6  
Expansin是一种体外诱导分离的植物细胞壁伸展的蛋白,在修饰细胞壁基础上使细胞膨胀。Expansin的功能众多,除了促进细胞生长,还包括影响营养生长、形态发生、授粉受精、果实软化等,并表现出高度的组织、器官和细胞特异性。目前已经在多种植物及其他一些生物范围内对expansin及类expansin序列和蛋白质进行了研究,并对它们的作用机制进行了探索。  相似文献   

8.
高等植物的细胞壁中有一种富含羟脯氨酸的糖蛋白,称为伸展蛋白。其核心蛋白质具有高度重复序列的结构;次级结构为ppⅡ螺旋;它们在细胞质中合成,由高尔基体分泌到细胞壁内组装。作为细胞壁的结构成份,它们的主要功能是调控壁的伸展,并可能在防御反应和形态发生的调节方面起作用。  相似文献   

9.
植物伸展蛋白的基因及其表达的调控   总被引:2,自引:0,他引:2  
植物细胞壁中存在多种伸展蛋白。它们由伸展蛋白多基因族编码。调节伸展蛋白基因表达的因素有遗传密码使用的倾向性、发育程序、机械损伤、乙烯、病原和植物抗毒素诱导剂等。  相似文献   

10.
植物细胞壁研究进展   总被引:7,自引:0,他引:7  
植物细胞壁是一种复杂的网状结构,其成分包含纤维素、半纤维素、果胶和少量的结构蛋白等。在植物细胞生长过程中,细胞能产生伸展素蛋白,打断纤维素和半纤维素之间的氢键,引起细胞膨压驱动的细胞壁扩张。成熟细胞壁扩张性的丧失是由于细胞壁硬化作用而对扩张性蛋白的作用不敏感造成的,细胞壁成熟过程中很多不同的连接会同时发生,当细胞壁基质多聚体分子之间的连接增加到一定的程度。细胞壁的伸长就会被完全抑制。  相似文献   

11.
In a recent publication (Kutschera, 1996), it was reported thatthe cell walls of growing rye coleoptiles exhibit irreversible(plastic) extensibility in a rheological extension test. Basicallysimilar measurements with cell walls of maize coleoptiles hadpreviously shown that the apparent plastic extensibility determinedin this material is in reality due to the slowly reversible(viscoelastic) extensibility of the walls. A recent reinvestigationof this discrepancy showed that rye coleoptile walls also behaveas a perfectly viscoelastic material if precautions are takento prevent measuring artefacts. Similar results were obtainedwith cell walls from the growing zone of various other seedlingorgans (maize mesocotyl, maize root, cucumber hypocotyl). Itis concluded that plastic extensibility has not yet been convincinglydemonstrated by rheological tests that determine the intrinsicmaterial properties of cell walls. Reported changes in mechanicalmaterial properties of cell walls produced by growth-controllingfactors such as auxin or light may generally be attributed tochanges in viscoelasticity which are not directly related tothe chemo-rheological processes controlling wall extension ofgrowing cells. Key words: Cell wall extensibility, extension growth, plastic cell wall extensibility, viscoelastic cell wall extensibility  相似文献   

12.
Mine I  Okuda K 《Planta》2003,217(3):425-435
Apical cell wall fragments isolated from the giant-cellular xanthophycean alga Vaucheria terrestris sensu Götz were inflated with silicone oil by applying internal pressure ranging from 0.1 to 0.7 MPa, and the time-course of cell wall deformation was recorded and analyzed by videomicroscopy. Cell wall extensibility in the tip-growing region was estimated by the pressure required for cell wall extension, the amount of total extension until cell wall rupture and the rate of cell wall extension. Apical cell walls exhibited gradual extension, or creep, during inflation, which was eventually followed by rupture at the apical portion, whereas no appreciable extension was found in the cylindrical basal portion of the cell wall fragment. Besides the largest extension observed around the tip, substantial extension was also observed along the subapical region of the cell wall. The wall extensibility was dependent on the buffer pH used for infiltration before inflation. The optimum pH for the extension was about 8.0, but the cell wall was much less extensible after infiltration with an acidic buffer. Cell wall extensibility was dependent on the pH of the buffer used before inflation, regardless of that used in the previous infiltration. Moreover, pretreatment of the cell wall with a protease caused considerable loosening of cell walls, but affected the pH dependence of cell wall extensibility little. These results indicate that the extensibility of the cell walls in the giant tip-growing cells of the alga is distinct from that of plant cells that exhibit "acid growth" in its dependence on environmental pH and the role of cell wall proteins.  相似文献   

13.
Cell wall extensibility controls the rate of plant cell growth. It is determined by intrinsic mechanical properties of wall polymers and by wall proteins modifying these polymers and their interactions. Heat-inactivation of endogenous cell wall proteins inhibited acid-induced extension of onion epidermis peels transverse to the net cellulose alignment in the cell wall but not parallel to it. In the former case the acid-induced extension could be controlled by expansins and in the latter case by pectins restricting shear between microfibrils. Heat-inactivated cell walls stretched transversely to the net cellulose orientation extended faster at pH 5.7 and slower at pH 4.5 compared to native walls. Expansins seem to be inactive at pH 5.7, so that faster extension may result from heat-induced viscous flow of pectins and conformational changes in the cuticle of the epidermis. This stimulation of wall extension is not seen at pH 4.5 as it is outweighed by the inhibitory effect of expansin heat-inactivation. Thus, cell wall extension in higher plants might be controlled by a complex interplay between protein-dependent and protein-independent mechanisms, the result of which depends on pH and preferential orientation of main wall polymers.  相似文献   

14.
It has been proposed that spacing between cellulose microfibrils within plant cell walls may be an important determinant of their mechanical properties. A consequence of this hypothesis is that the water content of cell walls may alter their extensibility and that low water potentials may directly reduce growth rates by reducing cell wall spacing. This paper describes a number of experiments in which the water potential of frozen and thawed growing hypocotyls of sunflower (Helianthus annuus L.) were altered using solutions of high molecular weight polyethylene glycol (PEG) or Dextran while their extension under constant stress was monitored using a creep extensiometer (frozen and thawed tissue was used to avoid confounding effects of turgor or active responses to the treatments). Clear reductions in extensibility were observed using both PEG and Dextran, with effects observed in hypocotyl segments treated with PEG 35 000 solutions with osmotic pressures of > or =0.21 MPa suggesting that the relatively mild stresses required to reduce water potentials of plants in vivo by 0.21 MPa may be sufficient to reduce growth rates via a direct effect on wall extensibility. It is noted, therefore, that the water binding capacity of plant cell walls may be of ecophysiological importance. Measurements of cell walls of sunflower hypocotyls using scanning electron microscopy confirmed that treatment of hypocotyls with PEG solutions reduced wall thickness, supporting the hypothesis that the spatial constraint of movement of cellulose microfibrils affects the mechanical properties of the cell wall.  相似文献   

15.
Expansins, a newly discovered class of cell wall proteins, were the only proteins that, to date, have been shown to have the ability to restore the "acid growth" response of the heat-inactivated cell wall in an in vitro assay. In order to characterize these proteins, an automatic extensometer had been previously constructed by modification of an equal-arm mechanical balance with a linear variable differential transformer (LVDT) and with some easily available laboratory equipment. The objective of this study was to confirm and complement the work on expansin in cucumber ( Cucumis sativus L. ) seedlings carried out in the expansin-discoverers' laboratory and in addition, to further examination of the extensometer built in the authors' laboratory. It was reported that, firstly, expansin activity was maximal in cell wall from the growing region of soybean (Glycine max L. ) hypocotyls but was negligible or lacking in that from mature, basal regions and cotyledons. Corre- spondingly, walls from the growing tissue had a strong susceptibility to the action of expansin, whereas the nongrowing tissues became insensitive to the expansin action. It was concluded that the growth of soybean hypocotyl was associated with an increase in both expansin activity and wall susceptibility to the expansin action. Secondly, the heat-inactivated wall extension could be induced by cross reconstitution with crude expansin extract between soybean and cucumber species. Thirdly, once the heat-inactivated wall has been pretreated with the exogenous expansin, the reconstituted wall required no further expansin for extension indicating that exogenous expansin could specifically bind to cell wall and be enough to repeatedly exert its action without releasing from the cell wall into the external solution, i.e., a single expansin molecule could gradually break a series of load-bearing bonds one by one while moving along the cell wall, and thereby permitting the wall to extend. Fourthly, reconstitution of the wall extension activity was evidently dependent on the expansin concentration and the pH of the bathing solution, which was consistent with the catalytic characteristics of classical enzymes. Finally, endogenous and reconstituted wall extension could be significantly induced in 50 mmoL/L sodium acetate at pH 4.5 and completely inhibited in 50 mmol/L Hepes at pH 6.8, especially these phenomena could continuously be caused by switching incubation buffer from one to the other alternately, suggesting that change in pH of bathing solution could only affect the conformation of expansin (thus leading to denaturation or renaturation of it) but not the affinity of it for cell wall. In summary, these observations lend further support to the fact that expansin could mediate the acid-induced extension of the isolated wall, probably through a biochemical or enzymatic process exerting directly to the cell wall. This protein may play an essential role in the control of plant cell growth in vivo.  相似文献   

16.
Yielding of plant-cell walls is defined by the mechanical properties of walls such as their extensibility (Φ for in vivo, φ for in vitro cell wall) and yield threshold (Y for in vivo, y for in vitro cell wall). A protein named yieldin, isolated from the cell wall of growing hypocotyls of Vigna unguiculata L. (cowpea), has been demonstrated to regulate the pH dependency of y in the cell wall of the glycerinated hollow cylinder of the cowpea hypocotyl. This mini-review outlines the process of the discovery of yieldin, and also refers to the progress of studies on yieldin: the molecular cloning of yieldin and its immunolocalization in the etiolated cowpea hypocotyl. Electronic Publication  相似文献   

17.
It has been proposed that cell wall loosening during plant cell growth may be mediated by the endotransglycosylation of load-bearing polymers, specifically of xyloglucans, within the cell wall. A xyloglucan endotransglycosylase (XET) with such activity has recently been identified in several plant species. Two cell wall proteins capable of inducing the extension of plant cell walls have also recently been identified in cucumber hypocotyls. In this report we examine three questions: (1) Does XET induce the extension of isolated cell walls? (2) Do the extension-inducing proteins possess XET activity? (3) Is the activity of the extension-inducing proteins modulated by a xyloglucan nonasaccharide (Glc4-Xyl3-Gal2)? We found that the soluble proteins from growing cucumber (cucumis sativum L.) hypocotyls contained high XET activity but did not induce wall extension. Highly purified wall-protein fractions from the same tissue had high extension-inducing activity but little or no XET activity. The XET activity was higher at pH 5.5 than at pH 4.5, while extension activity showed the opposite sensitivity to pH. Reconstituted wall extension was unaffected by the presence of a xyloglucan nonasaccharide (Glc4-Xyl3-Gal2), an oligosaccharide previously shown to accelerate growth in pea stems and hypothesized to facilitate growth through an effect on XET-induced cell wall loosening. We conclude that XET activity alone is neither sufficient nor necessary for extension of isolated walls from cucumber hypocotyls.  相似文献   

18.
The role of calcium in the mechanical strength of isolated cell walls of soybean (Glycine max (L.) Merr. cv. Wayne) hypocotyls has been investigated, using the Instron technique to measure the plastic extensibility (PEx) of methanol-boiled, bisected hypocotyl sections and epidermal strips, and atomic absorption spectroscopy to measure wall calcium. Plastic extensibility was closely correlated with the growth rate of intact soybean hypocotyls. Removal of calcium from isolated cell walls by ethylene glycol-bis(2-aminoethyl ether)-N,N,N,N-tetraacetic acid (EGTA) or low pH increased PEx, while addition of calcium decreased PEx; both effects were reversible. The amount of calcium removed and the increase in PEx at pH 4.5 were strongly dependent upon the chelating ability of the buffer anion. There was a direct correlation between the amount of calcium removed from the wall by EGTA or acid and the increase in PEx. Removal of up to 60% of the calcium increased PEx of half-section up to two fold, but further loss of calcium caused a much greater increase in PEx. With epidermal strips, PEx increased only when calcium was reduced below a threshold. At pH 3.5, there was an additional increase in PEx after a lag of about 2 h; this additional increase may be the result of acid-induced cleavage of a different set of load-bearing bonds. We conclude that calcium bridges are part of the load-bearing bonds in soybean hypocotyl cell walls, and that breakage of these crosslinks by apoplastic acid participates in wall loosening. Acid-induced solubilization of wall calcium may be one mechanism involved in wall loosening of dicotyledonous stems.Abbreviations EGTA ethylene glycol-bis(2-aminoethyl ether)-N,N,N,N-tetraacetic acid - PEx Instron plastic extensibility  相似文献   

19.
The cell wall of the tip‐growing cells of the giant‐cellular xanthophycean alga Vaucheria frigida is mainly composed of cellulose microfibrils (CMFs) arranged in random directions and the major matrix component into which the CMFs are embedded throughout the cell. The mechanical properties of a cell‐wall fragment isolated from the tip‐growing region, which was inflated by artificially applied pressure, were measured after enzymatic removal of the matrix component by using a protease; the results showed that the matrix component is involved in the maintenance of cell wall strength. Since glucose and uronic acid are present in the matrix component of Vaucheria cell walls, we measured the mechanical properties of the cell wall after treatment with endo‐1,3‐ß‐glucanase and observed the fine structures of its surfaces by atomic force microscopy. The major matrix component was partially removed from the cell wall by glucanase, and the enzyme treatment significantly weakened the cell wall strength without affecting the pH dependence of cell wall extensibility. The enzymatic removal of the major matrix component by using a protease released polysaccharide containing glucose and glucuronic acid. This suggests that the major matrix component of the algal cell walls contains both proteins (or polypeptides) and polysaccharides consisting of glucose and glucuronic acid as the main constituents.  相似文献   

20.
Hypergravity inhibited elongation growth of azuki bean (Vigna angularis Ohwi et Ohashi) epicotyls by decreasing the mechanical extensibility of cell walls via the increase in the molecular mass of xyloglucans [Soga et al. (1999) Plant Cell Physiol. 40: 581]. Here, we report that the pH value of the apoplastic fluid in epicotyls increased from 5.8 to 6.6 by hypergravity (300 x g) treatment. When the xyloglucan-degrading enzymes extracted from cell walls of the 1 x g control epicotyls were assayed in buffer at pH 6.6 and 5.8, the activity at pH 6.6 was almost half of that at pH 5.8. In addition, when enzymically active cell wall preparations obtained from 1 x g control epicotyls were autolyzed in buffer at pH 5.8 and 6.6 and then xyloglucans were extracted from the autolyzed cell walls, the molecular mass of xyloglucans incubated at pH 5.8 decreased during the autolysis, while that at pH 6.6 did not change. Thus, the xyloglucans were not depolymerized by autolysis at the pH value (6.6) observed in the hypergravity-treated epicotyls. These findings suggest that in azuki bean epicotyls, hypergravity decreases the activities of xyloglucan-degrading enzymes by increasing the pH in the apoplastic fluid, which may be involved in the processes of the increase in the molecular mass of xyloglucans, leading to the decrease in the cell wall extensibility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号