首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
CaMgSi2O6:Eu2+,Dy3+ and CaMgSi2O6:Eu2+,Ce3+ phosphors were synthesized using the solid‐state reaction method. X‐Ray diffraction (XRD) and photoluminescence (PL) analyses were used to characterize the phosphors. The XRD results revealed that the synthesized CaMgSi2O6:Eu2+,Dy3+ and CaMgSi2O6:Eu2+,Ce3+ phosphors were crystalline and are assigned to the monoclinic structure with a space group C2/c. The calculated crystal sizes of CaMgSi2O6:Eu2+,Dy3+ and CaMgSi2O6:Eu2+,Ce3+ phosphors with a main (221) diffraction peak were 44.87 and 53.51 nm, respectively. Energy‐dispersive X‐ray spectroscopy (EDX) confirmed the proper preparation of the sample. The PL emission spectra of CaMgSi2O6:Eu2+,Dy3+ and CaMgSi2O6:Eu2+,Ce3+ phosphors have a broad band peak at 444.5 and 466 nm, respectively, which is due to electronic transition from 4f65d1 to 4f7. The afterglow results indicate that the CaMgSi2O6:Eu2+,Dy3+ phosphor has better persistence luminescence than the CaMgSi2O6:Eu2+,Ce3+ phosphor. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
A series of single‐phase full‐color emitting Li2Sr1−x−ySiO4:xDy3+,yEu3+ phosphors were synthesized by solid‐state reaction and characterized by X‐ray diffraction and photoluminescence analyses. The samples showed emission peaks at 488 nm (blue), 572 nm (yellow), 592 nm (orange) and 617 nm (red) under 393 nm excitation. The photoluminescence excitation spectra, comprising the Eu–O charge transfer band and 4f–4f transition bands of Dy3+ and Eu3+, range from 200 to 500 nm. The Commission Internationale de I'Eclairage chromaticity coordinates for Li2Sr0.98−xSiO4:0.02Dy3+,xEu3+ phosphors were simulated. By manipulating Eu3+ and Dy3+ concentrations, the color points of Li2Sr1−x−ySiO4:xDy3+,yEu3+ were tuned from the greenish‐white region to white light and eventually to reddish‐white region, demonstrating that a tunable white light can be obtained by Li2Sr1−x−ySiO4:xDy3+,yEu3+ phosphors. Li2Sr0.98−xSiO4:0.02Dy3+, xEu3+ can serve as a white‐light‐emitting phosphor for phosphor‐converted light‐emitting diode. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
Europium ion (Eu2+) doped Sr2SiO4 phosphors with greenish‐yellow emission were synthesized using microwave‐assisted sintering. The phase structure and photoluminescence (PL) properties of the obtained phosphor samples were investigated. The PL excitation spectra of the Sr2SiO4:Eu2+ phosphors exhibited a broad band in the range of 260 nm to 485 nm with a maximum at 361 nm attributed to the 5f‐4d allowed transition of the Eu2+ ions. Under an excitation at 361 nm, the Sr2SiO4:Eu2+ phosphor exhibited a greenish‐yellow emission peak at 541 nm with an International‐Commission‐on‐Illumination (CIE) chromaticity of (0.3064, 0.4772). The results suggest that the microwave‐assisted sintering method is promising for the synthesis of phosphors owing to the decreased sintering time without the use of additional reductive agents.  相似文献   

4.
Ca2MgSi2O7:Eu2+,Dy3+ phosphor was prepared by the solid‐state reaction method under a weak reducing atmosphere. The obtained phosphor was characterized using X‐ray diffraction (XRD), transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), energy dispersive X‐ray spectroscopy (EDX) and Fourier transform infrared (FT‐IR) techniques. The phase structure of the Ca2MgSi2O7:Eu2+,Dy3+ phosphor was akermanite type, which is a member of the melilite group. The surface morphology of the sintered phosphor was not uniform and phosphors aggregated tightly. EDX and FT‐IR spectra confirm the elements present in the Ca2MgSi2O7:Eu2+,Dy3+ phosphor. Under UV excitation, a broadband emission spectrum was found. The emission spectra observed in the green region centered at 535 nm, which is due to the 4f–5d transition. The mechanoluminescence (ML) intensity of the prepared phosphor increased linearly with increases in the mechanical load. The ML spectra were similar to the photoluminescence (PL), which indicates that ML is emitted from the same emitting center of Eu2+ ions as PL. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
An orange‐emitting phosphor, Eu2+‐activated LiSr4(BO3)3, was synthesized using the conventional solid‐state reaction. The photoluminescence excitation and emission spectra, and temperature dependence of the luminescence intensity of the phosphor were investigated. The results showed that LiSr4(BO3)3:Eu2+ could be efficiently excited by incident light of 250–450 nm, and emits a strong orange light. With increasing temperature, the emission bands of LiSr4(BO3)3:Eu2+ show an abnormal blue‐shift with broadening bandwidth and decreasing emission intensity. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
BaGd2‐xO4:xEu3+ and Ba1‐yGd1.79‐2yEu0.21Na3yO4 phosphors were synthesized at 1300°C in air by conventional solid‐state reaction method. Phosphors were characterized by X‐ray diffraction (XRD), scanning electron microscopy (SEM), photoluminescence excitation (PLE) spectra, photoluminescence (PL) spectra and thermoluminescence (TL) spectra. Optimal PL intensity for BaGd2‐xO4:xEu3+ and Ba1‐yGd1.79‐2yEu0.21Na3yO4 phosphors at 276 nm excitation were found to be x = 0.24 and y = 0.125, respectively. The PL intensity of Eu3+ emission could only be enhanced by 1.3 times with incorporation of Na+ into the BaGd2O4 host. Enhanced luminescence was attributed to the flux effect of Na+ ions. However, when BaGd2O4:Eu3+ phosphors were codoped with Na+ ions, the induced defects confirmed by TL spectra impaired the emission intensity of Eu3+ ions. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
This study synthesized BaMoO4:Eu3+ red phosphors using the microwave method. In addition, the phase composition, morphology, and luminescence properties of the red phosphors were characterized using X-ray diffraction, field-scanning electron microscopy, and photoluminescence spectroscopy. The results revealed that doping red phosphors with different concentrations of Eu3+ does not change the crystal structure of the matrix material. The BaMoO4:Eu3+ phosphors exhibited micron-scale irregular polyhedra, which could be excited by ultraviolet light with a wavelength of 395 nm to induce red-light emission. The optimal dosage of Eu3+ was 0.08, and the chromaticity coordinates of BaMoO4:0.08Eu3+ phosphors were (0.5869, 0.3099). White light-emitting diode (w-LED) devices manufactured by using a combination of BaMoO4:0.08Eu3+ phosphor and commercially available phosphors exhibited good white-light emission under the excitation of an ultraviolet chip. The BaMoO4:0.08Eu3+ red phosphors that rapidly synthesized under the microwave field are expected to be used in w-LED devices.  相似文献   

8.
Novel red‐emitting phosphors, Eu3+‐activated M7Sn(PO4)6 (M = Sr, Ba), were synthesized at 1200°C by conventional solid‐state reaction method. The luminescent properties of M7Sn(PO4)6:Eu3+ (M = Sr, Ba) phosphors were investigated, and the critical concentration of the activator (Eu3+) concentration were found to be 0.175 mol and 0.21 mol per formula unit for Sr7‐xSn(PO4)6:xEu3+ and Ba7‐xSn(PO4)6:xEu3+, respectively. These phosphors presented red luminescence under the excitation of 395 or 465 nm, perfectly matching with the emissions wavelength of near‐ultraviolet (UV) light‐emitting diodes (LEDs) and InGaN blue LED.  相似文献   

9.
A europium (Eu)‐doped di‐calcium magnesium di‐silicate phosphor, Ca2MgSi2O7:Eu2+, was prepared using a solid‐state reaction method. The phase structure, particle size, surface morphology, elemental analysis, different stretching mode and luminescence properties were analyzed by X‐ray diffraction (XRD), transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM) with energy dispersive X‐ray spectroscopy (EDX), Fourier transform infrared (FTIR) spectroscopy, photoluminescence (PL) and mechanoluminescence (ML). The phase structure of Ca2MgSi2O7:Eu2+ was an akermanite‐type structure, which belongs to the tetragonal crystallography with space group P4?21m; this structure is a member of the melilite group and forms a layered compound. The surface of the prepared phosphor was not found to be uniform and particle distribution was in the nanometer range. EDX and FTIR confirm the components of Eu2+‐doped Ca2MgSi2O7 phosphor. Under UV excitation, the main emission peak appeared at 530 nm, belonging to the broad emission ascribed to the 4f65d1→4f7 transition of Eu2+. The ML intensity of the prepared phosphor increased linearly with increasing impact velocity. A CIE color chromaticity diagram and ML spectrum confirmed that the prepared Ca2MgSi2O7:Eu2+ phosphor would emit green color and the ML spectrum was similar to that of PL, which indicated that ML is emitted from the same center of Eu2+ ions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
Highly efficient red‐emitting phosphors, CaAlSiN3:Eu2+, were successfully prepared by the solid‐state method using calcium cyanide (CaCN2) as the single calcium source. The influences of crystallization temperature, crystallization time, calcination mode and compounds ratio on the photoluminescent properties were investigated. The CaAlSiN3:Eu2+ phosphors were obtained with 1 mol% CaCN2 by a two‐step calcination procedure at 900°C for 2 h and subsequently at 1600°C for 8 h. The CaAlSiN3:Eu2+ phosphors showed the strongest luminescent intensity at 660 nm when excited by 468 nm. With an increase in crystallization time, the maximum wavelength of the emission was shifted from 644 nm to 660 nm.  相似文献   

11.
Eu2+‐doped Sr2SiO4 phosphor with Ca2+/Zn2+ substitution, (Sr1–xMx)2SiO4:Eu2+ (M = Ca, Zn), was prepared using a high‐temperature solid‐state reaction method. The structure and luminescence properties of Ca2+/Zn2+ partially substituted Sr2SiO4:Eu2+ phosphors were investigated in detail. With Ca2+ or Zn2+ added to the silicate host, the crystal phase could be transformed between the α‐form and the β‐form of the Sr2SiO4 structure. Under UV excitation at 367 nm, all samples exhibit a broad band emission from 420 to 680 nm due to the 4f65d1 → 4f7 transition of Eu2+ ions. The broad emission band consists of two peaks at 482 and 547 nm, which correspond to Eu2+ ions occupying the ten‐fold oxygen‐coordinated Sr.(I) site and the nine‐fold oxygen‐coordinated Sr.(II) site, respectively. The luminescence properties, including the intensity and lifetime of Sr2SiO4:Eu2+ phosphors, improved remarkably on Ca2+/Zn2+ addition, and promote its application in white light‐emitting diodes. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
In this paper, MAl2SixO2x+4:Eu2+/Eu3+ (Eu2+ + Eu3+ = 2%, molar ratio; M = Mg, Ca, Sr, Ba; x = 0, 0.5, 1, 1.5, 2) phosphors with different SiO2 concentrations (the ratio of SiO2 to MAl2O4 is n%, n = 0, 50, 100, 150, 200, respectively) were prepared by high‐temperature solid‐state reaction under atmospheric air conditions. Their structures and photoluminescent properties were systematically researched. The results indicate that Eu3+ ions have been reduced and Eu2+ ions are obtained in air through the self‐reduction mechanism. The alkaline earth metal ions and doping SiO2 strongly affect the crystalline phase and photoluminescent properties of samples, including microstructures, relative intensity of Eu2+ to Eu3+, location of emission lines/bands. It is interesting and important that the emission color and intensities of europium‐doped various phosphors which consist of aluminosilicate matrices prepared under atmospheric air conditions could be modulated by changing the kinds of alkaline earth metal and the content of SiO2.  相似文献   

13.
In this study, Eu‐doped Li2(Ba1‐xSrx)SiO4 powders (x = 0, 0.2, 0.4, and 0.6) were synthesized at 850°C in a reduction atmosphere (5% H2 + 95% N2) for a duration of 1 h using a solid‐state reaction method. The reduction atmosphere was infused as the synthesis temperature reached 850°C, and was removed as the temperature dropped to 800–500°C. Li2(Ba1‐xSrx)SiO4 (or Li2BaSiO4), (Ba,Sr)2SiO4 (or BaSiO4), and Li4SiO4 phases co‐existed in the synthesized Eu‐doped Li2(Ba1‐xSrx)SiO4 powders. A new finding was that the reduction atmosphere removing (RAR) temperature of the Li2(Ba1‐xSrx)SiO4 phosphors had a large effect on their photoluminescence excitation (PLE) and PL properties. Except for the 800°C‐RAR‐treated Li2BaSiO4 phosphor, PLE spectra of all other Li2(Ba1‐xSrx)SiO4 phosphors had one broad emission band with two emission peaks centred at ~242 and ~283 nm; these PL spectra had one broad emission band with one emission peak centred at 502–514 nm. We showed that the 800°C‐RAR‐treated Li2BaSiO4 phosphor emitted a red light and all other Li2(Ba1‐xSrx)SiO4 phosphors emitted a green light. Reasons for these results are discussed thoroughly.  相似文献   

14.
Eu2+ and Tb3+ singly doped and co‐doped LaAl11O18 phosphors were prepared by a combustion method using urea as a fuel. The phase structure and photoluminescence (PL) properties of the prepared phosphors were characterized by powder X‐ray diffraction (XRD), scanning electron microscopy (SEM), and photoluminescence excitation and emission spectra. When the content of Eu2+ was fixed at 0.01, the emission chromaticity coordinates could be adjusted from blue to green region by tuning the contents of Tb3+ ions from 0.01 to 0.03 through an energy transfer (ET) process. The fluorescence data collected from the samples with different contents of Tb3+ into LaAl11O18: Eu, show the enhanced green emission at 545 nm associated with 5D47F5 transitions of Tb3+. The enhancement was attributed to ET from Eu2+ to Tb3+, and therefore Eu2+ ion acts as a sensitizer (an energy donor) while Tb3+ ion as an activator. The ET from Eu2+ to Tb3+ is performed through dipole–dipole interaction. The ET efficiency and critical distance were also calculated. The present Eu2+–Tb3+ co‐doped LaAl11O18 phosphor will have potential application for UV convertible white light‐emitting diodes. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
(Ca1‐xEux)WO4 (x = 0–21 mol%) phosphors were prepared using the classical solid‐state reaction method. The influence of Eu3+ ion doping on lattice structure was observed using powder X‐ray diffraction and Fourier transform infrared spectroscopy. Furthermore, under this influence, the luminescence properties of all samples were analyzed. The results clearly illustrated that the element europium was successfully incorporated into the CaWO4 lattice with a scheelite structure in the form of a Eu3+ ion, which introduced a slight lattice distortion into the CaWO4 matrix. These lattice distortions had no effect on phase purity, but had regular effects on the intrinsic luminescence of the matrix and the f–f excitation transitions of Eu3+ activators. When the Eu3+ concentration was increased to 21 mol%, a local luminescence centre of [WO4]2? groups was detected in the matrix and manifested as the decay curves of [WO4]2? groups and luminescence changed from single exponential to double exponential fitting. Furthermore, the excitation transitions of Eu3+ between different energy levels (such as 7F05L6, 7F05D2) also produced interesting changes. Based on analysis of photoluminescence spectra and the chromaticity coordinates in this study, it could be verified that the nonreversing energy transfer of [WO4]2?→Eu3+ was efficient and incomplete.  相似文献   

16.
A series of Ca2Mg0.25Al1.5Si1.25O7:Ce3+/Eu2+/Tb3+ phosphors was been prepared via a conventional high temperature solid‐state reaction and their luminescence properties were studied. The emission spectra of Ca2Mg0.25Al1.5Si1.25O7:Ce3+,Eu2+ and Ca2Mg0.25Al1.5Si1.25O7:Ce3+,Tb3+ phosphors show not only a band due to Ce3+ ions (409 nm) but also as a band due to Eu2+ (520 nm) and Tb3+ (542 nm) ions. More importantly, the effective energy transfer from Ce3+ to Eu2+ and Tb3+ ions was confirmed and investigated by emission/excitation spectra and luminescent decay behaviors. Furthermore, the energy level scheme and energy transfer mechanism were investigated and were demonstrated to be of resonant type via dipole–dipole (Ce3+ to Eu2+) and dipole–quadrupole (Ce3+ to Tb3+) reactions, respectively. Under excitation at 350 nm, the emitting color could be changed from blue to green by adjusting the relative doping concentration of Ce3+ and Eu2+ ions as well as Ce3+ and Tb3+ ions. The above results indicate that Ca2Mg0.25Al1.5Si1.25O7:Ce3+,Eu2+/Tb3+ are promising single‐phase blue‐to‐green phosphors for application in phosphor conversion white‐light‐emitting diodes. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
Using a high‐temperature solid‐state reaction, the chlorine in Ba2YB2O6Cl is gradually replaced by F, and a new compound with the nominal chemical formula Ba2YB2O6F and two phosphors doped with Ce3+ and Eu3+, respectively, are obtained. X‐Ray diffraction and photoluminescence spectroscopy are used to characterize the as‐synthesized samples. The as‐synthesized Ba2YB2O6Cl exhibits bright blue emission in the spectral range ~ 330–410 nm with a maximum around 363 nm under X‐ray or UV excitation. Ba2YB2O6F:0.01Ce3+ exhibits blue emission in the range ~ 340–570 nm with a maximum around 383 nm. Ba2YB2O6F:0.01Eu3+ exhibits a predominantly 5D07 F2 emission (~610 nm) and the relative intensities of the 5D07 F0,1,2 emissions are tunable under different wavelength UV excitation. The luminescence behaviors of the two phosphors are explained simply in terms of the host composition and site occupancy probability of Ce3+ and Eu3+, respectively. The results indicate that these phosphors have potential application as a blue phosphor or as a red phosphor. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
The new borate phosphor CaB2O4:Eu3+ was synthesized by solid‐state method and their photoluminescence properties were investigated. The results show that the pure phase of CaB2O4 could be available at 900°C, CaB2O4:Eu3+ phosphor could be effectively excited by the near ultraviolet light (NUV) (392 nm), and the luminescent intensity of CaB2O4:Eu3+ phosphor reached to the highest when the doped‐Eu3+ content was 4 mol%. The emission spectra of CaB2O4:Eu3+ phosphor could exhibit red emission at 612 nm and orange emission at 588 nm, which are ascribed to the 5D07F2 and 5D07F1 transitions of Eu3+ ions. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
Almost monodisperse three‐dimensional (3D) BaMoO4, BaMoO4:Eu3+ micron‐octahedrons and micron‐flowers were successfully prepared via a large‐scale and facile sonochemical route without using any catalysts or templates. X‐Ray diffraction (XRD), field emission scanning electron microscopy (FE‐SEM), energy dispersion X‐ray (EDS), Fourier transform infrared (FTIR) and photoluminescence (PL) spectroscopy were employed to characterize the as‐obtained products. It was found that size modulation could be easily realized by changing the concentrations of reactants and the pH value of precursors. The formation mechanism for micron‐octahedrons and micron‐flowers was proposed on the basis of time‐dependent experiments. Using excitation wavelengths of 396 or 466 nm for BaMoO4:Eu3+ phosphors, an intense emission line at 614 nm was observed. These phosphors might be promising components with possible application in the fields of near UV‐ and blue‐excited white light‐emitting diodes. Simultaneously, this novel and efficient pathway could open new opportunities for further investigating the properties of molybdate materials. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
Optical materials composed of Ba9–3(m+n)/2ErmYbnY2Si6O24 (m = 0.005–0.2, n = 0–0.3) were prepared using a solid‐state reaction. The X‐ray diffraction patterns of the obtained phosphors were examined to index the peak positions. The photoluminescence (PL) excitation and emission spectra of the Er3+‐activated phosphors and the critical emission quenching as a function of Er3+ content in the Ba9–3m/2ErmY2Si6O24 structure were monitored. The spectral conversion properties of Er3+ and Er3+–Yb3+ ions doped in Ba9Y2Si6O24 phosphors were elucidated under diode‐laser irradiation at 980 nm. Up‐conversion emission spectra and the dependence of the emission intensity on pump power for the Ba8.55Er0.1Yb0.2Y2Si6O24 phosphor were investigated. The desired up‐conversion of the emitted light, which passed through the green, yellow, orange and red regions of the spectrum, was achieved through the use of appropriate Er3+ and/or Yb3+ concentrations in the host structure and 980 nm excitation light. The up‐conversion mechanism in the phosphors is described by an energy‐level schematic. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号