首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
基于功能一致性利用蛋白质互作网络挖掘潜在的疾病致病基因,对于了解疾病致病机理和改进临床治疗至关重要.基于基因功能一致性和其在蛋白质互作网络中的拓扑属性将基因与疾病之间建立关联,对疾病风险位点内的基因进行了致病风险预测,并通过GO及KEGG功能富集分析方法进一步筛选,预测出新的致病基因.预测出了51个新的冠心病致病基因,分析发现大部分基因参与了冠心病的致病过程.为疾病基因的挖掘提出一个新的思路,从而有助于复杂疾病致病机理的研究.  相似文献   

2.
基于功能一致性预测冠心病致病基因   总被引:1,自引:0,他引:1  
目的:为了解疾病致病机理和改进临床治疗,基于功能一致性挖掘潜在的疾病致病基因.方法:本文基于功能一致性基因的共定位特性,结合蛋白质互作网络拓扑结构,获取疾病候选基因集,并通过GO及KEGG功能富集分析方法进一步筛选,预测出新的致病基因.结果:挖掘得到的59个冠心病致病基因通过文献证实绝大部分基因与疾病的发生发展存在着联系.结论:本方法具有可行性,研究者能够在此基础上很好地进行疾病致病机理的研究.  相似文献   

3.
罗旭红刘志芳  董长征 《遗传》2013,35(9):1065-1071
全基因组关联研究(Genome wide association study, GWAS)已经在国内外的医学遗传学研究中得到广泛应用, 但是GWAS数据中所蕴含的与多基因复杂性状疾病机制相关的丰富信息尚未得到深度挖掘。近年来, 研究者采用生物网络分析和生物通路分析等生物信息学和生物统计学手段分析GWAS数据, 并探索潜在的疾病机制。生物网络分析和生物通路分析主要是以基因为单位进行的, 因此必须在分析前将基因上全部或者部分单个单核苷酸多态性(Single nucleotide polymorphism, SNP)的遗传关联结果综合起来, 即基因水平的关联分析。基因水平的关联分析需要考虑单个SNP的遗传关联、基因上SNP数量和SNP之间的连锁不平衡结构等多种因素, 因此不仅在遗传学的概念上也在统计方法方面具有一定的复杂性和挑战性。文章对基因水平的关联分析的研究进展、原理和应用进行了综述。  相似文献   

4.
通过比较登革热患者和健康人群转录组数据,识别差异基因,构建失调ceRNA网络,筛选关键基因富集分析,解析潜在生物学功能,助力登革热诊断标志物的研究。从GEO数据库下载登革热外周血芯片数据,识别差异基因并进行富集分析。结合miRNA-mRNA互作数据,利用超几何算法和皮尔森相关性计算方法识别登革热失调ceRNA互作对,使用Cytoscape软件可视化ceRNA网络与模块挖掘,对网络模块进行功能富集及外部数据验证表达模式。筛选出251个差异基因,发现其富集在细胞周期等生物学通路中。经外部数据验证,网络模块基因的表达趋势与训练集数据大致相同,表明模块基因在登革热疾病中的潜在诊断效能。本研究可为确定有效的疾病诊断分子标志物提供思路。  相似文献   

5.
目的:动脉粥样硬化是一种高致死率的慢性炎症疾病,其发生和发展的机制尚不明确。本文基于人类信号网络和基因表达谱数据对动脉粥样硬化相关模块进行挖掘,以探究其在疾病发生发展中的作用机制。方法:结合人类信号网络和基因表达谱数据,设计显著差异模块筛选策略,通过功能分析,挖掘动脉粥样硬化相关模块,对动脉粥样硬化的致病机制进行研究。结果:基于网络模块的平均表达值改变量,采用两种随机方法,进行显著差异模块筛选,最终获得8个动脉粥样硬化相关的显著差异模块。结论:应用本文提出的整合筛选策略,能识别与动脉粥样硬化相关的模块,获得潜在的致病基因,并从外周血的基因表达改变来探究动脉粥样硬化致病机制,这对动脉粥样硬化的诊断、治疗以及发生发展机制的研究具有重要意义。  相似文献   

6.
张思嘉  蔡挺  张顺 《生物信息学》2022,20(4):247-256
基于SNP突变数据与mRNA表达谱关联分析,构建一种肝癌分子分型方法并对比不同分型预后的差异,并对不同分型肝癌的发生发展机制进一步研究。首先通过TCGA数据库收集359例肝细胞癌患者的SNP突变数据和mRNA表达数据,采用Wilcoxon秩和检验,筛选突变后差异表达基因,并通过生物信息学工具String和Cytoscape 构建差异表达基因的蛋白互作网络,筛选连接度最高的10个Hub基因。利用Consensus Cluster Plus软件包,基于Hub基因mRNA表达水平构建NMF分子分型模型,再结合生存数据评估各分型患者的预后。最后利用加权基因共表达网络分析(WGCNA),识别与肝癌分子分型相关的模块,并针对关键模块的基因进行通路富集,从而对不同分型肝癌的基因表达谱进行比较。结果:NMF模型将肝癌分为高危、低危2个分型,其中CDKN2A和FOXO1基因对分型贡献度高。生存分析显示低危组患者的生存情况显著优于高危组,高危组富集多个与肿瘤细胞侵蚀、转移、复发过程相关的信号通路,低危组则与细胞周期和胰液分泌相关。本研究在无先验性信息的前提下,基于突变后显著差异表达的Hub基因表达水平构建的肝癌分子分型对肝癌患者预后评估具有一定的指导意义,其中CDKN2A和FOXO1突变是肝癌患者的不良预后因素,针对二者的靶向药研发,可能为肝癌患者提供新的治疗策略。  相似文献   

7.
目的:人肌球蛋白7A(MYO7A)基因是遗传性耳聋分子筛查的候选基因之一。从已知的MYO7A非同义单核苷酸多态性(ns SNPs)位点数据库中筛选可能与致病表型相关的ns SNPs位点,以提高MYO7A基因耳聋分子诊断的有效性和准确率。方法:首先,从NCBI数据中心的db SNP数据库(db SNP)和Deafness Variation Database数据库获得MYO7A基因的SNPs数据和基因的相关信息;然后,通过SIFT、Poly Phen-2、PANTHER、Ph D-SNP、Mutation Taster、SNPGO和Mut Pred软件进行ns SNPs表型致病性分析,预测潜在致病位点;接着,应用Clustal X2和Gene Doc软件进行同源氨基酸序列比对,分析潜在致病的ns SNPs位点保守性;最后,应用Swiss Model平台选择性地对某些突变蛋白质的三维结构进行建模,并分析结构域的变化。结果:预测出MYO7A的104个高风险致病的ns SNPs位点,包括25个已报道的耳聋相关ns SNPs位点;高风险致病的ns SNPs位点中,有42个位于肌球蛋白马达(myosin motor)结构域,其中12个预测有致病风险的ns SNPs位点与MYO7A基因致聋的突变研究报道一致。肌球蛋白马达结构域中包含30个新预测的潜在致病性ns SNPs位点,其中仅L366P位点在7个预测软件中具有高度一致性。通过对L366P位点位点突变前后的三维模型构建,发现存在蛋白结构的改变,且同源性比对结果显示了该位点的高度保守性。结论:MYO7A的L366P为潜在高风险致病性ns SNP位点,推测该基因突变可能与耳聋表型相关。本研究所采用的分析筛选方法对MYO7A基因突变的临床筛查及其他致病基因的ns SNPs筛选具有重要的参考价值。  相似文献   

8.
目的:静脉血栓是一种高复发风险和高致死率的疾病,其形成和复发的分子机制尚不明确。基于人类信号网络和基因表达谱数据可针对静脉血栓经华法令抗凝治疗后的复发机制进行研究。方法:结合表达谱数据和人类信号网络,设计差异模块筛选策略,通过功能分析、差异表达分析和已知血栓相关基因及药物靶基因的互作关联研究,获得与静脉血栓复发相关的显著差异模块。结果:最终获得8个与静脉血栓复发密切相关的显著差异模块,评估了华法令治疗静脉血栓的效能,提出了联合用药的3种可能途径。结论:应用本文提出的整合筛选策略,能识别与静脉血栓复发相关的模块,探究静脉血栓复发的分子机制和评估华法令的治疗效能。还提供了潜在的联合用药途径,这对治愈血栓、防治血栓复发及复发机制的研究具有重要意义。  相似文献   

9.
目的:利用生物信息学方法,将高通量基因表达数据与单核酸多肽(SNP)基因型数据进行整合分析,研究并注释前列腺癌风险基因。方法:本文基于EST、SAGE、基因芯片三类功能基因组数据整合的方法研究前列腺癌风险基因。首先,通过三类数据寻找前列腺癌中异常表达和差异表达基因。利用全基因组关联分析得到前列腺癌相关基因的SNPs。定位所得到的前例腺癌差异表达基因与SNPs到染色体,获取与SNPs在同一区段的差异表达基因,并通过各种数据库注释所得基因。结果:通过数据整合分析,最终得到前列腺癌风险基因84个,其中20多个基因已被证实与前列腺癌极其相关。结论:整合前列腺癌高通量表达数据与SNP基因型数据,能够快速有效的获得前列腺癌显著相关基因。此方法可以推广于其它癌症的研究。  相似文献   

10.
李以格  张丹丹 《遗传》2021,(3):203-214
结直肠癌(colorectal cancer,CRC)是受遗传与环境因素共同影响的复杂疾病,其中遗传因素发挥重要作用。至今,全基因组关联研究(genome-wide association studies,GWAS)已经发现了大量与结直肠癌风险相关的遗传变异。随之而来的后GWAS时代,越来越多的研究侧重于利用多组学数据和功能实验对潜在的致病位点进行解析。分析表明绝大多数风险单核苷酸多态性(single nucleotide polymorphism,SNP)位于非编码区,可能通过影响转录因子结合、表观遗传修饰、染色质可及性、基因组高级结构等,调控靶基因表达。本文对后GWAS时代结直肠癌致病位点的机制研究进行综述,阐述了后GWAS对于理解结直肠癌分子机制的重要意义,并探讨了结直肠癌GWAS的应用和前景,为实现GWAS成果转化提供参考。  相似文献   

11.
In genome-wide association studies (GWAS), the association between each single nucleotide polymorphism (SNP) and a phenotype is assessed statistically. To further explore genetic associations in GWAS, we considered two specific forms of biologically plausible SNP-SNP interactions, ‘SNP intersection’ and ‘SNP union,’ and analyzed the Crohn''s Disease (CD) GWAS data of the Wellcome Trust Case Control Consortium for these interactions using a limited form of logic regression. We found strong evidence of CD-association for 195 genes, identifying novel susceptibility genes (e.g., ISX, SLCO6A1, TMEM183A) as well as confirming many previously identified susceptibility genes in CD GWAS (e.g., IL23R, NOD2, CYLD, NKX2-3, IL12RB2, ATG16L1). Notably, 37 of the 59 chromosomal locations indicated for CD-association by a meta-analysis of CD GWAS, involving over 22,000 cases and 29,000 controls, were represented in the 195 genes, as well as some chromosomal locations previously indicated only in linkage studies, but not in GWAS. We repeated the analysis with two smaller GWASs from the Database of Genotype and Phenotype (dbGaP): in spite of differences of populations and study power across the three datasets, we observed some consistencies across the three datasets. Notable examples included TMEM183A and SLCO6A1 which exhibited strong evidence consistently in our WTCCC and both of the dbGaP SNP-SNP interaction analyses. Examining these specific forms of SNP interactions could identify additional genetic associations from GWAS. R codes, data examples, and a ReadMe file are available for download from our website: http://www.ualberta.ca/~yyasui/homepage.html.  相似文献   

12.
Lehne B  Lewis CM  Schlitt T 《PloS one》2011,6(6):e20133
Interpreting Genome-Wide Association Studies (GWAS) at a gene level is an important step towards understanding the molecular processes that lead to disease. In order to incorporate prior biological knowledge such as pathways and protein interactions in the analysis of GWAS data it is necessary to derive one measure of association for each gene. We compare three different methods to obtain gene-wide test statistics from Single Nucleotide Polymorphism (SNP) based association data: choosing the test statistic from the most significant SNP; the mean test statistics of all SNPs; and the mean of the top quartile of all test statistics. We demonstrate that the gene-wide test statistics can be controlled for the number of SNPs within each gene and show that all three methods perform considerably better than expected by chance at identifying genes with confirmed associations. By applying each method to GWAS data for Crohn's Disease and Type 1 Diabetes we identified new potential disease genes.  相似文献   

13.
Genome-wide association studies (GWAS) with hundreds of żthousands of single nucleotide polymorphisms (SNPs) are popular strategies to reveal the genetic basis of human complex diseases. Despite many successes of GWAS, it is well recognized that new analytical approaches have to be integrated to achieve their full potential. Starting with a list of SNPs, found to be associated with disease in GWAS, here we propose a novel methodology to devise functionally important KEGG pathways through the identification of genes within these pathways, where these genes are obtained from SNP analysis. Our methodology is based on functionalization of important SNPs to identify effected genes and disease related pathways. We have tested our methodology on WTCCC Rheumatoid Arthritis (RA) dataset and identified: i) previously known RA related KEGG pathways (e.g., Toll-like receptor signaling, Jak-STAT signaling, Antigen processing, Leukocyte transendothelial migration and MAPK signaling pathways); ii) additional KEGG pathways (e.g., Pathways in cancer, Neurotrophin signaling, Chemokine signaling pathways) as associated with RA. Furthermore, these newly found pathways included genes which are targets of RA-specific drugs. Even though GWAS analysis identifies 14 out of 83 of those drug target genes; newly found functionally important KEGG pathways led to the discovery of 25 out of 83 genes, known to be used as drug targets for the treatment of RA. Among the previously known pathways, we identified additional genes associated with RA (e.g. Antigen processing and presentation, Tight junction). Importantly, within these pathways, the associations between some of these additionally found genes, such as HLA-C, HLA-G, PRKCQ, PRKCZ, TAP1, TAP2 and RA were verified by either OMIM database or by literature retrieved from the NCBI PubMed module. With the whole-genome sequencing on the horizon, we show that the full potential of GWAS can be achieved by integrating pathway and network-oriented analysis and prior knowledge from functional properties of a SNP.  相似文献   

14.
Cigarette smoking is a common addiction that increases the risk for many diseases, including lung cancer and chronic obstructive pulmonary disease. Genome-wide association studies (GWAS) have successfully identified and validated several susceptibility loci for nicotine consumption and dependence. However, the trait variance explained by these genes is only a small fraction of the estimated genetic risk. Pathway analysis complements single marker methods by including biological knowledge into the evaluation of GWAS, under the assumption that causal variants lie in functionally related genes, enabling the evaluation of a broad range of signals. Our approach to the identification of pathways enriched for multiple genes associated with smoking quantity includes the analysis of two studies and the replication of common findings in a third dataset. This study identified pathways for the cholinergic receptors, which included SNPs known to be genome-wide significant; as well as novel pathways, such as genes involved in the sensory perception of smell, that do not contain any single SNP that achieves that stringent threshold.  相似文献   

15.
Genome-wide association studies (GWAS) have identified multiple single nucleotide polymorphisms (SNPs) associated with prostate cancer risk. However, whether these associations can be consistently replicated, vary with disease aggressiveness (tumor stage and grade) and/or interact with non-genetic potential risk factors or other SNPs is unknown. We therefore genotyped 39 SNPs from regions identified by several prostate cancer GWAS in 10,501 prostate cancer cases and 10,831 controls from the NCI Breast and Prostate Cancer Cohort Consortium (BPC3). We replicated 36 out of 39 SNPs (P-values ranging from 0.01 to 10−28). Two SNPs located near KLK3 associated with PSA levels showed differential association with Gleason grade (rs2735839, P = 0.0001 and rs266849, P = 0.0004; case-only test), where the alleles associated with decreasing PSA levels were inversely associated with low-grade (as defined by Gleason grade <8) tumors but positively associated with high-grade tumors. No other SNP showed differential associations according to disease stage or grade. We observed no effect modification by SNP for association with age at diagnosis, family history of prostate cancer, diabetes, BMI, height, smoking or alcohol intake. Moreover, we found no evidence of pair-wise SNP-SNP interactions. While these SNPs represent new independent risk factors for prostate cancer, we saw little evidence for effect modification by other SNPs or by the environmental factors examined.  相似文献   

16.

Background

Recent development of high-resolution single nucleotide polymorphism (SNP) arrays allows detailed assessment of genome-wide human genome variations. There is increasing recognition of the importance of SNPs for medicine and developmental biology. However, SNP data set typically has a large number of SNPs (e.g., 400 thousand SNPs in genome-wide Parkinson disease data set) and a few hundred of samples. Conventional classification methods may not be effective when applied to such genome-wide SNP data.

Results

In this paper, we use shrunken dissimilarity measure to analyze and select relevant SNPs for classification problems. Examples of HapMap data and Parkinson disease (PD) data are given to demonstrate the effectiveness of the proposed method, and illustrate it has a potential to become a useful analysis tool for SNP data sets. We use Parkinson disease data as an example, and perform a whole genome analysis. For the 367440 SNPs with less than 1% missing percentage from all 22 chromosomes, we can select 357 SNPs from this data set. For the unique genes that those SNPs are located in, a gene-gene similarity value is computed using GOSemSim and gene pairs that has a similarity value being greater than a threshold are selected to construct several groups of genes. For the SNPs that involved in these groups of genes, a statistical software PLINK is employed to compute the pair-wise SNP-SNP interactions, and SNPs with significance of P < 0.01 are chosen to identify SNPs networks based on their P values. Here SNPs networks are constructed based on Gene Ontology knowledge, and therefore each SNP network plays a role in the biological process. An analysis shows that such networks have relationships directly or indirectly to Parkinson disease.

Conclusions

Experimental results show that our approach is suitable to handle genetic variations, and provide useful knowledge in a genome-wide SNP study.
  相似文献   

17.
This study is the first to use genome-wide association study (GWAS) data to evaluate the multidimensional genetic architecture underlying nasopharyngeal cancer. Since analysis of data from GWAS confirms a close and consistent association between elevated risk for nasopharyngeal carcinoma (NPC) and major histocompatibility complex class 1 genes, our goal here was to explore lesser effects of gene-gene interactions. We conducted an exhaustive genome-wide analysis of GWAS data of NPC, revealing two-locus interactions occurring between single nucleotide polymorphisms (SNPs), and identified a number of suggestive interaction loci which were missed by traditional GWAS analyses. Although none of the interaction pairs we identified passed the genome-wide Bonferroni-adjusted threshold for significance, using independent GWAS data from the same population (Stage 2), we selected 66 SNP pairs in 39 clusters with P<0.01. We identified that in several chromosome regions, multiple suggestive interactions group to form a block-like signal, effectively reducing the rate of false discovery. The strongest cluster of interactions involved the CREB5 gene and a SNP rs1607979 on chromosome 17q22 (P = 9.86×10−11) which also show trans-expression quantitative loci (eQTL) association in Chinese population. We then detected a complicated cis-interaction pattern around the NPC-associated HLA-B locus, which is immediately adjacent to copy-number variations implicated in male susceptibility for NPC. While it remains to be seen exactly how and to what degree SNP-SNP interactions such as these affect susceptibility for nasopharyngeal cancer, future research on these questions holds great promise for increasing our understanding of this disease’s genetic etiology, and possibly also that of other gene-related cancers.  相似文献   

18.
19.
Li C  Li Y  Xu J  Lv J  Ma Y  Shao T  Gong B  Tan R  Xiao Y  Li X 《Gene》2011,489(2):119-129
Detection of the synergetic effects between variants, such as single-nucleotide polymorphisms (SNPs), is crucial for understanding the genetic characters of complex diseases. Here, we proposed a two-step approach to detect differentially inherited SNP modules (synergetic SNP units) from a SNP network. First, SNP-SNP interactions are identified based on prior biological knowledge, such as their adjacency on the chromosome or degree of relatedness between the functional relationships of their genes. These interactions form SNP networks. Second, disease-risk SNP modules (or sub-networks) are prioritised by their differentially inherited properties in IBD (Identity by Descent) profiles of affected and unaffected sibpairs. The search process is driven by the disease information and follows the structure of a SNP network. Simulation studies have indicated that this approach achieves high accuracy and a low false-positive rate in the identification of known disease-susceptible SNPs. Applying this method to an alcoholism dataset, we found that flexible patterns of susceptible SNP combinations do play a role in complex diseases, and some known genes were detected through these risk SNP modules. One example is GRM7, a known alcoholism gene successfully detected by a SNP module comprised of two SNPs, but neither of the two SNPs was significantly associated with the disease in single-locus analysis. These identified genes are also enriched in some pathways associated with alcoholism, including the calcium signalling pathway, axon guidance and neuroactive ligand-receptor interaction. The integration of network biology and genetic analysis provides putative functional bridges between genetic variants and candidate genes or pathways, thereby providing new insight into the aetiology of complex diseases.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号