首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phosphomannose isomerase (pmi) gene isolated from Escherichia coli allows transgenic plants carrying it to convert mannose-6- phosphate (from mannose), a carbon source that could not be naturally utilized by plants into fructose-6-phosphate which can be utilized by plants as a carbon source. This conversion ability provides energy source to allow the transformed cells to survive on the medium containing mannose. In this study, four transformation vectors carrying the pmi gene alone or in combination with the β-glucuronidase (gusA) gene were constructed and driven by either the maize ubiquitin (Ubi1) or the cauliflower mosaic virus (CaMV35S) promoter. Restriction digestion, PCR amplification and sequencing were carried out to ensure sequence integrity and orientation. Tobacco was used as a model system to study the effectiveness of the constructs and selection system. PMI11G and pMI3G, which carry gusA gene, were used to study the gene transient expression in tobacco. PMI3 construct, which only carries the pmi gene driven by CaMV35S promoter, was stably transformed into tobacco using biolistics after selection on 30 g 1(-1) mannose without sucrose. Transgenic plants were verified using PCR analysis. ABBREVIATIONS: PMI/pmi - Phosphomannose isomerase, Ubi1 - Maize ubiquitin promoter, CaMV35S - Cauliflower mosaic virus 35S promoter, gusA - β-glucuronidase GUS reporter gene.  相似文献   

2.
J Kyozuka  D McElroy  T Hayakawa  Y Xie  R Wu    K Shimamoto 《Plant physiology》1993,102(3):991-1000
A previously isolated rice (Oryza sativa) rbcS gene was further characterized. This analysis revealed specific sequences in the 5' regulatory region of the rice rbcS gene that are conserved in rbcS genes of other monocotyledonous species. In transgenic rice plants, we examined the expression of the beta-glucuronidase (gusA) reporter gene directed by the 2.8-kb promoter region of the rice rbcS gene. To examine differences in the regulation of monocotyledonous and dicotyledonous rbcS promoters, the activity of a tomato rbcS promoter was also investigated in transgenic rice plants. Our results indicated that both rice and tomato rbcS promoters confer mesophyll-specific expression of the gusA reporter gene in transgenic rice plants and that this expression is induced by light. However, the expression level of the rice rbcS-gusA gene was higher than that of the tomato rbcS-gusA gene, suggesting the presence of quantitative differences in the activity of these particular monocotyledonous and dicotyledonous rbcS promoters in transgenic rice. Histochemical analysis of rbcS-gusA gene expression showed that the observed light induction was only found in mesophyll cells. Furthermore, it was demonstrated that the light regulation of rice rbcS-gusA gene expression was primarily at the level of mRNA accumulation. We show that the rice rbcS gene promoter should be useful for expression of agronomically important genes for genetic engineering of monocotyledonous species.  相似文献   

3.
用水稻愈伤组织比较了Ac启动子、35S启动子与Ubi启动子控制下Ac转座酶基因(Ts)的表达对Ds因子切离频率的影响。结果表明Ubi启动子与Ac转座酶编码区嵌合基因(Ubipro-Ts)反式激活Ds因子的切离频率最高,达到了72.9%。通过杂交将Ubipro-Ts基因导入Ds因子转化植株,得到9株Ubipro-Ts基因与Ds因子共存的F1代杂交水稻植株,其中有8株Ds因子发生了切离。用Inverse-PCR的方法从其中一株杂交植株中克隆到Ds因子的旁邻序列,其DNA顺序与亲本中Ds因子原插入位点的序列不同,表明Ds因子转座到了新的基因组位点。  相似文献   

4.
5.
用无启动子的GUS报告基因捕获水稻基因启动子   总被引:4,自引:1,他引:3  
构建了嵌合质粒p13DGUTs,它是在Ds转座子中插入了无启动子的B.葡萄糖醛酸酶报告基因(GUS),用于分离水稻基因启动子。将p13DGUTs转化粳稻品种中花11的胚性愈伤组织,获得了496个转基因植株。抗性愈伤组织与转基因植株的GUS染色与PCR分析表明整合在水稻染色体上的Ds因子都发生了随机跳跃。转基因植株T0代与部分T1代的GUS染色结果表明,M92转基因植株中Ds转座子整合位置上游的水稻基因启动子指导GUS基因的表达及表达的特性是可遗传的。文章对此方法在分离水稻基因启动子与基因上的应用进行了讨论。  相似文献   

6.
7.
8.
Selecting a promoter for driving transgene expression is one of the most important factors to consider in a transformation project. Information about the native regulation of the promoter activity is important, but it is also necessary to consider how that activity will be affected when integrated into the genome of the transformed plants. Study of a promoter performance in individually transformed lines provides useful information in this area. The maize ubiquitin 1 (Ubi‐1) promoter has been widely used to drive constitutive transgene expression in monocotyledonous plants. However, lack of data on its activity in individual transformed wheat lines constitutes a gap in the understanding and predictability of this promoter's performance. In this paper, we began addressing this problem by examining the expression of the marker gene uidA, coding for β‐glucuronidase (GUS), under the control of the maize Ubi‐1 promoter in individual transgenic wheat (Triticum aestivum L.) lines from different wheat varieties. The expression of uidA driven by this promoter depended to a great extent on the specific transformation event. Whilst expression was strong and constitutive in all tissues in some of the lines analysed, there were also transgenic lines in which GUS activity was restricted to only a few tissues. In general the maize Ubi‐1 promoter had strong activity in young, metabolically active tissues and in pollen grains.  相似文献   

9.
FLP recombinase-mediated site-specific recombination in rice   总被引:3,自引:0,他引:3  
The feasibility of using the FLP/ FRT site-specific recombination system in rice for genome engineering was evaluated. Transgenic rice plants expressing the FLP recombinase were crossed with plants harbouring the kanamycin resistance gene ( neomycin phosphotransferase II , nptII ) flanked by FRT sites, which also served to separate the corn ubiquitin promoter from a promoterless gusA . Hybrid progeny were tested for excision of the nptII gene and the positioning of the ubiquitin promoter proximal to gusA . While the hybrid progeny from various crosses exhibited β-glucuronidase (GUS) expression, the progeny of selfed parental rice plants did not show detectable GUS activity. Despite the variable GUS expression and incomplete recombination displayed in hybrids from some crosses, uniform GUS staining and complete recombination were observed in hybrids from other crosses. The recombined locus was shown to be stably inherited by the progeny. These data demonstrate the operation of FLP recombinase in catalysing excisional DNA recombination in rice, and confirm that the FLP/ FRT recombination system functions effectively in the cereal crop rice. Transgenic rice lines expressing active FLP recombinase generated in this study provide foundational stock material, thus facilitating the future application and development of the FLP/ FRT system in rice genetic improvement.  相似文献   

10.
利用转基因植物作为生物反应器可以表达重组蛋白、生产外源蛋白质,也可以成为动物疫苗的廉价生产系统。以编码新城疫病毒融合蛋白(NDV-F)的基因为外源基因,以玉米泛素蛋白(Ubi)启动子为启动子,以潮霉素磷酸转移酶(HPT)基因作为选择标记基因,β-半乳糖苷酸酶(GUS)基因作为报告基因构建了适宜于农杆菌介导转化水稻的表达质粒pUNDV,并通过农杆菌介导转化水稻,获得了多株转基因植株。通过PCR分析和GUS活性检测,证实含有NDV-F基因的T-DNA已整合到水稻核基因组中,为研制廉价安全的转基因水稻新城疫基因工程疫苗奠定了基础。  相似文献   

11.
Snowdrop lectin ( Galanthus nivalis agglutinin; GNA) has been shown previously to be toxic towards rice brown planthopper ( Nilaparvata lugens ; BPH) when administered in artificial diet. BPH feeds by phloem abstraction, and causes ‘hopper burn’, as well as being an important virus vector. To evaluate the potential of the gna gene to confer resistance towards BPH, transgenic rice ( Oryza sativa L.) plants were produced, containing the gna gene in constructs where its expression was driven by a phloem-specific promoter (from the rice sucrose synthase RSs1 gene) and by a constitutive promoter (from the maize ubiquitin ubi1 gene). PCR and Southern analyses on DNA from these plants confirmed their transgenic status, and that the transgenes were transmitted to progeny after self-fertilization. Western blot analyses revealed expression of GNA at levels of up to 2.0% of total protein in some of the transgenic plants. GNA expression driven by the RSs1 promoter was tissue-specific, as shown by immunohistochemical localization of the protein in the non-lignified vascular tissue of transgenic plants. Insect bioassays and feeding studies showed that GNA expressed in the transgenic rice plants decreased survival and overall fecundity (production of offspring) of the insects, retarded insect development, and had a deterrent effect on BPH feeding. gna is the first transgene to exhibit insecticidal activity towards sap-sucking insects in an important cereal crop plant.  相似文献   

12.
13.
Introns are key regulatory elements of rice tubulin expression   总被引:11,自引:0,他引:11  
Fiume E  Christou P  Gianì S  Breviario D 《Planta》2004,218(5):693-703
  相似文献   

14.
Functional tagging of regulatory elements in the plant genome   总被引:20,自引:0,他引:20  
  相似文献   

15.
 The truncated chimeric Bt gene, cryIA(b) of Bacillus thuringiensis, driven by two constitutive promoters, 35S from CaMV and Actin-1 from rice, and two tissue-specific promoters, pith tissue and pepcarboxylase (PEPC) for green tissue from maize, was introduced into several varieties of rice (indica and japonica) by microprojectile bombardment and protoplast systems. A total of 1800 putative transgenic Bt rice plants could be produced. Southern analysis revealed that more than 100 independently transformed plants could be confirmed for integration of the cryIA(b) gene. High levels of CryIA(b) proteins were obtained in the green tissue (leaves and stem) of many plants using the PEPC promoter. There was little difference in Bt protein level in leaves and stems from transgenic plants with the 35 S or Actin-1 promoter. Out of 800 Southern-positive plants that were bioassayed, 81 transgenic plants showed 100% mortality of insect larvae of the yellow stem borer (Scirpophaga incertulas). The transgene, cryIA(b), driven by different promoters showed a wide range of expression (low to high) of Bt proteins stably inherited in a number of rice varieties with enhanced yellow stem borer resistance. This first report of transgenic indica Bt rice plants with the PEPC or pith promoter either alone or in combination should provide a better strategy for providing rice plants with protection against insect pest resistance, minimizing the expression of the CryIA(b) protein in seeds and other tissues. Received: 12 November 1997 / Accepted: 25 November 1997  相似文献   

16.
DNA uptake by imbibition and expression of a foreign gene in rice   总被引:2,自引:0,他引:2  
Uptake of DNA by imbibition of dry and viable rice ( Oryza sativa L.) embryos from a DNA solution and expression of a foreign gene were detected using two different vectors contaíning gusA (β-glucuronidase) and hpt (hygromycin phosphotransferase) as reporter genes. The frequency of transient expression of gusA and hpt genes using the CaMV35S promoter was about 30 to 50%. The main sites of gusA gene expression were meristems of roots and vascular bundles of leaves. Also, DNA uptake, integration and expression of the hpt gene in selected rice were investigated by various PCR methods and Southern blot analysis of genomic DNA. It was shown that the hygromycin phosphotransferase (HPT) DNA was present in the rice genome in an integrated form and not as a plasmid form.  相似文献   

17.
转新城疫病毒融合蛋白基因水稻植株的获得   总被引:3,自引:0,他引:3  
以编码新城疫病毒融合蛋白(NDV—F)基因为外源基因,与玉米泛素蛋白(Ubi)启动子和农杆菌胭脂碱合成酶基因(NOS)终止子构建成嵌合基因,构建了适宜于农杆菌介导转化水稻的表达质粒pUNDV;并以潮霉素磷酸转移酶(HPT)基因作选择标记基因、β-半乳糖苷酸酶(GUS)基因作报告基因,借助于农杆菌介导转化水稻,获得了多株转基因植株。PCR分析和GUS活性检测结果证实含有NDV—F基冈的T—DNA已整合到水稻基因组中,为研制廉价的转基因水稻新城疫基因工程疫苗奠定了基础。  相似文献   

18.
The effectiveness of different promoters for use in Indica rice transformation was compared. Plasmids encoding the Escherichia coli uidA (gus) gene under the control of CaMV 35S, Emu, Act1 or Ubi1 promoters were delivered into cell suspension cultures by particle bombardment. Transient gene expression, 48 h after delivery, was greatest from plasmids utilising the constitutive promoters, Act1 and Ubi1. Gene expression in stably transformed tissue was examined by bombarding embryogenic Indica rice calli with a pUbi1-gas plasmid and a plasmid containing either the selectable marker gene, hph, which confers hygromycin resistance, or bar, which confers resistance to the herbicide phosphinothricin (BASTA) each under the control of the CaMV 35S, Emu, Act1 or the Ubi1 promoters. The bombarded calli were placed on the appropriate selection media and stained for GUS activity at 1 day, 3 weeks and 5 weeks after shooting. Callus bombarded with the pUbi1-hph or the pEmu-hph constructs gave a dramatic increase in the size of the GUS staining areas with time. No such increase in the size of GUS staining areas was observed in calli co-bombarded with pUbi1-gus and any of the bar containing constructs.Co-bombardment of calli with either the pEmu-hph or pUbi1-hph construct and a virus minor coat protein (cp) gene construct resulted in many fertile transgenic Indica rice plants, containing one to eight copies of both the hph and cp genes. These genes were stably inherited by the T1 generation.  相似文献   

19.
D-class cyclins play important roles in controlling the cell cycle in development and in response to external signals by forming the regulatory subunit of cyclin-dependent kinase (CDK) complexes. To evaluate the effects of D-class cyclins in transgenic rice plants, Arabidopsis cyclin D2 gene (CycD2) was linked to the maize ubiquitin1 promoter (Ubi1) and introduced into rice by the Agrobacterium-mediated transformation method. Genomic deoxyribonucleic acid (DNA), ribonucleic acid (RNA), and Western blot hybridizations of the Ubi1:CycD2 plants revealed copy number of transgene and its increased expression in leaf and callus cells at messenger RNA (mRNA) and/or protein levels. The H1 kinase assay using the immunoprecipitates of protein extracts from the Ubi1:CycD2 plants and nontransgenic controls demonstrated that the introduced Arabidopsis CycD2 forms a functional CycD2/CDK complex with an unidentified CDK of rice. Shoot and root growth was enhanced in the Ubi1:CycD2 seedlings compared with nontransgenic controls, together, suggesting that Arabidopsis cyclin D2 interacts with a rice cyclin-dependent kinase, consequently enhancing seedling growth.  相似文献   

20.
GUS (uidA) reporter gene expression for two sugarcane polyubiquitin promoters, ubi4 and ubi9, was compared to expression from the maize Ubi-1 promoter in stable transgenic rice (only ubi9) and sugarcane (ubi4 and ubi9). Ubi9 drove high-level GUS expression, comparable to the maize Ubi-1 promoter, in both callus and regenerated plants of rice transformed by Agrobacterium. This high level expression was inherited in R1 plants. Expression from ubi4 and ubi9 was quite high in sugarcane callus transformed via particle bombardment. Expression dropped to very low or undetectable levels in the resulting plants; this drop in expression resulted from PTGS. PTGS in regenerated sugarcane plants also occurred with the maize Ubi-1 promoter. In sugarcane callus, ubi4 was HS inducible, but ubi9 was not. This physiological difference corresponds to a MITE insertion that is present in the putative HSEs of ubi9 but not present in ubi4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号