首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Transgenic indica rice resistant to sap-sucking insects   总被引:5,自引:0,他引:5  
Agrobacterium-mediated genetic transformation has been optimized in indica rice susceptible to sap-sucking insects, viz., brown planthopper (BPH) and green leafhopper (GLH). Snowdrop lectin gene (gna) from Galanthus nivalis, driven by phloem-specific rice-sucrose-synthase promoter, along with herbicide resistance gene (bar) driven by CaMV 35S promoter, was employed for genetic transformation. Embryogenic calli--after co-cultivation with Agrobacterium strain LBA4404 harbouring Ti plasmid pSB111-bar-gna--were selected on the medium containing phosphinothricin. PCR and Southern blot analyses confirmed the stable integration of both the genes into genomes of transgenic (T0) rice plants. Northern and Western blot analyses revealed the expression of gna in the transgenic plants. In the T1 and T2 generations, the gna and bar transgenes showed co-segregation at a ratio of 3 : 1. Plant progenies expressing gna, in T1 and T2, exhibited substantial resistance against BPH and GLH pests. This is the first report dealing with transgenic indica rice exhibiting high resistance to both insects.  相似文献   

2.
Summary Mature seed-derived callus from an elite Chinese japonica rice cv. Ewan 5 was cotransformed with two plasmids, pWRG1515 and pRSSGNAl, containing the selectable marker hygromycin phosphotransferase gene (hpt), the reporter β-glucuronidase gene (gusA) and the snowdrop (Galanthus nivalis) lectin gene (gna) via particle bombardment. Thirty-five independent transgenic rice plants were regenerated from 177 bombarded calluses. Eighty-three percent of the transgenic plants contained all three genes, as revealed by Southern blot analysis. Western blot analysis revealed that 23 out of 29 gna-containing transgenic plants expressed Galanthus nivalis agglutinin (GNA) (79%) at various levels, with the highest expression being approximately 0.5% of total soluble protein. Genetic analysis confirmed Mendelian segregation of all three transgenes (gna, hpt and gusA) in the R2 progeny. Amongst the R2 generation two independent homozygous lines were identified that expressed all three transgenes. Insect bioassay and feeding tests showed that these homozygous lines had significant inhibition to rice brown planthopper (Nilaparvata lugens, BPH) by decreasing the survival, overall fecundity of BPH, retarding development, and decreasing the feeding of BPH. These BPH-resistant lines have been incorporated into a rice insect resistance breeding program. This is the first report that homozygous transgenic rice lines expressing GNA, developed by genetic transformation and through genetic analysis-based selection, conferred enhanced resistance to BPH.  相似文献   

3.
The promoter region from the rice sucrose synthase-1 gene (RSs1)was fused with coding sequences for ß-glucuronidase(GUS) and snowdrop (Galanthus nivalis) lectin (GNA). Tobaccoplants were transformed with these chimaenc genes in order todetermine the expression pattern directed by the RSs1 promoter.Histochemical and immunochemical assays demonstrated that theexpression of both GUS and GNA was restricted to phloem tissue,and was not observed in any other tissues. This phloem-specificexpression pattern was consistent in stem, leaf and root, andin different transgenic plants. Chimaeric genes of RSs 1-GUSand RSs1 GNA were stably inherited in T1 plants. In addition,GNA was detected by immunological assay in the honeydew producedby peach potato aphids (Myzus persicae) feeding on RSs1-GNAtransgenic tobacco plants. This provided direct evidence thatGNA was not only expressed in the phloem tissue, but was alsopresent in the phloem sap of transgenic tobacco plants. TheRSs1 promoter can thus be used to direct expression of an insecticidalprotein, such as GNA, in transgenic plants to control phloemsap-feeding insect pests. Key words: Rice sucrose synthase-1 promoter, phloemspecific, transgenic plants, ß-glucuronidase, Galanthus nivalis agglutinin, gene expression  相似文献   

4.
Transgenic rice plants, expressing snowdrop lectin [Galanthus nivalis agglutinin (GNA)], obtained by Agrobacterium-mediated genetic transformation, were evaluated for resistance against the insect, the whitebacked planthopper (WBPH). The transgene gna was driven by the phloem-specific, rice-sucrose synthase promoter RSs1, and the bar was driven by the CaMV 35S promoter. In our previous study, the transgenic status of these lines was confirmed by Southern, Northern and Western blot analyses. Both the transgenes, gna and bar, were stably inherited and co-segregated into progenies in T1 to T5 generations. Insect bioassays on transgenic plants revealed the potent entomotoxic effects of GNA on the WBPH. Also, significant decreases were observed in the survival, development and fecundity of the insects fed on transgenic plants. Furthermore, intact GNA was detected in the total proteins of WBPHs fed on these plants. Western blot analysis revealed stable and consistent expression of GNA throughout the growth and development of transgenic plants. Transgenic lines expressing GNA exhibited high-level resistance against the WBPH. As reported earlier, these transgenics also showed substantial resistance against the brown planthopper and green leafhopper .  相似文献   

5.
Rice production is known to be severely affected by virus transmitting rice pests, brown planthopper (BPH) and green leafhopper (GLH) of the order hemiptera, feeding by phloem abstraction. ASAL, a novel lectin from leaves of garlic (Allium sativum) was previously demonstrated to be toxic towards hemipteran pests when administered in artificial diet as well as in ASAL expressing transgenic plants. In this report ASAL was targeted under the control of phloem-specific Agrobacterium rolC and rice sucrose synthase-1 (RSs1) promoters at the insect feeding site into popular rice cultivar, susceptible to hemipteran pests. PCR, Southern blot and C-PRINS analyses of transgenic plants have confirmed stable T-DNA integration and the transgenes were co-segregated among self-fertilized progenies. The T0 and T1 plants, harbouring single copy of intact T-DNA expression cassette, exhibit stable expression of ASAL in northern and western blot analyses. ELISA showed that the level of expressed ASAL was as high as 1.01% of total soluble protein. Immunohistofluorescence localization of ASAL depicted the expected expression patterns regulated by each promoter type. In-planta bioassay studies revealed that transgenic ASAL adversely affect survival, growth and population of BPH and GLH. GLH resistant T1 plants were further evaluated for the incidence of tungro disease, caused by co-infection of GLH vectored Rice tungro bacilliform virus (RTBV) and Rice tungro spherical virus (RTSV), which appeared to be dramatically reduced. The result presented here is the first report of such GLH mediated resistance to infection by RTBV/RTSV in ASAL expressing transgenic rice plant.Electronic Supplementary Material Supplementary material is available to authorised users in the online version of this article at .  相似文献   

6.
We used particle bombardment to transform two elite Thai rice varieties, Khao Dawk Mali 105 (KDML105) and Supanburi 60 (SP60), with the snowdrop lectin gene gna (Galanthus nivalis agglutinin). This gene confers resistance to sap-sucking insects such as the brown planthopper (BPH; Nilaparvata lugens), which is one of the most damaging pests of rice. Traditionally, KDML105 and SP60 have been regarded as recalcitrant to transformation, and this is the first account of successful gene transfer to these varieties. By molecular analysis, we confirmed the recovery of over thirty gna-transgenic lines. GNA protein expression was characterised by western blot analysis, and we achieved expression levels of up to 0.25% total soluble protein. GNA-producing R1 transgenic plants were significantly more resistant to BPH than control plants (P<0.0001), with 37% and 42% reduction in nymphal survival for constitutive and phloem-specific expression, respectively. Transferring the gna gene to these superior rice varieties thus represents a major step forward for crop improvement in Thailand, and should help to reduce the damage caused by rice pests, and hence increase yields for this vital domestic and export market.  相似文献   

7.
 The truncated chimeric Bt gene, cryIA(b) of Bacillus thuringiensis, driven by two constitutive promoters, 35S from CaMV and Actin-1 from rice, and two tissue-specific promoters, pith tissue and pepcarboxylase (PEPC) for green tissue from maize, was introduced into several varieties of rice (indica and japonica) by microprojectile bombardment and protoplast systems. A total of 1800 putative transgenic Bt rice plants could be produced. Southern analysis revealed that more than 100 independently transformed plants could be confirmed for integration of the cryIA(b) gene. High levels of CryIA(b) proteins were obtained in the green tissue (leaves and stem) of many plants using the PEPC promoter. There was little difference in Bt protein level in leaves and stems from transgenic plants with the 35 S or Actin-1 promoter. Out of 800 Southern-positive plants that were bioassayed, 81 transgenic plants showed 100% mortality of insect larvae of the yellow stem borer (Scirpophaga incertulas). The transgene, cryIA(b), driven by different promoters showed a wide range of expression (low to high) of Bt proteins stably inherited in a number of rice varieties with enhanced yellow stem borer resistance. This first report of transgenic indica Bt rice plants with the PEPC or pith promoter either alone or in combination should provide a better strategy for providing rice plants with protection against insect pest resistance, minimizing the expression of the CryIA(b) protein in seeds and other tissues. Received: 12 November 1997 / Accepted: 25 November 1997  相似文献   

8.
9.
Transgenic rice plants expressing snowdrop lectin (Galanthus nivalis agglutinin; GNA) were screened for resistance to green leafhopper (Nephotettix virescens; GLH), a major homopteran pest of rice. Survival was reduced by 29% and 53% (P<0.05) respectively, on plants where GNA expression was tissue-specific (phloem and epidermal layer) or constitutive. Similar levels of resistance in GNA-expressing transgenic rice were previously reported for rice brown planthopper (Nilaparvata lugens; BPH). GNA binding to glycoproteins in gut tissues showed that BPH contained more "receptors" than GLH, and that the binding affinity was stronger, particularly in the midgut. Subsequent toxicity of GNA is thus unlikely to be directly related to the amount of lectin bound. GNA was not detected in the honeydew of either insect species when they were fed on GNA-expressing plants, in contrast to results from artificial diet studies. This result suggests that GNA is not being delivered to the insect efficiently. When offered a free choice vs control plants, BPH nymphs tended to avoid plants expressing GNA; avoidance was less pronounced and took longer to develop on plants where GNA expression was tissue-specific, In contrast to BPH, GLH nymphs were attracted to plants expressing GNA, whether constitutively or in a tissue-specific manner.  相似文献   

10.
Silicon (Si) uptake by Poaceae plants has beneficial effects on herbivore defense. Increased plant physical barrier and altered herbivorous feeding behaviors are documented to reduce herbivorous arthropod feeding and contribute to enhanced plant defense. Here, we show that Si amendment to rice (Oryza sativa) plants contributes to reduced feeding in a phloem feeder, the brown planthopper (Nilaparvata lugens, BPH), through modulation of callose deposition. We associated the temporal dynamics of BPH feeding with callose deposition on sieve plates and further with callose synthase and hydrolase gene expression in plants amended with Si. Biological assays revealed that BPH feeding was lower in Si‐amended than in nonamended plants in the early stages post‐BPH infestation. Histological observation showed that BPH infestation triggered fast and strong callose deposition in Si‐amended plants compared with nonamended plants. Analysis using qRT‐PCR revealed that expression of the callose synthase gene OsGSL1 was up‐regulated more and that the callose hydrolase (β‐1,3‐glucanase) gene Gns5 was up‐regulated less in Si‐amended than in nonamended plants during the initial stages of BPH infestation. These dynamic expression levels of OsGSL1 and Gns5 in response to BPH infestation correspond to callose deposition patterns in Si‐amended versus nonamended plants. It is demonstrated here that BPH infestation triggers differential gene expression associated with callose synthesis and hydrolysis in Si‐amended and nonamended rice plants, which allows callose to be deposited more on sieve tubes and sieve tube occlusions to be maintained more thus contributing to reduced BPH feeding on Si‐amended plants.  相似文献   

11.
The gene encoding a cowpea trypsin inhibitor (CpTI), which confers insect resistance in trangenic tobacco, was introduced into rice. Expression of the CpTi gene driven by the constitutively active promoter of the rice actin 1 gene (Act1) leads to high-level accumulation of the CpTI protein in transgenic rice plants. Protein extracts from transgenic rice plants exhibit a strong inhibitory activity against bovine trypsin, suggesting that the proteinase inhibitor produced in transgenic rice is functionally active. Small-scale field tests showed that the transgenic rice plants expressing the CpTi gene had significantly increased resistance to two species of rice stem borers, which are major rice insect pests. Our results suggest that the cowpea trypsin inhibitor may be useful for the control of rice insect pests.  相似文献   

12.
13.
14.
Inheritance of gusA and neo genes in transgenic rice   总被引:21,自引:0,他引:21  
Inheritance of foreign genes neo and gusA in rice (Oryza sativa L. cv. IR54 and Radon) has been investigated in three different primary (T0) transformants and their progeny plants. T0 plants were obtained by co-transforming protoplasts from two different rice suspension cultures with the neomycin phosphotransferase II gene [neo or aph (3) II] and the -glucuronidase gene (uidA or gusA) residing on separate chimeric plasmid constructs. The suspension cultures were derived from callus of immature embryos of indica variety IR54 and japonica variety Radon. One transgenic line of Radon (AR2) contained neo driven by the CaMV 35S promoter and gusA driven by the rice actin promoter. A second Radon line (R3) contained neo driven by the CaMV 35S promoter and gusA driven by a promoter of the rice tungro bacilliform virus. The third transgenic line, IR54-1, contained neo driven by the CaMV 35S promoter and gusA driven by the CaMV 35S.Inheritance of the transgenes in progeny of the transgenic rice was investigated by Southern blot analysis and enzyme assays. Southern blot analysis of genomic DNA showed that, regardless of copy numbers of the transgenes in the plant genome and the fact that the two transgenes resided on two different plasmids before transformation, the introduced gusA and neo genes were stably transmitted from one generation to another and co-inherited together in transgenic rice progeny plants derived from self-pollination. Analysis of GUS and NPT II activities in T1 to T2 plants provided evidence that inheritance of the gusA and neo genes was in a Mendelian fashion in one plant line (AR2), and in an irregular fashion in the two other plant lines (R3 and IR54-1). Homozygous progeny plants expressing the gusA and neo genes were obtained in the T2 generation of AR2, but the homozygous state was not found in the other two lines of transgenic rice.  相似文献   

15.
Plant proteinase inhibitors (PIs) are considered as candidates for increased insect resistance in transgenic plants. Insect adaptation to PI ingestion might, however, compromise the benefits received by transgenic expression of PIs. In this study, the maize proteinase inhibitor (MPI), an inhibitor of insect serine proteinases, and the potato carboxypeptidase inhibitor (PCI) were fused into a single open reading frame and introduced into rice plants. The two PIs were linked using either the processing site of the Bacillus thuringiensis Cry1B precursor protein or the 2A sequence from the foot‐and‐mouth disease virus (FMDV). Expression of each fusion gene was driven by the wound‐ and pathogen‐inducible mpi promoter. The mpi‐pci fusion gene was stably inherited for at least three generations with no penalty on plant phenotype. An important reduction in larval weight of Chilo suppressalis fed on mpi‐pci rice, compared with larvae fed on wild‐type plants, was observed. Expression of the mpi‐pci fusion gene confers resistance to C. suppressalis (striped stem borer), one of the most important insect pest of rice. The mpi‐pci expression systems described may represent a suitable strategy for insect pest control, better than strategies based on the use of single PI genes, by preventing insect adaptive responses. The rice plants expressing the mpi‐pci fusion gene also showed enhanced resistance to infection by the fungus Magnaporthe oryzae, the causal agent of the rice blast disease. Our results illustrate the usefulness of the inducible expression of the mpi‐pci fusion gene for dual resistance against insects and pathogens in rice plants.  相似文献   

16.
Transgenic wheat plants containing the gene encoding snowdrop lectin (Galanthus nivalis agglutinin; GNA) under the control of constitutive and phloem-specific promoters were generated through the particle bombardment method. Thirty-two independently derived plants were subjected to molecular and biochemical analyses. Transgene integration varied from one to twelve estimated copies per haploid genome, and levels of GNA expression from 0 to ca. 0.2% of total soluble protein were observed in different transgenic plants. Seven transgenic plants were selected for further study. Progeny plants from these parental transformants were selected for transgene expression, and tested for enhanced resistance to the grain aphid (Sitobion avenae) by exposing the plants to nymphal insects under glasshouse conditions. Bioassay results show that transgenic wheat plants from lines expressing GNA at levels greater than ca. 0.04% of total soluble protein decrease the fecundity, but not the survival, of grain aphids. We propose that transgenic approaches using insecticidal genes such as gna in combination with integrated pest management present promising opportunities for the control of damaging wheat pests.  相似文献   

17.
雪花莲凝集素基因转化小麦及转基因小麦抗蚜性的研究   总被引:22,自引:1,他引:21  
梁辉  朱银峰  朱祯  孙东发  贾旭 《遗传学报》2004,31(2):189-194
雪花莲凝集素对具有刺吸式口器的同翅目害虫具有毒杀作用。用基因枪法将1个新的雪花莲凝集素(GNA)基因转入普通春小麦品种中-60634和生产上正在推广的冬小麦高产品种——豫麦66中,分别获得了转基因小麦植株。抗蚜实验证明,转化gna基因的小麦植株对我国北方冬麦区的主要麦蚜——麦长管蚜和禾谷缢管蚜的抗性效果不尽相同。对禾谷缢管蚜,在接种当代即表现出明显的毒杀作用。对麦长管蚜,则表现为虫体发育减缓并且降低了其所生产的若蚜成活率。在自然放养条件下,gna基因则对这两种麦蚜的取食均起到了一定的抑制作用。  相似文献   

18.
19.
We report on generation of marker-free (‘clean DNA’) transgenic rice (Oryza sativa), carrying minimal gene-expression-cassettes of the genes of interest, and evaluation of its resistance to yellow stem borerScirpophaga incertulas (Lepidoptera: Pyralidae). The transgenicindica rice harbours a translational fusion of 2 differentBacillus thuringiensis (Bt) genes, namelycry1B-1Aa, driven by the green-tissue-specific phosphoenol pyruvate carboxylase (PEPC) promoter. Mature seed-derived calli of an eliteindica rice cultivar Pusa Basmati-1 were co-bombarded with gene-expression-cassettes (clean DNA fragments) of the Bt gene and the markerhpt gene, to generate marker-free transgenic rice plants. The clean DNA fragments for bombardment were obtained by restriction digestion and gel extraction. Through biolistic transformation, 67 independent transformants were generated. Transformation frequency reached 3.3%, and 81% of the transgenic plants were co-transformants. Stable integration of the Bt gene was confirmed, and the insert copy number was determined by Southern analysis. Western analysis and ELISA revealed a high level of Bt protein expression in transgenic plants. Progeny analysis confirmed stable inheritance of the Bt gene according to the Mendelian (3∶1) ratio. Insect bioassays revealed complete protection of transgenic plants from yellow stem borer infestation. PCR analysis of T2 progeny plants resulted in the recovery of up to 4% marker-free transgenic rice plants.  相似文献   

20.
The japonica rice variety Taipei 309 was cotransformed by particle bombardment of immature embryo-derived embryogenic calli with a modified δ-endotoxin gene cryIA(b) of Bacillus thuringiensis (Bt) under the control of the rice Actin1 promoter, and the hygromycin resistance gene, hph driven by the CaMV35S promoter. Selected transgenic rice plants showed enhanced insecticidal activity against yellow stem borer (Scirpophaga incertulas), with mortality rates reaching up to 100% in a bioassay with cut stems. Introduction and expression of the Actin1 promoter-Bt gene into rice provides japonica rice germplasm resistant to insect attack. Received: 21 March 1997 / Revision received: 23 June 1997 / Accepted: 5 July 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号