首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 361 毫秒
1.
The Wnt/β-catenin signaling pathway plays crucial roles in early hindbrain formation, and its constitutive activity is associated with a subset of human medulloblastoma, a malignant childhood tumor of the posterior fossa. However, the precise function of Wnt/β-catenin signaling during cerebellar development is still elusive. We generated Math1-cre::Apc(Fl/Fl) mice with a conditional knockout for the Adenomatosis polyposis coli (Apc) gene that displayed a constitutive activity of Wnt/β-catenin signaling in cerebellar granule neuron precursors. Such mice showed normal survival without any tumor formation but had a significantly smaller cerebellum with a complete disruption of its cortical histoarchitecture. The activation of the Wnt/β-catenin signaling pathway resulted in a severely inhibited proliferation and premature differentiation of cerebellar granule neuron precursors in vitro and in vivo. Mutant mice hardly developed an internal granular layer, and layering of Purkinje neurons was disorganized. Clinically, these mice presented with significantly impaired motor coordination and ataxia. In summary, we conclude that cerebellar granule neurons essentially require appropriate levels of Wnt signaling to balance their proliferation and differentiation.  相似文献   

2.
Thyroid hormones play an important role in brain development, but the mechanism(s) by which triiodothyronine (T3) mediates neuronal differentiation is poorly understood. Here we demonstrate that T3 regulates the neurotrophic factor, neurotrophin-3 (NT-3), in developing rat cerebellar granule cells both in cell culture and in vivo. In situ hybridization experiments showed that developing Purkinje cells do not express NT-3 mRNA but do express trkC, the putative neuronal receptor for NT-3. Addition of recombinant NT-3 to cerebellar cultures from embryonic rat brain induces hypertrophy and neurite sprouting of Purkinje cells, and upregulates the mRNA encoding the calcium-binding protein, calbindin-28 kD. The present study demonstrates a novel interaction between cerebellar granule neurons and developing Purkinje cells in which NT-3 induced by T3 in the granule cells promotes Purkinje cell differentiation.  相似文献   

3.
4.
Cerebellar Purkinje cells have the most elaborate dendritic trees among neurons in the brain. We examined the roles of ryanodine receptor (RyR), an intracellular Ca2+ release channel, in the dendrite formation of Purkinje cells using cerebellar cell cultures. In the cerebellum, Purkinje cells express RyR1 and RyR2, whereas granule cells express RyR2. When ryanodine (10 µM), a blocker of RyR, was added to the culture medium, the elongation and branching of Purkinje cell dendrites were markedly inhibited. When we transferred small interfering RNA (siRNA) against RyR1 into Purkinje cells using single‐cell electroporation, dendritic branching but not elongation of the electroporated Purkinje cells was inhibited. On the other hand, transfection of RyR2 siRNA into granule cells also inhibited dendritic branching of Purkinje cells. Furthermore, ryanodine reduced the levels of brain‐derived neurotrophic factor (BDNF) in the culture medium. The ryanodine‐induced inhibition of dendritic differentiation was partially rescued when BDNF was exogenously added to the culture medium in addition to ryanodine. Overall, these results suggest that RyRs expressed by both Purkinje and granule cells play important roles in promoting the dendritic differentiation of Purkinje cells and that RyR2 expressed by granule cells is involved in the secretion of BDNF from granule cells. © 2013 Wiley Periodicals, Inc. Develop Neurobiol 74: 467–480, 2014  相似文献   

5.
The involvement of the retinoblastoma gene product (Rb) and its family members (p107 and p130) in cell cycle exit and terminal differentiation of neural precursor cells has been demonstrated in vitro. To investigate the roles of Rb and p107 in growth, differentiation and apoptosis in the developing and mature cerebellum, we selectively inactivated either Rb alone or in combination with p107 in cerebellar precursor cells or in Purkinje cells. In our mouse models, we show that (1) Rb is required for differentiation, cell cycle exit and survival of granule cell precursors; (2) p107 can not fully compensate for the loss of Rb function in granule cells; (3) Rb and p107 are not required for differentiation and survival of Purkinje cells during embryonic and early postnatal development; (4) Rb function in Purkinje cells is cell autonomous; and (5) loss of Rb deficient CNS precursor cells is mediated by p53-independent apoptosis.  相似文献   

6.
Abstract: Ornithine decarboxylase (ODC), the key enzyme for polyamine biosynthesis, dramatically decreases in activity during normal cerebellar development, in parallel with the progressive differentiation of granule neurons. We have studied whether a similar pattern is displayed by cerebellar granule neurons during survival and differentiation in culture. We report that when granule cells were kept in vitro under trophic conditions (high K+ concentration), ODC activity progressively decreased in parallel with neuronal differentiation. Under nontrophic conditions (cultures kept in low K+ concentration), the enzymatic activity dropped quickly in parallel with an increased apoptotic elimination of cells. Cultures kept in high K+ but chronically exposed to 10 m M lithium showed both an increased rate of apoptotic cell death at 2 and 4 days in vitro and a quicker drop of ODC activity and immunocytochemical staining. A short chronic treatment of rat pups with lithium also resulted in transient decrease of cerebellar ODC activity and increased programmed cell death, as revealed by in situ detection of apoptotic granule neurons. The present data indicate that a sustained ODC activity is associated with the phase of survival and differentiation of granule neurons and that, conversely, conditions that favor their apoptotic elimination are accompanied by a down-regulation of the enzymatic activity.  相似文献   

7.
The cerebellum is important for the integration of sensory perception and motor control, but its structure has mostly been studied in mammals. Here, we describe the cell types and neural tracts of the adult zebrafish cerebellum using molecular markers and transgenic lines. Cerebellar neurons are categorized to two major groups: GABAergic and glutamatergic neurons. The Purkinje cells, which are GABAergic neurons, express parvalbumin7, carbonic anhydrase 8, and aldolase C like (zebrin II). The glutamatergic neurons are vglut1+ granule cells and vglut2high cells, which receive Purkinje cell inputs; some vglut2high cells are eurydendroid cells, which are equivalent to the mammalian deep cerebellar nuclei. We found olig2+ neurons in the adult cerebellum and ascertained that at least some of them are eurydendroid cells. We identified markers for climbing and mossy afferent fibers, efferent fibers, and parallel fibers from granule cells. Furthermore, we found that the cerebellum-like structures in the optic tectum and antero-dorsal hindbrain show similar Parvalbumin7 and Vglut1 expression profiles as the cerebellum. The differentiation of GABAergic and glutamatergic neurons begins 3 days post-fertilization (dpf), and layers are first detectable 5 dpf. Using anti-Parvalbumin7 and Vglut1 antibodies to label Purkinje cells and granule cell axons, respectively, we screened for mutations affecting cerebellar neuronal development and the formation of neural tracts. Our data provide a platform for future studies of zebrafish cerebellar development.  相似文献   

8.
Retinoic acid (RA) plays multiple roles in the nervous system, including induction of neural differentiation, axon outgrowth and neural patterning. Previously, RA for neural differentiation of embryonic stem (ES) cells always relies on embryoid bodies (EBs) formation. Here we report an in vitro adherent monoculture system to induce mouse ES cells into neural cells accompanied with RA. RA (1 μM) treatment, during initial 2 days of differentiation, can enhance the expression of neural markers, such as Nestin, Tuj1 and MAP2, and result in an earlier neural differentiation of ES cells. Furthermore, RA promotes a significant increase in neurite elongation of ES-derived neurons. Our study also implies that RA induced to express Wnt antagonist Dickkopf-1 (Dkk-1) for neural differentiation. However, the mechanisms of RA triggering neural induction remain to be determined. Our simple and efficient strategy is proposed to provide a basis for studying RA signaling pathways in neural differentiation in vitro.  相似文献   

9.
We previously reported the differentiation of mouse embryonic stem (ES) cells into retinal progenitors. However, these progenitors rarely differentiate into photoreceptors unless they are cultured with embryonic retinal tissues. Here we show the in vitro generation of putative rod and cone photoreceptors from mouse, monkey and human ES cells by stepwise treatments under defined culture conditions, in the absence of retinal tissues. With mouse ES cells, Crx+ photoreceptor precursors were induced from Rx+ retinal progenitors by treatment with a Notch signal inhibitor. Further application of fibroblast growth factors, Shh, taurine and retinoic acid yielded a greater number of rhodopsin+ rod photoreceptors, in addition to default cone production. With monkey and human ES cells, feeder- and serum-free suspension culture combined with Wnt and Nodal inhibitors induced differentiation of Rx+ or Mitf+ retinal progenitors, which produced retinal pigment epithelial cells. Subsequent treatment with retinoic acid and taurine induced photoreceptor differentiation. These findings may facilitate the development of human ES cell-based transplantation therapies for retinal diseases.  相似文献   

10.
During development of the cerebellum, Sonic hedgehog (SHH) is expressed in migrating and settled Purkinje neurons and is directly responsible for proliferation of granule cell precursors in the external germinal layer. We have previously demonstrated that SHH interacts with vitronectin in the differentiation of spinal motor neurons. Here, we analysed whether similar interactions between SHH and extracellular matrix glycoproteins regulate subsequent steps of granule cell development. Laminins and their integrin receptor subunit alpha6 accumulate in the outer most external germinal layer where proliferation of granule cell precursors is maximal. Consistent with this expression pattern, laminin significantly increases SHH-induced proliferation in primary cultures of cerebellar granule cells. Vitronectin and its integrin receptor subunits alpha(v) are expressed in the inner part of the external germinal layer where granule cell precursors exit the cell cycle and commence differentiation. In cultures, vitronectin is able to overcome SHH-induced proliferation, thus allowing granule cell differentiation. Our studies indicate that the pathway in granule cell precursors responsible for the conversion of a proliferative SHH-mediated response to a differentiation signal depends on CREB. Vitronectin stimulates phosphorylation of cyclic-AMP responsive element-binding protein (CREB), and over-expression of CREB is sufficient to induce granule cell differentiation in the presence of SHH. Taken together, these data suggest that granule neuron differentiation is regulated by the vitronectin-induced phosphorylation of CREB, a critical event that terminates SHH-mediated proliferation and permits the differentiation program to proceed in these cells.  相似文献   

11.
The formation of the cerebellar circuitry depends on the outgrowth of connections between the two principal classes of neurons, granule neurons and Purkinje neurons. To identify genes that function in axon outgrowth, we have isolated a mouse homolog of C. elegans UNC51, which is required for axon formation, and tested its function in cerebellar granule neurons. Murine Unc51.1 encodes a novel serine/threonine kinase and is expressed in granule cells in the cerebellar cortex. Retroviral infection of immature granule cells with a dominant negative Unc51.1 results in inhibition of neurite outgrowth in vitro and in vivo. Moreover, infected neurons fail to express TAG-1 or neuron-specific beta-tubulin, suggesting that development is arrested prior to this initial step of differentiation. Thus, Unc51.1 signals the program of gene expression leading to the formation of granule cell axons.  相似文献   

12.
Previous reports described the transient expression during development of Calcitonin Gene-Related Peptide (CGRP) in rodent cerebellar climbing fibers and CGRP receptor in astrocytes. Here, mixed cerebellar cultures were used to analyze the effects of CGRP on Purkinje cells growth. Our results show that CGRP stimulated Purkinje cell dendrite growth under cell culture conditions mimicking Purkinje cell development in vivo. The stimulation was not blocked by CGRP8-37, a specific antagonist, suggesting the activation of other related receptors. CGRP did not affect survival of Purkinje cells, granule cells or astrocytes. The selective expression of Receptor Component Protein (RCP) (a component of CGRP receptor family) in astrocytes points to a role of these cells as mediators of CGRP effect. Finally, in pure cerebellar astrocyte cultures CGRP induced a transient morphological differentiation from flat, polygonal to stellate form. It is concluded that CGRP influences Purkinje cell dendrite growth in vitro, most likely through the involvement of astrocytes.  相似文献   

13.
Neuronal apoptosis contributes to the progression of neurodegenerative disease. Primary cerebellar granule neurons are an established in vitro model for investigating neuronal death. After removal of serum and depolarizing potassium, granule neurons undergo apoptosis via a mechanism that requires intrinsic (mitochondrial) death signals; however, the role of extrinsic (death receptor-mediated) signals is presently unclear. Here, we investigate involvement of death receptor signaling in granule neuron apoptosis by expressing adenoviral, AU1-tagged, dominant-negative Fas-associated death domain (Ad-AU1-deltaFADD). Ad-AU1-deltaFADD decreased apoptosis of granule neurons from 65 +/- 5 to 27 +/- 2% (n = 7, p < 0.01). Unexpectedly, immunocytochemical staining for AU1 revealed that <5% of granule neurons expressed deltaFADD. In contrast, deltaFADD was expressed in >95% of calbindin-positive Purkinje neurons ( approximately 2% of the cerebellar culture). Granule neurons in proximity to deltaFADD-expressing Purkinje cells demonstrated markedly increased survival. Both granule and Purkinje neurons expressed insulin-like growth factor-I (IGF-I) receptors, and deltaFADD-mediated survival of granule neurons was inhibited by an IGF-I receptor blocking antibody. These results demonstrate that the selective suppression of death receptor signaling in Purkinje neurons is sufficient to rescue neighboring granule neurons that depend on Purkinje cell-derived IGF-I. Thus, the extrinsic death pathway has a profound but indirect effect on the survival of cerebellar granule neurons.  相似文献   

14.
The δ subfamily of ionotropic glutamate receptor subunits consists of GluD1 and GluD2. GluD2, which is selectively expressed in cerebellar Purkinje neurons, has been shown to contribute to the formation of synapses between granule neurons and Purkinje neurons through interaction with Cbln1 (cerebellin precursor protein1) and presynaptic Neurexin. On the other hand, the synaptogenic activity of GluD1, which is expressed not in the cerebellum but in the hippocampus, remains to be characterized. Here, we report that GluD1 expressed in non-neuronal HEK cells, induced presynaptic differentiation of granule neurons through its N-terminal domain in co-cultures with cerebellar neurons, similarly to GluD2. We also show that GluD1 rescued the defect of synapse formation in GluD2-knockout Purkinje neurons, indicating the functional similarity of GluD1 and GluD2. In contrast, GluD1 expression alone did not induce presynaptic differentiation in co-cultures of HEK cells with hippocampal neurons. However, when Cbln1 was exogenously added to the culture medium, GluD1 induced presynaptic differentiation of not only glutamatergic presynaptic terminals but also GABAergic ones. Cbln1 is not expressed in hippocampal neurons but is expressed in entorhinal cortical neurons projecting to the hippocampus. In co-cultures of HEK cells expressing GluD1 and entorhinal cortical neurons, both glutamatergic and GABAergic presynaptic terminals were formed on the HEK cells without exogenous application of Cbln1. These results suggest that GluD1 might contribute to the formation of specific synapses in the hippocampus such as those formed by the projecting neurons of the entorhinal cortex.  相似文献   

15.
Embryonic stem (ES) cells are becoming a popular model of in vitro neurogenesis, as they display intrinsic capability to generate neural progenitors that undergo the known steps of in vivo neural development. These include the acquisition of distinct regional fates, which depend on growth factors and signals that are present in the culture medium. The control of the intracellular signaling that is active at different steps of ES cell neuralization, even when cells are cultured in chemically defined medium, is complicated by the endogenous production of growth factors. However, this endogenous production has been poorly investigated so far. To address this point, we performed a high‐throughput analysis of the expression of morphogens during mouse ES cell neuralization in minimal medium. We found that during their neuralization, ES cells increased the expression of members of Wnt, Fibroblast Growth Factor (FGF), and BMP families. Conversely, the expression of Activin/Nodal and Shh ligands was low in early steps of neuralization. In this experimental condition, neural progenitors and neurons generated by ES cells expressed a gene expression profile that was consistent with a midbrain identity. We found that endogenous BMP and Wnt signaling, but not FGF signaling, synergistically affected ES cell neural patterning, by turning off a profile of dorsal/telencephalic gene expression. Double BMP and Wnt inhibition allowed neuralized ES cells to sequentially activate key genes of cortical differentiation. Our findings are consistent with a novel synergistic effect of Wnt and BMP endogenous signaling of ES cells in inhibiting a cortical differentiation program. © 2014 Wiley Periodicals, Inc. Develop Neurobiol 75: 66–79, 2015  相似文献   

16.
Wnt5a is a morphogen that activates the Wnt/planar cell polarity (PCP) pathway and serves multiple functions during development. PCP signaling controls the orientation of cells within an epithelial plane as well as convergent extension (CE) movements. Wnt5a was previously reported to promote differentiation of A9-10 dopaminergic (DA) precursors in vitro. However, the signaling mechanism in DA cells and the function of Wnt5a during midbrain development in vivo remains unclear. We hereby report that Wnt5a activated the GTPase Rac1 in DA cells and that Rac1 inhibitors blocked the Wnt5a-induced DA neuron differentiation of ventral midbrain (VM) precursor cultures, linking Wnt5a-induced differentiation with a known effector of Wnt/PCP signaling. In vivo, Wnt5a was expressed throughout the VM at embryonic day (E)9.5, and was restricted to the VM floor and basal plate by E11.5-E13.5. Analysis of Wnt5a-/- mice revealed a transient increase in progenitor proliferation at E11.5, and a precociously induced NR4A2+ (Nurr1) precursor pool at E12.5. The excess NR4A2+ precursors remained undifferentiated until E14.5, when a transient 25% increase in DA neurons was detected. Wnt5a-/- mice also displayed a defect in (mid)brain morphogenesis, including an impairment in midbrain elongation and a rounded ventricular cavity. Interestingly, these alterations affected mostly cells in the DA lineage. The ventral Sonic hedgehog-expressing domain was broadened and flattened, a typical CE phenotype, and the domains occupied by Ngn2+ DA progenitors, NR4A2+ DA precursors and TH+ DA neurons were rostrocaudally reduced and laterally expanded. In summary, we hereby describe a Wnt5a regulation of Wnt/PCP signaling in the DA lineage and provide evidence for multiple functions of Wnt5a in the VM in vivo, including the regulation of VM morphogenesis, DA progenitor cell division, and differentiation of NR4A2+ DA precursors.  相似文献   

17.
Medulloblastoma is a pediatric high-grade cerebellar malignancy derived from neuronal precursors. Although electrophysiologic characteristics of cerebellar granule neurons at all stages of cell development have been well described, such characterization has not been reported for medulloblastoma. In this study we attempt to characterize important electrophysiologic features of medulloblastoma that may distinguish it from the surrounding cerebellum. Using patient-derived cell lines and tumor tissues, we show that medulloblastoma cells have no inward Na+ current or transient K+ current involved in action potential generation and propagation, typically seen in granule neurons. Expression and function of calcium-activated, large-conductance K+ channels are diminished in medulloblastoma, judged by electrophysiology and Western analysis. The resting membrane potential of medulloblastoma cells in culture is quite depolarized compared to granule neurons. Interestingly, medulloblastoma cells express small, fast-inactivating calcium currents consistent with T-type calcium channels, but these channels are activated only from hyperpolarized potentials, which are unlikely to occur. Additionally, a background acid-sensitive K+ current is present with features characteristic of TASK1 or TASK3 channels, such as inhibition by ruthenium red. Western analysis confirms expression of TASK1 and TASK3. In describing the electrophysiologic characteristics of medulloblastoma, one can see features that resemble other high-grade malignancies as opposed to normal cerebellar granule neurons. This supports the notion that the malignant phenotype of medulloblastoma is characterized by unique changes in ion channel expression.  相似文献   

18.
AIM:To find a safe source for dopaminergic neurons,we generated neural progenitor cell lines from human embryonic stem cells.METHODS:The human embryonic stem(hES)cell line H9 was used to generate human neural progenitor(HNP)cell lines.The resulting HNP cell lines were differentiated into dopaminergic neurons and analyzed by quantitative real-time polymerase chain reaction and immunofluorescence for the expression of neuronal differentiation markers,including beta-III tubulin(TUJ1)and tyrosine hydroxylase(TH).To assess the risk of teratoma or other tumor formation,HNP cell lines and mouse neuronal progenitor(MNP)cell lines were injected subcutaneously into immunodeficient SCID/beige mice.RESULTS:We developed a fairly simple and fast protocol to obtain HNP cell lines from hES cells.These cell lines,which can be stored in liquid nitrogen for several years,have the potential to differentiate in vitro into dopaminergic neurons.Following day 30 of differentiation culture,the majority of the cells analyzed expressed the neuronal marker TUJ1 and a high proportion of these cells were positive for TH,indicating differentiation into dopaminergic neurons.In contrast to H9 ES cells,the HNP cell lines did not form tumors in immunodeficient SCID/beige mice within 6 mo after subcutaneous injection.Similarly,no tumors developed after injection of MNP cells.Notably,mouse ES cells or neuronal cells directly differentiated from mouse ES cells formed teratomas in more than 90%of the recipients.CONCLUSION:Our findings indicate that neural progenitor cell lines can differentiate into dopaminergic neurons and bear no risk of generating teratomas or other tumors in immunodeficient mice.  相似文献   

19.
The small GTPases RhoA and Rac1 are key cytoskeletal regulators that function in a mutually antagonistic manner to control the migration and morphogenesis of a broad range of cell types. However, their role in shaping the cerebellum, a unique brain structure composed of an elaborate set of folia separated by fissures of different lengths, remains largely unexplored. Here we show that dysregulation of both RhoA and Rac1 signaling results in abnormal cerebellar ontogenesis. Ablation of RhoA from neuroprogenitor cells drastically alters the timing and placement of fissure formation, the migration and positioning of granule and Purkinje cells, the alignment of Bergmann glia, and the integrity of the basement membrane, primarily in the anterior lobules. Furthermore, in the absence of RhoA, granule cell precursors located at the base of fissures fail to undergo cell shape changes required for fissure initiation. Many of these abnormalities can be recapitulated by deleting RhoA specifically from granule cell precursors but not postnatal glia, indicating that RhoA functions in granule cell precursors to control cerebellar morphogenesis. Notably, mice with elevated Rac1 activity due to loss of the Rac1 inhibitors Bcr and Abr show similar anterior cerebellar deficits, including ectopic neurons and defects in fissure formation, Bergmann glia organization and basement membrane integrity. Together, our results suggest that RhoA and Rac1 play indispensable roles in patterning cerebellar morphology.  相似文献   

20.
Machold R  Fishell G 《Neuron》2005,48(1):17-24
We have utilized an in vivo-inducible genetic-fate-mapping strategy to permanently label cohorts of Math1-positive cells and their progeny that arise in the rhombic lip of the cerebellar primordium during embryogenesis. At stages prior to E12.5, with the exception of the deep cerebellar nuclei, we find that Math1 cells migrate out of the cerebellar primordium into the rostral hindbrain to populate specific nuclei that include cholinergic neurons of the mesopontine tegmental system. Moreover, analysis of Math1-null embryos shows that this gene is required for the formation of some of these nuclei. Around E12.5, granule cell precursors begin to be labeled: first, ones that give rise to granule cells that predominantly populate the anterior lobes of the adult cerebellum and later, those that populate progressing more caudally lobes until labeling of all granule cell precursors is complete by E17. Thus, we demonstrate that the cerebellar rhombic lip gives rise to multiple cell types within rhombomere 1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号