首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The development of cerebellar cortex is strongly impaired by thyroid hormone (T3) deficiency, leading to altered migration, differentiation, synaptogenesis, and survival of neurons. To determine whether alteration in the expression of neurotrophins and/or their receptors may contribute to these impairments, we first analyzed their expression using a sensitive RNAse protection assay and in situ hybridization; second, we administered the deficient neurotrophins to hypothyroid animals. We found that early hypothyroidism disrupted the developmental pattern of expression of the four neurotrophins, leading to relatively higher levels of NGF and neurotrophin 4/5 mRNAs and to a severe deficit in NT-3 and brain-derived neurotrophic factor (BDNF) mRNA expression, without alteration in the levels of the full-length tyrosine kinase (trk) B and trkC receptor mRNAs. Grafting of P3 hypothyroid rats with cell lines expressing high levels of neurotrophin 3 (NT-3) or BDNF prevented hypothyroidism-induced cell death in neurons of the internal granule cell layer at P15. In addition, we found that NT-3, but not BDNF, induced the differentiation and/or migration of neurons in the external granule cell layer, stimulated the elaboration of the dendritic tree by Purkinje cells, and promoted the formation of the mature pattern of synaptic afferents to Purkinje cell somas. Thus, our results indicate that both granule and Purkinje neurons require appropriate levels of NT-3 for normal development in vivo and suggest that T3 may regulate the levels of neurotrophins to promote the development of cerebellum.  相似文献   

2.
Tissue plasminogen activator (tPA) mRNA was localized in the developing cerebellum and the potentials role of tPA in migration of cerebellar granule cells was investigated. Proteolytic assays and Northern blots showed little variation in levels of tPA proteolytic activity or tPA mRNA expression in the developing cerebellum. The distribution of cerebellar tPA mRNA at different ages was visualized by in situ hybridization histochemistry. At postnatal day 7 (P7), most labeled cells were in the internal granule layer or developing white matter, and very few if any premigratory granule cells contained tPA mRNA. Although the molecular layer contained labeled cells at all ages, cell counts indicated that a greater percentage of cells in the molecular layer contained tPA mRNA during adulthood than during the period of granule cell migration. The most striking change in tPA mRNA expression was in Purkinje neurons, most of which began to express tPA mRNA between P7 and P14. The potential role of tPA in granule cell migration was investigated by performing migration assays in cerebellar slice explants in the presence or absence of protease inhibitors. The presence of inhibitors did not affect the distance that granule cells migrated. Data in the present study do not support a role for tPA in granule neuron migration; however, they do indicate that tPA is both spatially and temporally regulated during cerebellar development. Possible functions of tPA in the cerebellum are discussed. © 1995 John Wiley & Sons, Inc.  相似文献   

3.
The neurotrophins brain derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) are both expressed in developing cerebellum in addition to their tyrosine kinase receptors, TrkB and TrkC. In contrast to BDNF, NT-3 has only a negligible or a transient survival activity on cultured cerebellar granule neurons. The granule neurons however, express both TrkC and Trk B receptors which suggests a basic difference in signaling between BDNF and NT-3 in these neurons. Here we have studied whether this difference can be attributed to the presence of alternative TrkC receptor variants on the granule neurons and which signaling pathway is specifically activated by BDNF but not by NT-3 in these neurons. Using RT-PCR it was shown that the cerebellar granule neurons express the full length TrkC receptor, in addition to variant receptors containing small inserts in the receptor tyrosine kinase domain. There was no dramatic change in the relative amounts of different TrkC receptors during development. However, we found the TrkC receptor constitutively phosphorylated even in the absence of added ligand suggesting an interaction of TrkC with endogenously produced NT-3. In addition, NT-3 was able to phosphorylate the BDNF receptor, TrkB but only at higher concentration (50 ng/ml). There were also distinct differences in the activation of intracellular molecules by BDNF and NT-3. Thus, p21 Ras and PLCγ were activated by BDNF but not by NT-3 whereas both BDNF and NT-3 increased calcium and c-fos mRNA in the granule neurons. These results show that differential activation of specific intracellular pathways such as that of p21 Ras determines the specific effects of BDNF and NT-3 on granule neuron survival. In addition, since calcium is increased by NT-3 in the cerebellar granule neurons, this neurotrophin might have some unknown important effects on these neurons. Special issue dedicated to Dr. Hans Thoenen.  相似文献   

4.
Neural visinin-like proteins (VILIPs) are members of the neuronal subfamily of intracellular EF-hand calcium sensor proteins termed the NCS family, which are thought to play important roles in cellular signal transduction. While numerous studies suggest a wide but uneven distribution of these proteins in rat and chicken brain, their location in, and possible significance for, the human brain, remains to be established. We used specific polyclonal antisera to map the human brain for VILIP-1 and VILIP-3 immunoreactivities. VILIP-1 was detected in cortical pyramidal cells and interneurons, septal, subthalamic and hippocampal neurons (subfields CA1 and CA4 pyramidal cells and especially hilar interneurons) as well as in cerebellar Golgi, basket, granule, stellate and dentate nucleus neurons. Purkinje cells were free of immunoreaction. VILIP-3 was more restricted in its distribution. It was identified in cerebellar Purkinje cells and a subpopulation of granule neurons. Further, neurons belonging to different nuclei of the brain stem and multiple subcortical nerve cells stained for visinin-like protein 3. A weak immunoreaction appeared in cortical and hippocampal neurons. Intracellularly the immunoreactivity appeared in the perikarya, dendrites and some axons. Sometimes, immunostaining was found in the neuropil. Glia did not express visinin-like proteins. Our findings support, from a neuroanatomical viewpoint, the idea that these calcium sensor proteins may be of relevance for neuronal signalling in the human CNS.  相似文献   

5.
The distribution of inositol 1,4,5-trisphosphate (InsP3) 3-kinase mRNA in the rat brain is reported using oligonucleotides based on a cDNA clone sequence that encodes rat brain InsP3 3-kinase and the in situ hybridization technique. Moderate levels were found in CA2-4 pyramidal neurons, in the cortex, and in the striatum. The cerebellar granule cells, thalamus, hypothalamus, brainstem, spinal cord, and white matter tracts were almost negative. The levels of InsP3 3-kinase mRNA were highest in the hippocampal CA1 pyramidal neurons, granule cells of the dentate gyrus, and cerebellar Purkinje cells. These results contrast with the lower concentration of the InsP3 receptor already reported in the hippocampus versus the Purkinje cells and suggest a special role for inositol 1,3,4,5-tetrakisphosphate in Ammon's horn.  相似文献   

6.
Cerebellar Purkinje cells have the most elaborate dendritic trees among neurons in the brain. We examined the roles of ryanodine receptor (RyR), an intracellular Ca2+ release channel, in the dendrite formation of Purkinje cells using cerebellar cell cultures. In the cerebellum, Purkinje cells express RyR1 and RyR2, whereas granule cells express RyR2. When ryanodine (10 µM), a blocker of RyR, was added to the culture medium, the elongation and branching of Purkinje cell dendrites were markedly inhibited. When we transferred small interfering RNA (siRNA) against RyR1 into Purkinje cells using single‐cell electroporation, dendritic branching but not elongation of the electroporated Purkinje cells was inhibited. On the other hand, transfection of RyR2 siRNA into granule cells also inhibited dendritic branching of Purkinje cells. Furthermore, ryanodine reduced the levels of brain‐derived neurotrophic factor (BDNF) in the culture medium. The ryanodine‐induced inhibition of dendritic differentiation was partially rescued when BDNF was exogenously added to the culture medium in addition to ryanodine. Overall, these results suggest that RyRs expressed by both Purkinje and granule cells play important roles in promoting the dendritic differentiation of Purkinje cells and that RyR2 expressed by granule cells is involved in the secretion of BDNF from granule cells. © 2013 Wiley Periodicals, Inc. Develop Neurobiol 74: 467–480, 2014  相似文献   

7.
Abstract— –A preparative procedure for the isolation in bulk of two cellular populations of the cerebellar cortex of the immature rat, the granule cells and the Purkinje cell bodies, is described. The procedure is used to delineate the developmental pattern of succinate-INT-reduclase (EC 1.3.99.1) and acetylcholinesterase (EC 3.1.1.7) in the crucial period of cerebellar maturation, i.e. between 12 and 19 days postnatally. Although the overall yield of neuronal RNA diminished with age, the proportion of RNA in the Purkinje cell body fraction increased while that in the granule cells decreased and microscopic examination of the fractions confirmed this result. The yields of succinate-INT-reductase and of acetylcholinesterase in the fractions paralleled the yields of RNA. A significant finding was the trend toward diminishing specific activities (units/μg of RNA) with age of both enzymes in the Purkinje cell bodies as against the opposite, upward trend of their specific activities in the granule cells. An additional finding of interest was the different ratio of true acetylcholinesterase/total cholinesterase activity in the two cell types, with the granule cells consistently exhibiting higher true acetylcholinesterase values than the Purkinje cell bodies. The present report thus supplements the histoenzymological data on the developing rat cerebellum in that it reveals specific differences in the enzymatic development of two different cerebellar types, a finding which was greatly facilitated by the availability of the procedure for their bulk isolation.  相似文献   

8.
In the brain, classical (canonical) transient receptor potential (TRPC) channels are thought to be involved in different aspects of neuronal development. We investigated the developmental expression profile of TRPC channels in rat cerebellum during the first 6 weeks after birth. TRPC3 expression is significantly up-regulated whereas TRPC4 and TRPC6 expression are significantly down-regulated over this period of time. TRPC3 expression is mainly found on Purkinje cells and their dendrites, suggesting that the increase in TRPC3 expression reflects development of the dendritic tree of Purkinje cells. TRPC4 expression was restricted to granule and their precursor cells. TRPC6 expression is found on Purkinje cell bodies, on mature granule cells in the internal granule cell layer (but not their precursors) and interneurons in the molecular layer. The decrease in TRPC4 expression suggests that it is required for proper granule cell development whereas the decrease in TRPC6 expression is presumably correlated with interneuron development. Moreover, we demonstrate the presence of functional TRPC channels on Purkinje cell dendrites that are activated following stimulation of metabotropic glutamate receptors. Our results reveal cell-specific expression patterns for different TRPC proteins and suggest that developmental changes in TRPC protein expression may be required for proper postnatal cerebellar development.  相似文献   

9.
R A Segal  H Takahashi  R D McKay 《Neuron》1992,9(6):1041-1052
Neurotrophins and their receptors are widespread in the developing and mature CNS. Identifying the differentiation state of neurotrophin-responsive cells provides a basis for understanding the developmental functions of these factors. Studies using dissociated and organotypic cultures of rat cerebellum demonstrated that the neurotrophins brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) affect developing granule cells at distinct stages in differentiation. While early granule neurons in the external germinal layer responded to BDNF, more mature granule cells responded to NT-3. BDNF, but not NT-3, enhanced survival of granule cells in cultures of embryonic cerebella. Thus, BDNF and NT-3 have distinct sequential functions that are likely to be critical in the development of the cerebellum. BDNF may promote the initial commitment, while NT-3 may direct the subsequent maturation of granule cells.  相似文献   

10.
Here, we report in vitro generation of Math1+ cerebellar granule cell precursors and Purkinje cells from ES cells by using soluble patterning signals. When neural progenitors induced from ES cells in a serum-free suspension culture are subsequently treated with BMP4 and Wnt3a, a significant proportion of these neural cells become Math1+. The induced Math1+ cells are mitotically active and express markers characteristic of granule cell precursors (Pax6, Zic1, and Zipro1). After purification by FACS and coculture with postnatal cerebellar neurons, ES cell-derived Math1+ cells exhibit typical features of neurons of the external granule cell layer, including extensive motility and a T-shaped morphology. Interestingly, differentiation of L7+/Calbindin-D28K+ neurons (characteristic of Purkinje cells) is induced under similar culture conditions but exhibits a higher degree of enhancement by Fgf8 rather than by Wnt3a. This is the first report of in vitro recapitulation of early differentiation of cerebellar neurons by using the ES cell system.  相似文献   

11.
12.
B J Wilcox  J R Unnerstall 《Neuron》1991,6(3):397-409
We have localized acidic fibroblast growth factor (aFGF) mRNA in the developing and adult rat brain using in situ hybridization histochemistry. Prenatally, hybridization to aFGF mRNA was observed throughout the brain, with the strongest signal associated with cells of the developing cortical plate. Postnatally, labeling was localized to specific neuronal populations. In the hippocampus, labeling of the pyramidal cell layer and dentate granule cells was observed and became progressively more intense with maturation. Labeling was also observed in both the external and internal granule cell layers of the developing cerebellum. Pyramidal cells of the neocortex as well as neurons of the substantia nigra and locus ceruleus also express aFGF. This pattern persists into adulthood, although the intensity of the labeling is significantly reduced in the adult brain. These patterns of hybridization correlate with specific developmental events and suggest that aFGF plays a significant role in both central nervous system development and neuronal viability in the adult brain.  相似文献   

13.
14.
It has been shown by in vitro translation of polyadenylated messenger RNAs (poly(A)+ mRNAs) that the mRNAs encoding both alpha and beta tubulin isotypes are present at much higher relative levels in the developing rat brain than they are in the adult, suggesting that the requirements for tubulin subunits vary with cell type and/or with the developmental stages of a particular cell type. The postnatally developing rat cerebellum, with its readily identifiable cell populations that perform the gamut of developmental tasks, is a suitable model for analyzing specific cellular mRNA distributions during development. In this report, by in situ hybridization techniques it is shown that, by comparison to total cellular poly(A)+ mRNA levels, there is relatively more of the total beta tubulin mRNAs in mitotically active external granule layer cells than in those in the internal granule layer. These results show that migration and differentiation of these granule cells is accompanied by a decrease in their beta tubulin mRNA levels relative to the levels in granule cells of the external granule cell layer. Furthermore, the relative levels of beta tubulin mRNA both in the prenatally formed Purkinje cells and the postnatally formed stellate cells are two to fourfold less than in the granule cells of the internal granule cell layer.  相似文献   

15.
Abstract : The inhibitor of apoptosis (IAP) family of anti-apoptotic genes, originally discovered in baculovirus, exists in animals ranging from insects to humans. Here, we investigated the ability of IAPs to suppress cell death in both a neuronal model of apoptosis and excitotoxicity. Cerebellar granule neurons undergo apoptosis when switched from 25 to 5 m M potassium, and excitotoxic cell death in response to glutamate. We examined the endogenous expression of four members of the IAP family, X chromosome-linked IAP (XIAP), rat IAP1 (RIAP1), RIAP2, and neuronal apoptosis inhibitory protein (NAIP), by semiquantitative reverse PCR and immunoblot analysis in cultured cerebellar granule neurons. Cerebellar granule neurons express significant levels of RIAP2 mRNA and protein, but expression of RIAP1, NAIP, and XIAP was not detected. RIAP2 mRNA content and protein levels did not change when cells were switched from 25 to 5 m M potassium. To determine whether ectopic expression of IAP influenced neuronal survival after potassium withdrawal or glutamate exposure, we used recombinant adenoviral vectors to target XIAP, human IAP1 (HIAP1), HIAP2, and NAIP into cerebellar granule neurons. We demonstrate that forced expression of IAPs efficiently blocked potassium withdrawal-induced N -acetly-Asp-Glu-Val-Asp-specific caspase activity and reduced DNA fragmentation. However, neurons were only protected from apoptosis up to 24 h after potassium withdrawal, not at later time points suggesting that IAPS delay but do not block apoptosis in cerebellar granule neurons. In contrast, treatment with 100 μ M or 1 m M glutamate did not induce caspase activity and adenoviral-mediated expression of IAPs had no influence on subsequent excitotoxic cell death.  相似文献   

16.
Epsilon toxin (ET) produced by C. perfringens types B and D is a highly potent pore-forming toxin. ET-intoxicated animals express severe neurological disorders that are thought to result from the formation of vasogenic brain edemas and indirect neuronal excitotoxicity. The cerebellum is a predilection site for ET damage. ET has been proposed to bind to glial cells such as astrocytes and oligodendrocytes. However, the possibility that ET binds and attacks the neurons remains an open question. Using specific anti-ET mouse polyclonal antibodies and mouse brain slices preincubated with ET, we found that several brain structures were labeled, the cerebellum being a prominent one. In cerebellar slices, we analyzed the co-staining of ET with specific cell markers, and found that ET binds to the cell body of granule cells, oligodendrocytes, but not astrocytes or nerve endings. Identification of granule cells as neuronal ET targets was confirmed by the observation that ET induced intracellular Ca2+ rises and glutamate release in primary cultures of granule cells. In cultured cerebellar slices, whole cell patch-clamp recordings of synaptic currents in Purkinje cells revealed that ET greatly stimulates both spontaneous excitatory and inhibitory activities. However, pharmacological dissection of these effects indicated that they were only a result of an increased granule cell firing activity and did not involve a direct action of the toxin on glutamatergic nerve terminals or inhibitory interneurons. Patch-clamp recordings of granule cell somata showed that ET causes a decrease in neuronal membrane resistance associated with pore-opening and depolarization of the neuronal membrane, which subsequently lead to the firing of the neuronal network and stimulation of glutamate release. This work demonstrates that a subset of neurons can be directly targeted by ET, suggesting that part of ET-induced neuronal damage observed in neuronal tissue is due to a direct effect of ET on neurons.  相似文献   

17.
Nuclear receptors and their coregulators play a critical role in brain development by regulating the spatiotemporal expression of their target genes. The arginine-glutamic acid dipeptide repeats gene (Rere) encodes a nuclear receptor coregulator previously known as Atrophin 2. In the developing cerebellum, RERE is expressed in the molecular layer, the Purkinje cell layer and the granule cell layer but not in granule cell precursors. To study RERE''s role in cerebellar development, we used RERE-deficient embryos bearing a null allele (om) and a hypomorphic allele (eyes3) of Rere (Rere om/eyes3). In contrast to wild-type embryos, formation of the principal fissures in these RERE-deficient embryos was delayed and the proliferative activity of granule cell precursors (GCPs) was reduced at E18.5. This reduction in proliferation was accompanied by a decrease in the expression of sonic hedgehog (SHH), which is secreted from Purkinje cells and is required for normal GCP proliferation. The maturation and migration of Purkinje cells in Rere om/eyes3 embryos was also delayed with decreased numbers of post-migratory Purkinje cells in the cerebellum. During the postnatal period, RERE depletion caused incomplete division of lobules I/II and III due to truncated development of the precentral fissure in the cerebellar vermis, abnormal development of lobule crus I and lobule crus II in the cerebellar hemispheres due to attenuation of the intercrural fissure, and decreased levels of Purkinje cell dendritic branching. We conclude that RERE-deficiency leads to delayed development of the principal fissures and delayed maturation and migration of Purkinje cells during prenatal cerebellar development and abnormal cerebellar foliation and Purkinje cell maturation during postnatal cerebellar development.  相似文献   

18.
Thyroid hormones are essential for correct brain development, and since vertebrates express two thyroid hormone receptor genes (TR alpha and beta), we investigated TR gene expression during chick brain ontogenesis. In situ hybridization analyses showed that TR alpha mRNA was widely expressed from early embryonic stages, whereas TR beta was sharply induced after embryonic day 19 (E19), coinciding with the known hormone-sensitive period. Differential expression of TR mRNAs was striking in the cerebellum: TR beta mRNA was induced in white matter and granule cells after the migratory phase, suggesting a main TR beta function in late, hormone-dependent glial and neuronal maturation. In contrast, TR alpha mRNA was expressed in the earlier proliferating and migrating granule cells, and in the more mature granular and Purkinje cell layers after hatching, indicating a role for TR alpha in both immature and mature neural cells. Surprisingly, both TR genes were expressed in early cerebellar outgrowth at E9, before known hormone requirements, with TR beta mRNA restricted to the ventricular epithelium of the metencephalon and TR alpha expressed in migrating cells and the early granular layer. The results implicate TRs with distinct functions in the early embryonic brain as well as in the late phase of hormone requirement.  相似文献   

19.
The involvement of the retinoblastoma gene product (Rb) and its family members (p107 and p130) in cell cycle exit and terminal differentiation of neural precursor cells has been demonstrated in vitro. To investigate the roles of Rb and p107 in growth, differentiation and apoptosis in the developing and mature cerebellum, we selectively inactivated either Rb alone or in combination with p107 in cerebellar precursor cells or in Purkinje cells. In our mouse models, we show that (1) Rb is required for differentiation, cell cycle exit and survival of granule cell precursors; (2) p107 can not fully compensate for the loss of Rb function in granule cells; (3) Rb and p107 are not required for differentiation and survival of Purkinje cells during embryonic and early postnatal development; (4) Rb function in Purkinje cells is cell autonomous; and (5) loss of Rb deficient CNS precursor cells is mediated by p53-independent apoptosis.  相似文献   

20.
Abstract: The ability of the neurotrophins nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), and neurotrophin-4/5 (NT-4/5) to promote neuronal survival and phenotypic differentiation was examined in dissociated cultures from embryonic day 16 rat cerebellum. BDNF treatment increased the survival of neuron-specific enolase-immunopositive cells by 250 and 400% after 8 and 10 days in culture, respectively. A subpopulation of these neurons, the Purkinje cells, identified by calbindin staining, was increased to an equivalent extent, ∼200%, following BDNF, NT-4/5, or NT-3 treatment. The number of GABAergic neurons, identified by GABA immunoreactivity, was greatly increased by treatment with BDNF (470%) and moderately by NT-4/5 (46%), whereas NT-3 was without effect. NGF failed to increase the number of either Purkinje cells or GABAergic neurons. Addition of BDNF within 48 h of cell plating was required to obtain a maximal increase in Purkinje cell number after 8 days. In contrast, the NT-3 responses were nearly equivalent even if treatment was delayed for 96 h after plating. BDNF, NT-4/5, and NT-3, but not NGF, induced the rapid expression of the immediate early gene c- fos . Immunocytochemical double-labeling with antibodies to c-fos and calbindin was used to identify Purkinje cells that responded to neurotrophin treatment by induction of c-fos. After 4 days in vitro, both BDNF and NT-3 induced the formation of c-fos protein in calbindin-immunopositive neurons, whereas NT-4/5 did not. The latter results suggest that although BDNF and NT-4/5 have been shown to act through a common receptor, TrkB, it appears that the effects of BDNF and NT-4/5 are not identical.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号