首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
This study investigated the behavioural and brain responses towards conditioned flavours with different hedonic values in juvenile pigs. Twelve 30-kg pigs were given four three-day conditioning sessions: they received three different flavoured meals paired with intraduodenal (i.d.) infusions of 15% glucose (F(Glu)), lithium chloride (F(LiCl)), or saline (control treatment, F(NaCl)). One and five weeks later, the animals were subjected to three two-choice feeding tests without reinforcement to check the acquisition of a conditioned flavour preference or aversion. In between, the anaesthetised pigs were subjected to three (18)FDG PET brain imaging coupled with an olfactogustatory stimulation with the conditioned flavours. During conditioning, the pigs spent more time lying inactive, and investigated their environment less after the F(LiCl) than the F(NaCl) or F(Glu) meals. During the two-choice tests performed one and five weeks later, the F(NaCl) and F(Glu) foods were significantly preferred over the F(LICl) food even in the absence of i.d. infusions. Surprisingly, the F(NaCl) food was also preferred over the F(Glu) food during the first test only, suggesting that, while LiCl i.d. infusions led to a strong flavour aversion, glucose infusions failed to induce flavour preference. As for brain imaging results, exposure to aversive or less preferred flavours triggered global deactivation of the prefrontal cortex, specific activation of the posterior cingulate cortex, as well as asymmetric brain responses in the basal nuclei and the temporal gyrus. In conclusion, postingestive visceral stimuli can modulate the flavour/food hedonism and further feeding choices. Exposure to flavours with different hedonic values induced metabolism differences in neural circuits known to be involved in humans in the characterization of food palatability, feeding motivation, reward expectation, and more generally in the regulation of food intake.  相似文献   

2.
We replicated the finding of bivalent conditioning of tastes by wheel running by Hughes and Boakes (2008), but without pre-exposure to the wheel. Rats received six days of conditioning with a flavoured solution presented for 10 min before a 40-min placement in a running wheel and another flavoured solution presented for 10 min after. A highly palatable liquid meal replacement was used as a vehicle for the flavours to encourage consumption, allowing us to equate before and after presentation intervals. Relative to a third flavour, we found that the taste preceding wheel running was consumed less, and the taste that followed wheel running was consumed more. Novel wheel running can therefore condition both taste avoidance and taste preference.  相似文献   

3.
Lactose intolerance in northern Europeans is strongly associated with a single-nucleotide polymorphism (SNP) located 14 kb upstream of the human lactase gene: − 13,910*C/T. We examined whether SNPs in the 5′ flanking region of the pig lactase gene are similar to those in the human gene and whether these polymorphisms play a functional role in regulating pig lactase gene expression. The 5′ flanking region of the lactase gene from several different breeds of pigs was cloned and analyzed for gene regulatory activity of a luciferase reporter gene. One SNP was found in the enhancer region (− 797*G/A) and two were found in the promoter region (− 308*G/C and − 301*A/G). The promoter C− 308,G− 301(Pro-CG) strongly promotes the expression of the lactase gene, but the promoter G− 308,A− 301(Pro-GA) does not. The enhancer A− 797(Enh-A) genotype for Pro-GA can significantly enhance promoter activity, but has an inhibitory effect on Pro-CG. The Enhancer G− 797(Enh-G) has a significant inhibitory effect on both promoters. In conclusion, the order of effectiveness on the pig lactase gene is Enh-A + Pro-GA > Enh-A/G + Pro-CG > Enh-G + Pro-GA.  相似文献   

4.
The in-situ formed hydrazone Schiff base ligand (E)-N′-(2-oxy-3-methoxybenzylidene)benzohydrazide (L2−) reacts with copper(II) acetate to a tetranuclear open cubane [Cu(L)]4 complex which crystallizes as two symmetry-independent (Z′ = 2) S4-symmetrical molecules in different twofold special positions with a homodromic water tetramer. The two independent (A and B) open- or pseudo-cubanes with Cu4O4 cores of 4 + 2 class (Ruiz classification) each have three different magnetic exchange pathways leading to an overall antiferromagnetic coupling with J1B = J2B = −17.2 cm−1, J1A = −36.7 cm−1, J2A = −159 cm−1, J3A = J3B = 33.5 cm−1, g = 2.40 and ρ = 0.0687. The magnetic properties have been analysed using the H = −Σi,jJij(SiSj) spin Hamiltonian.  相似文献   

5.
The interaction of an excess of the title ligands L with the cis-Pt(phos)2 moieties gives compounds a-bcis-[Pt(L-O)2(phos)2] (a, phos = P(Ph)3; b, phos = 1/2 dppe), in which O- is preferred to S-coordination. Such preference is confirmed by the fact that the same products are obtained by reaction of excess of L with the previously reported a-d complexes [Pt(L-O,S)(phos)2]+, (c, phos = PPh3, d, phos = 1/2 dppe), for which chelate ring opening occurs with rupture of Pt-S rather than Pt-O bonds. Compound a can be obtained also by oxidative addition of HL to [Pt(PPh3)3]. The Pt-O bonds in compounds a-d are stable towards substitution by Me2SO, pyridine and tetramethylthiourea. Substitution of L’s occurs with N,N′-diethyldithiocarbamate, which forms a very stable chelate with Pt(II). Thiourea and N,N′-dimethylthiourea also react, because they give rise to cyclometallated products [Pt(phos)2(NRC(S)NHR)]+ (R = H, CH3), with one ionised thioamido group, as revealed by an X-ray investigation of [Pt(PPh3)2(NHC(S)NH2)]+. The preference of O versus S coordination, as well as the stability of the Pt-O bonds, are discussed in terms of antisymbiosis.  相似文献   

6.
We examine hemolymph ion regulation and the kinetic properties of a gill microsomal (Na+, K+)-ATPase from the intertidal hermit crab, Clibanarius vittatus, acclimated to 45‰ salinity for 10 days. Hemolymph osmolality is hypo-regulated (1102.5 ± 22.1 mOsm kg−1 H2O) at 45‰ but elevated compared to fresh-caught crabs (801.0 ± 40.1 mOsm kg−1 H2O). Hemolymph [Na+] (323.0 ± 2.5 mmol L−1) and [Mg2+] (34.6 ± 1.0 mmol L−1) are hypo-regulated while [Ca2+] (22.5 ± 0.7 mmol L−1) is hyper-regulated; [K+] is hyper-regulated in fresh-caught crabs (17.4 ± 0.5 mmol L−1) but hypo-regulated (6.2 ± 0.7 mmol L−1) at 45‰. Protein expression patterns are altered in the 45‰-acclimated crabs, although Western blot analyses reveal just a single immunoreactive band, suggesting a single (Na+, K+)-ATPase α-subunit isoform, distributed in different density membrane fractions. A high-affinity (Vm = 46.5 ± 3.5 U mg−1; K0.5 = 7.07 ± 0.01 μmol L−1) and a low-affinity ATP binding site (Vm = 108.1 ± 2.5 U mg−1; K0.5 = 0.11 ± 0.3 mmol L−1), both obeying cooperative kinetics, were disclosed. Modulation of (Na+, K+)-ATPase activity by Mg2+, K+ and NH4+ also exhibits site-site interactions, but modulation by Na+ shows Michaelis-Menten kinetics. (Na+, K+)-ATPase activity is synergistically stimulated up to 45% by NH4+ plus K+. Enzyme catalytic efficiency for variable [K+] and fixed [NH4+] is 10-fold greater than for variable [NH4+] and fixed [K+]. Ouabain inhibited ≈80% of total ATPase activity (KI = 464.7 ± 23.2 μmol L−1), suggesting that ATPases other than (Na+, K+)-ATPase are present. While (Na+, K+)-ATPase activities are similar in fresh-caught (around 142 nmol Pi min−1 mg−1) and 45‰-acclimated crabs (around 154 nmol Pi min−1 mg−1), ATP affinity decreases 110-fold and Na+ and K+ affinities increase 2-3-fold in 45‰-acclimated crabs.  相似文献   

7.
The main technique employed to characterize the efficiency of water-splitting in photosynthetic preparations in terms of miss and double hit parameters and for the determination of Si (i = 2,3,0) state lifetimes is the measurement of flash-induced oxygen oscillation pattern on bare platinum (Joliot-type) electrodes. We demonstrate here that this technique is not innocent. Polarization of the electrode against an Ag/AgCl electrode leads to a time-dependent formation of hydrogen peroxide by two-electron reduction of dissolved oxygen continuously supplied by the flow buffer. While the miss and double hit parameters are almost unaffected by H2O2, a time dependent reduction of S1 to S− 1 occurs over a time period of 20 min. The S1 reduction can be largely prevented by adding catalase or by removing O2 from the flow buffer with N2. Importantly, we demonstrate that even at the shortest possible polarization times (40 s in our set up) the S2 and S0 decays are significantly accelerated by the side reaction with H2O2. The removal of hydrogen peroxide leads to unperturbed S2 state data that reveal three instead of the traditionally reported two phases of decay. In addition, even under the best conditions (catalase + N2; 40 s polarization) about 4% of S− 1 state is observed in well dark-adapted samples, likely indicating limitations of the equal fit approach. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: Keys to Produce Clean Energy.  相似文献   

8.
The ammonium (NH4+) and nitrate (NO3) uptake responses of tetrasporophyte cultures from a Portuguese population of Gracilaria vermiculophylla were studied. Thalli were incubated at 5 nitrogen (N) levels, including single (50 μM of NH4+ or NO3) and combined addition of each of the N sources. For the combined additions, the experimental conditions attempted to simulate 2 environments with high N availability (450 μM NO3 + 150 μM NH4+; 250 μM NO3 + 50 μM NH4+) and the mean N concentrations occurring at the estuarine environment of this population (30 μM NO3 + 5 μM NH4+). The uptake kinetics of NH4+ and NO3 were determined during a 4 h time-course experiment with N deprived algae. The experiment was continued up to 48 h, with media exchanges every 4 h. The uptake rates and efficiency of the two N sources were calculated for each time interval. For the first 4 h, G. vermiculophylla exhibited non-saturated uptake for both N sources even for the highest concentrations used. The uptake rates and efficiency calculated for that period (V0-4 h), respectively, increased and decreased with increasing substrate concentration. NO3 uptake rates were superior, ranging from 1.06 ± 0.1 to 9.65 ± 1.2 μM g(dw)−1 h−1, with efficiencies of 19% to 53%. NH4+ uptake rates were lower (0.32 ± 0.0 to 5.75 ± 0.08 μM g(dw)−1 h−1) but G. vermiculophylla removed 63% of the initial 150 μM and 100% at all other conditions. Uptake performance of both N sources decreased throughout the duration of the experiment and with N tissue accumulation. Both N sources were taken up during dark periods though with better results for NH4+. Gracilaria vermiculophylla was unable to take up NO3 at the highest concentration but compensated with a constant 27% NH4+ uptake through light and dark periods. N tissue accumulation was maximal at the highest N concentration (3.9 ± 0.25% dw) and superior under NH4+ (3.57 ± 0.2% dw) vs NO3 (3.06 ± 0.1% dw) enrichment. The successful proliferation of G. vermiculophylla in estuarine environments and its potential utilization as the biofilter component of Integrated Multi-Trophic Aquaculture (IMTA) are discussed.  相似文献   

9.
Reaction of the five-coordinate trigonal-bipyramidal platinum(II) complex, [Pt(pt)(pp3)](BF4) (pt = 1-propanethiolate, pp3 = tris[2-(diphenylphosphino)ethyl]phosphine), with I in chloroform gave the five-coordinate square-pyramidal complex with a dissociated terminal phosphino group and an apically coordinated iodide ion in equilibrium. The thermodynamic parameters for the equilibrium between the trigonal-bipyramidal and square-pyramidal geometries, [Pt(pt)(pp3)]+ + I ? [PtI(pt) (pp3)], and the kinetic parameters for the chemical exchange were obtained as follows: , ΔH0 = − 10 ± 2.4 kJ mol−1, ΔS0 = − 36 ± 10 J K−1 mol−1, , ΔH = 34 ± 4.7 kJ mol−1, ΔS = − 50 ± 21 J K−1 mol−1. The square-planar trinuclear platinum(II) complex was formed by bridging reaction of one of the terminal phosphino groups of trigonal-bipyramidal [PtCl(pp3)]Cl with trans-[PtCl2(NCC6H5)2] in chloroform. From these facts, ligand substitution reactions of [PtX(pp3)]+ (X = monodentate anion) are expected to proceed via an intermediate with a dissociated phosphino group. The rate constants for the chloro-ligand substitution reactions of [PtCl(pp3)]+ with Br and I in chloroform approached the respective limiting values as concentrations of the entering halide ions are increased. These kinetic results confirmed the preassociation mechanism in which the square pyramidal intermediate with a dissociated phosphino group and an apically coordinated halide ion is present in the rapid pre-equilibrium.  相似文献   

10.
The trinuclear complex [L2Cu3(CF3CO2)4] (1) has been synthesized and its crystal structure determined. It consists of a linear arrangement of Cu(II) centers. The central copper atom is bonded to six oxygen atoms and has a tetragonally distorted octahedral geometry, while the terminal copper atoms are bonded to three oxygen and two nitrogen atoms and show a distorted square pyramidal geometry. The complex shows di-μ(O,O′) syn-syn carboxylate bridging as well as monoatomic (μ-O) bridging, along with phenolate (μ-O) oxygen bridging. Cryomagnetic investigations in the range 2-300 K revealed an antiferromagnetic spin exchange interaction with J = −95.7 cm−1, based on the isotropic exchange model Hex = −2J[S1 · S2 + S2 · S3].  相似文献   

11.
Selective substitution of the chlorine atom coordinated to cobalt in the paramagnetic Mo3(CoCl)S4(dmpe)3Cl3 (dmpe = 1,2-bis(dimethylphosphanyl) ethane) complex with a S = 1/2 ground state has been achieved by iodine oxidation to afford the also paramagnetic [Mo3(CoI)S4(dmpe)3Cl3]I ([1]I) salt with a S = 1 ground state in almost quantitative yield. Replacement of chorine by iodine has no significant effect on the structural and electrochemical properties of the Mo3CoS4 system. Metathesis of the [1]I salt with the paramagnetic nickel anionic dithiolate [Ni(mnt)2] (mnt = maleonitrilodithiolate) affords [1]2[Ni(mnt)2]. The stoichiometry evidenced by X-ray analysis reveals that reduction of the [Ni(mnt)2] radical to the corresponding diamagnetic closed shell [Ni(mnt)2]2− dianion, presumably via dismutation, has occurred during the metathesis process. The crystal structure of [1]2[Ni(mnt)2] consists of [Ni(mnt)2]2− dianions sandwiched by two cluster 1+ cations which yield {1+·[Ni(mnt)2]2−·1+} subunits arranged along the crystallographic c axis. Magnetic susceptibility measurements for [1]2[Ni(mnt)2] show a χT product of 0.99 emu K/mol largely unchanged in the 10-300 K range. This behavior agrees with the presence of an S = 1 cluster 1+ cation while the Ni(mnt)2 moiety does not contribute to the paramagnetism of the sample.  相似文献   

12.
The effects of short term hypoxia on bioturbation activity and inherent solute fluxes are scarcely investigated even if increasing number of coastal areas are subjected to transient oxygen deficits. In this work dark fluxes of oxygen (O2), dissolved inorganic carbon (TCO2) and nutrients across the sediment-water interface, as well as rates of denitrification (isotope pairing), were measured in intact sediment cores collected from the dystrophic pond of Sali e Pauli (Sardinia, Italy). Sediments were incubated at 100, 70, 40 and 10% of O2 saturation in the overlying water, with both natural benthic communities, dominated by the polychaete Polydora ciliata (11.100 ± 2.500  ind. m− 2), and after the addition of individuals of the deep-burrower polychaete Hediste diversicolor. Below an uppermost oxic layer of ~ 1 mm, sediments were highly reduced, with up to 6 mM of S2− in the 5 mm layer. Flux of S2− and O2 calculated from pore water gradients were 8.61 ± 1.12 and − 2.27 ± 0.56 mmol m− 2 h− 1, respectively. However, sediment oxygen demand (SOD) calculated from core incubation was − 10.52 ± 0.33 mmol m− 2 h− 1, suggesting a major contribution of P. ciliata to O2-mediated sulphide oxidation. P. ciliata also strongly stimulated NH4+ and PO43− fluxes, with rates ~ 15 and ~ 30 folds higher, respectively, than those estimated from pore water gradients. P. ciliata activity was significantly reduced at 10% O2 saturation, coupled to decreased rates of solutes transfer. The addition of H. diversicolor further stimulated SOD, NH4+ efflux and SiO2 mobilisation. Similarly to P. ciliata, the degree of stimulation of SOD and NH4+ flux by H. diversicolor depended on the level of oxygen saturation. TCO2 regeneration, respiratory quotients, PO43− fluxes and denitrification of added 15NO3 were not affected by the addition of H. diversicolor, but depended upon the O2 levels in the water column. Denitrification rates supported by water column 14NO3 and sedimentary nitrification were both negligible (< 0.5 µmol m− 2 h− 1). They were not significantly affected by oxygen saturation nor by bioturbation, probably due to the limited availability of NO3 in the water column (< 3 µM) and O2 in the sediments. This study demonstrates for the first time the integrated short term effect of transient hypoxia and bioturbation on solute fluxes across the sediment-water interface within a simplified lagoonal benthic community.  相似文献   

13.
The heavy use of fertilizers in agricultural lands can result in significant nitrate (NO3) loadings to the aquatic environment. We hypothesized that biological denitrification in agricultural ditches and streams could be enhanced by adding elemental sulfur (So) to the sediment layer, where it could act as a biofilm support and electron donor. Using a bench-scale stream mesocosm with a bed of So granules, we explored NO3 removal fluxes as a function of the effluent NO3 concentrations. With effluent NO3 ranging from 0.5 mg N L−1 to 4.1 mg N L−1, NO3 removal fluxes ranged from 228 mg N m−2 d−1 to 708 mg N m−2 d−1. This is as much as 100 times higher than for agricultural drainage streams. Sulfate (SO42−) production was high due to aerobic sulfur oxidation. Molecular studies demonstrated that the So amendment selected for Thiobacillus species, and that no special inoculum was required for establishing a So-based autotrophic denitrifying community. Modeling studies suggested that denitrification was diffusion limited, and advective flow through the bed would greatly enhance NO3 removal fluxes. Our results indicate that amendment with So is an effective means to stimulate denitrification in a stream environment. To minimize SO42− production, it may be better to place So deeper in the sediment layer.  相似文献   

14.
The degradation of an Ulva lactuca mat (0.2 kg dw m−2) was studied in a controlled flow-through mesocosm for 31 d. Sediment chambers without U. lactuca served as controls. Fluxes of ∑CO2, O2, inorganic nitrogen, and urea were determined during the incubation period in addition to sulfate reduction rates, POC and PON content, enumeration of specific bacterial populations and evaluation of the physiological state of the added U. lactuca thalli. After U. lactuca addition to the chambers, there was an immediate increase in the efflux of ∑CO2 from 11 to 27 mmol-C m−2 d−1 and a concomitant increase in O2 uptake from 11 to 23 mmol m−2 d−1. These effluxes remained elevated throughout the incubation period. In contrast, the NH4+ efflux increased from 0.1 to 1.8 mmol NH4+ m−2 d−1 during the first 3 d of incubation, followed by 6 d with a constant efflux rate, after which time it decreased gradually to 0.3 mmol NH4+ m−2 d−1 by the end of the experiment. In total, NH4+accounted for 83% of the total nitrogen efflux after addition of U. lactuca. During the 31 d incubation period there was a continuous colonization of the thalli by bacteria. Sulfate reducers associated with the thalli accounted for 3% of the carbon oxidation on day 31. The molar C:N ratio in mineralization products (the ratio between the efflux of ∑CO2 and NH4+ + NO2 + NO3) increased from 15 mol mol−1 at day 11 after U. lactuca addition to >80 mol mol−1 by the end of the incubation. Since the C:N ratio in the mineralization products was much higher than the original thallus material (8.9 mol mol−1) it is probable that a preferential incorporation of NH4+ into the increasing bacterial biomass occurred. The nitrogen for bacterial growth was most likely obtained from degradation of U. lactuca thalli as there was no stimulation of urea-N turnover in the sediment during incubation. The net increase in bacteria cell number in the 18-mm thick thallus layer was estimated to be 7.6 × 109 to 2.4 × 1010 bacterial cells cm−3. In contrast, the bacterial cell number remained constant in the −Ulva incubations.  相似文献   

15.
The effects of inorganic nitrogen (N) source (NH4+, NO3 or both) on growth, biomass allocation, photosynthesis, N uptake rate, nitrate reductase activity and mineral composition of Canna indica were studied in hydroponic culture. The relative growth rates (0.05-0.06 g g−1 d−1), biomass allocation and plant morphology of C. indica were indifferent to N nutrition. However, NH4+ fed plants had higher concentrations of N in the tissues, lower concentrations of mineral cations and higher contents of chlorophylls in the leaves compared to NO3 fed plants suggesting a slight advantage of NH4+ nutrition. The NO3 fed plants had lower light-saturated rates of photosynthesis (22.5 μmol m−2 s−1) than NH4+ and NH4+/NO3 fed plants (24.4-25.6 μmol m−2 s−1) when expressed per unit leaf area, but similar rates when expressed on a chlorophyll basis. Maximum uptake rates (Vmax) of NO3 did not differ between treatments (24-35 μmol N g−1 root DW h−1), but Vmax for NH4+ was highest in NH4+ fed plants (81 μmol N g−1 root DW h−1), intermediate in the NH4NO3 fed plants (52 μmol N g−1 root DW h−1), and lowest in the NO3 fed plants (28 μmol N g−1 root DW h−1). Nitrate reductase activity (NRA) was highest in leaves and was induced by NO3 in the culture solutions corresponding to the pattern seen in fast growing terrestrial species. Plants fed with only NO3 had high NRA (22 and 8 μmol NO2 g−1 DW h−1 in leaves and roots, respectively) whereas NRA in NH4+ fed plants was close to zero. Plants supplied with both forms of N had intermediate NRA suggesting that C. indica takes up and assimilate NO3 in the presence of NH4+. Our results show that C. indica is relatively indifferent to inorganic N source, which together with its high growth rate contributes to explain the occurrence of this species in flooded wetland soils as well as on terrestrial soils. Furthermore, it is concluded that C. indica is suitable for use in different types of constructed wetlands.  相似文献   

16.
The binding affinity of the two substrate–water molecules to the water-oxidizing Mn4CaO5 catalyst in photosystem II core complexes of the extremophilic red alga Cyanidioschyzon merolae was studied in the S2 and S3 states by the exchange of bound 16O-substrate against 18O-labeled water. The rate of this exchange was detected via the membrane-inlet mass spectrometric analysis of flash-induced oxygen evolution. For both redox states a fast and slow phase of water-exchange was resolved at the mixed labeled m/z 34 mass peak: kf = 52 ± 8 s− 1 and ks = 1.9 ± 0.3 s− 1 in the S2 state, and kf = 42 ± 2 s− 1 and kslow = 1.2 ± 0.3 s− 1 in S3, respectively. Overall these exchange rates are similar to those observed previously with preparations of other organisms. The most remarkable finding is a significantly slower exchange at the fast substrate–water site in the S2 state, which confirms beyond doubt that both substrate–water molecules are already bound in the S2 state. This leads to a very small change of the affinity for both the fast and the slowly exchanging substrates during the S2 → S3 transition. Implications for recent models for water-oxidation are briefly discussed.  相似文献   

17.
Liang Z  Han Z  Yang S  Liang X  Du P  Liu G  Yang Y 《Bioresource technology》2011,102(2):710-715
To achieve an appropriate mixture of ammonium and nitrite for anaerobic ammonium oxidation (ANAMMOX), 50% partial nitritation was optimized in a fixed bed biofilm reactor treating synthetic wastewater. Results suggested that 50% partial nitritation could be achieved by stepwise increases of influent NH4+-N at pH of 7.8 ± 0.2, temperature of 30 ± 1 °C and dissolved oxygen (DO) of 0.5-0.8 mg l−1. Hydraulic retention time (HRT) and influent alkalinity did significantly affect partial nitritation. At HRT 12 h, 50% partial nitritation could be kept stable, regardless of influent NH4+-N variation, by controlling the influent HCO3/NH4+ molar ratio at 1:1. The fluorescent in situ hybridization (FISH) results indicated the abundance of evolution of ammonia-oxidizing bacteria (AOB) and the nitrite-oxidizing bacteria (NOB) coincided well with the performance of partial nitritation. Furthermore, the AOB were highly affiliated with Nitrosomonas spp. and Nitrosospira spp. dominated (64.1%) in the biofilm with a compact structure during the stable 50% partial nitritation period.  相似文献   

18.
Xu Y  Ye TQ  Qiu SB  Ning S  Gong FY  Liu Y  Li QX 《Bioresource technology》2011,102(10):6239-6245
A novel approach for high efficient conversion of the CO2-rich bio-syngas into the CO-rich bio-syngas was carried out by using biomass char and Ni/Al2O3 catalyst, which was successfully applied for production of bio-methanol from bio-oil. After the bio-syngas conditioning, the CO2/CO ratio prominently dropped from 6.33 to 0.01-0.28. The maximum CO yield in the bio-syngas conditioning process reached about 1.96 mol/(mol CO2) with a nearly complete conversion of CO2 (99.5%). The performance of bio-methanol synthesis was significantly improved via the conditioned bio-syngas, giving a maximum methanol yield of 1.32 kg/(kgcatalyst h) with a methanol selectivity of 99%. Main reaction paths involved in the bio-syngas conditioning process have been investigated in detail by using different model mixture gases and different carbon sources.  相似文献   

19.
In N,N-dimethylformamide (DMF), 1,4,7-tris((S)-2-hydroxy-3-phenylpropyl)-1,4,7-triazacyclononane forms metal complexes, [M(S-thppc9)]+, for which log K (dm3 mol−1)=3.01, 2.65, 2.66, 2.65, 2.42 and 7.59 (all±0.05) where M+=Li+, Na+, K+, Rb+, Cs+ and Ag+, respectively. Variable temperature 13C{1H} NMR spectroscopy shows that the interchange between equivalent forms of a single diastereomer occurs for [Li(S-thppc9)]+ and [Na(S-thppc9)]+ characterised by: k=43±5 and 2900±100 s−1, at 298.2 K, ΔH=22.5±1.6 and 33.8±1.6 kJ mol−1, and ΔS=−133±5 and −59±6 J K−1 mol−1, respectively. Gas phase ab initio modelling shows these complexes and their K+ analogue to preferentially form distorted trigonal prismatic Λ, Δ, and Λ diastereomers, respectively.  相似文献   

20.
Formation of DNA quadruplexes requires monovalent cation binding. To characterize the cation binding stoichiometry and linkage between binding and folding, we carried out KCl titrations of Tel22 (d[A(GGGTTA)3]), a model of the human telomere sequence, using a fluorescent indicator to determine [K+]free and circular dichroism to assess the extent of folding. At [K+]free = 5 mM (sufficient for > 95% folding), the apparent binding stoichiometry is 3K+/Tel22; at [K+]free = 20 mM, it increased to 8-10K+/Tel22. Thermodynamic analysis shows that at [K+]free = 5 mM, K+ binding contributes approximately − 4.9 kcal/mol for folding Tel22. The overall folding free energy is − 2.4 kcal/mol, indicating that there are energetically unfavorable contributions to folding. Thus, quadruplex folding is driven almost entirely by the energy of cation binding with little or no contribution from other weak molecular interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号