首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
2.
The selectivity of hepatitis C virus (HCV) non-structural protein 3 (NS3) protease inhibitors was determined by evaluating their inhibitory effect on other serine proteases (human leukocyte elastase (HLE), porcine pancreatic elastase (PPE), bovine pancreatic chymotrypsin (BPC)) and a cysteine protease (cathepsin B). For these peptide inhibitors, the P1-side chain and the C-terminal group were the major determinants of selectivity. Inhibitors with electrophilic C-terminal residues were generally non-selective while compounds with non-electrophilic C-terminal residues were more selective. Furthermore, compounds with P1 aminobutyric acid residues were non-selective, while 1-aminocyclopropane-1-carboxylic acid (ACPC) and norvaline-based inhibitors were generally selective. The most potent and selective inhibitors of NS3 protease tested contained a non-electrophilic phenyl acyl sulfonamide C-terminal residue. HLE was most likely to be inhibited by the HCV protease inhibitors, in agreement with similar substrate specificities for these enzymes. The identified structure-activity relationships for selectivity are of significance for design of selective HCV NS3 protease inhibitors.  相似文献   

3.
Papain-like cysteine proteases are the most numerous family of the cysteine protease class. They are expressed throughout the animal and plant kingdoms as well as in viruses and bacteria. More recently, this protease family has drawn attention as a potential pharmaceutical drug target in diseases characterized by excessive extracellular matrix degradation such as in osteoporosis, arthritis, vascular diseases, and cancer. Moreover, papain-like cysteine proteases have been identified as critical components of the life cycle and invasive potential of various human and live stock pathogens as well as major allergens. Therefore, this protease class is rigorously studied and requires sufficient amounts of protease protein to analyze structure-activity relationships, their 3-D structures as well as to screen for and optimize potent and selective inhibitors. This review summarizes approaches to generate active papain-like cysteine proteases by heterologous expression in a variety of expression systems.  相似文献   

4.
The role of an extracellular cysteine protease, produced by pathogenic luminous Vibrio harveyi strain 820514 originally isolated from diseased tiger prawn (Penaeus monodon), in the disease process in the prawns was studied. The protease was lethal to P. monodon with an LD50 value of 0.3 microgram protein g-1 prawn. The lethal toxicity of the extracellular products (ECP) of the bacterium was neutralized by pre-incubation of the ECP with rabbit antiserum to the cysteine protease. Pre-incubation of ECP with CuCl2 (an inhibitor of cysteine protease) also inhibited toxicity. This suggests that cysteine protease is the major toxin produced by the bacterium. The present protease is the first toxic cysteine protease to be found in Vibrio species.  相似文献   

5.
The closely related serpins squamous cell carcinoma antigen-1 and -2 (SCCA-1 and -2, respectively) are capable of inhibiting cysteine proteases of the papain superfamily. To ascertain whether the ability to inhibit cysteine proteases is an intrinsic property of serpins in general, the reactive center loop (RCL) of the archetypal serine protease inhibitor alpha(1)-antitrypsin was replaced with that of SCCA-1. It was found that this simple substitution could convert alpha(1)-antitrypsin into a cysteine protease inhibitor, albeit an inefficient one. The RCL of SCCA-1 is three residues longer than that of alpha(1)-antitrypsin, and therefore, the effect of loop length on the cysteine protease inhibitory activity was investigated. Mutants in which the RCL was shortened by one, two, or three residues were effective inhibitors with second-order rate constants of 10(5)-10(7) M(-)(1) s(-)(1). In addition to loop length, the identity of the cysteine protease was of considerable importance, since the chimeric molecules inhibited cathepsins L, V, and K efficiently, but not papain or cathepsin B. By testing complexes between an RCL-mimicking peptide and the mutants, it was found that the formation of a stable serpin-cysteine protease complex and the inhibition of a cysteine protease were both critically dependent on RCL insertion. The results strongly indicate that the serpin body is intrinsically capable of supporting cysteine protease inhibition, and that the complex with a papain-like cysteine protease would be expected to be analogous to that seen with serine proteases.  相似文献   

6.
Peptidyl cyclopropenones were previously introduced as selective cysteine protease reversible inhibitors. In the present study we synthesized one such peptidyl cyclopropenone and investigated its interaction with papain, a prototype cysteine protease. A set of kinetics, biochemical, HPLC, MS, and 13C‐NMR experiments revealed that the peptidyl cyclopropenone was an irreversible inhibitor of the enzyme, alkylating the catalytic cysteine. In parallel, this cyclopropenone also behaved as an alternative substrate of the enzyme, providing a product that was tentatively suggested to be either a spiroepoxy cyclopropanone or a gamma‐lactone. Thus, a single family of compounds exhibits an unusual variety of activities, being reversible inhibitors, irreversible inhibitors and alternative substrates towards enzymes of the same family.  相似文献   

7.
Two potential azapeptide inhibitors of cathepsin K were designed and synthesized. To analyze in detail interactions between these azainhibitors and the investigated cysteine protease, molecular dynamics simulations were performed. For the obtained compounds the equilibrium constants for dissociation of inhibitor – enzyme complex, Ki, were determined. The examined azapeptides proved to be not as potent inhibitors of cathepsin K as they were expected to be according to the results of simulations. However, these calculations provide valuable information about probable structures of this type of peptidomimetics in the catalytic pocket of cathepsin K, which could be useful in designing of more selective inhibitors of this cysteine protease.  相似文献   

8.
At least eight proteolytic activities have been identified in the midgut contents of larval Southern corn rootworm (Diabrotica undecimpunctata howardi). Around 70% of protease activity could be arrested by the cysteine protease inhibitors E-64 and chicken egg-white cystatin, while the aspartic acid protease inhibitor pepstatin caused 30% inhibition. The cysteine protease activity was found to be highly sensitive to inhibition by both chicken egg-white cystatin and the rice cystatin, oryzacystatin I. Oryzacystatin I, expressed as a fully functional fusion protein in E. coli, was found to strongly inhibit larval gut protease activity. This recombinant oryzacystatin, incorporated into artificial diet at concentrations of 10 mM and above, caused significant decreases in larval survival and weight gain. E-64 was also shown to cause a significant antimetabolic in vivo effect. These results demonstrate the great potential for cysteine protease inhibitors, such as oryzacystatin, as tools for exploitation in the control of the Southern corn rootworm.  相似文献   

9.
Potent inhibitors of human cysteine proteases of the papain family have been made and assayed versus a number of relevant family members. We describe the synthesis of peptide alpha-ketoheterocyclic inhibitors that occupy binding subsites S1'-S3 of the cysteine protease substrate recognition cleft and that form a reversible covalent bond with the Cys 25 nucleophile. X-ray crystal structures of cathepsin K both unbound and complexed with inhibitors provide detailed information on protease/inhibitor interactions and suggestions for the design of tight-binding, selective molecules.  相似文献   

10.
The maize cysteine protease complex, which required SDS for its activation in vitro, is a 179 kDa trimeric complex (P-I)3 of a cysteine protease (P) [EC 3.4.22] and a cysteine protease inhibitor (I), cystatin [Yamada et al. (1998) Plant Cell Physiol. 39: 106, Yamada et al. (2000) Plant Cell Physiol. 41: 185]. Here, we show the mechanism of the SDS-dependent activation of the trimeric (P-I) complex and stabilization of the activated protease by its specific substrates. The cystatin-free cysteine protease isolated by preparative SDS-PAGE was still specifically activated by SDS, and its profile of SDS-dependency was exactly the same as that of the trimeric (P-I) complex. It is, therefore, evident that an SDS-dependent conformational change of the protease itself, rather than the release of cystatin from the complex, is crucial for the activation. Pre-treatment analysis with SDS revealed that SDS was required for the initiation of the activation of the trimeric (P-I) complex. Furthermore, we found that once the protease was activated, if there was no substrate, it was rapidly inactivated under optimum conditions of proteolysis, and showed that such inactivation was not due to autolysis of the protease. In contrast, addition of specific substrates prevented the inactivation, and thus we presumed that the activity of the cysteine protease is regulated by both activation by conformational change and rapid inactivation after consumption of substrates.  相似文献   

11.
Co-purification of an endogenous proteolytic activity has been proposed as the cause for the size heterogeneity of sialyltransferases. Reported herein are results on the effects of various protease inhibitors, sulfhydryl-reducing agents and antimicrobial agents on SAT-1 activity. Addition of protease inhibitors to immunoaffinity-purified rat liver SAT-1 dramatically affects its activity. All protease inhibitors examined, with the exception of PMSF, inhibited the purified enzyme. The most inhibitory were the cysteine (thiol) protease inhibitors. This effect is less spectacular when the effect of these inhibitors was studied on SAT-1 activity in Golgi-enriched microsomes, although the inhibition was greatest by the cysteine protease inhibitors. One dramatic effect, found in both cases, was the apparent activation of SAT-1 activity in the presence of beta-mercaptoethanol.  相似文献   

12.
Proteases produced during the culture of Spodoptera frugiperda Sf-9 cells infected with Autographa californica nuclear polyhedrosis virus (AcNPV) were assayed with various protease inhibitors. This inhibitory analysis revealed that: (1) carboxyl and cysteine proteases were predominantly produced by the insect cells infected with recombinant AcNPV, the gene of which encoded a variant of green fluorescent protein in a portion of the polyhedrin gene of the baculovirus, and (2) the protease activity was almost completely blocked by pepstatin A (carboxyl protease inhibitor) and E64 (cysteine protease inhibitor) in an additive manner in the presence of EDTA. Utilizing the additive property of the inhibitors, the inhibition-based protease assay discriminated between the two protease activities and elucidated the sequential behavior of the carboxyl and cysteine proteases produced in the virus-infected Sf-9 cell culture. The carboxyl protease(s) existed in the virus-infected cells all the time and their level in the medium continuously increased. Uninfected cells also contained a carboxyl protease activity, the level of which was similar to that of the virus-infected cells. At a certain time after virus infection, the cysteine protease activity was largely increased in the virus-infected cells and a significant amount of the protease(s) was released into the medium, due to the cell membranes losing their integrity. The behavior of intracellular and extracellular cysteine protease activities coincided with that of a recombinant protein whose expression was under the control of the viral polyhedrin promoter. Similar examinations with wt-AcNPV-infected and uninfected insect cells showed that the inhibition-based protease assay was useful for analyzing the carboxyl protease and cysteine protease activities emerging in the insect cell (Sf-9)/baculovirus expression system.  相似文献   

13.
Activity-Based Probes (ABPs) are small molecules that form stable covalent bonds with active enzymes thereby allowing detection and quantification of their activities in complex proteomes. A number of ABPs that target proteolytic enzymes have been designed based on well-characterized mechanism-based inhibitors. We describe here the evaluation of a novel series of ABPs based on the aza-aspartate inhibitory scaffold. Previous in vitro kinetic studies showed that this scaffold has a high degree of selectivity for the caspases, clan CD cysteine proteases activated during apoptotic cell death. Aza-aspartate ABPs containing either an epoxide or Michael acceptor reactive group were potent labels of executioner caspases in apoptotic cell extracts. However they were also effective labels of the clan CD protease legumain and showed unexpected crossreactivity with the clan CA protease cathepsin B. Interestingly, related aza peptides containing an acyloxymethyl ketone reactive group were relatively weak but highly selective labels of caspases. Thus azapeptide electrophiles are valuable new ABPs for both detection of a broad range of cysteine protease activities and for selective targeting of caspases. This study also highlights the importance of confirming the specificity of covalent protease inhibitors in crude proteomes using reagents such as the ABPs described here.  相似文献   

14.
The design and synthesis of dipeptidyl disulfides and dipeptidyl benzoylhydrazones as selective inhibitors of the cysteine protease Cathepsin S are described. These inhibitors were expected to form a slowly reversible covalent adduct of the active site cysteine of Cathepsin S. Formation of the initial adduct was confirmed by mass spectral analysis. The nature and mechanism of these adducts was explored. Kinetic analysis of the benzoyl hydrazones indicate that these inhibitors are acting as irreversible inhibitors of Cathepsin S. Additionally, the benzoylhydrazones were shown to be potent inhibitors of Cathepsin S processing of Class II associated invariant peptide both in vitro and in vivo.  相似文献   

15.
A protease, freesia protease (FP)-A, was purified to electrophoretic homogeneity from regular freesia (Freesia reflacta) corms in harvest time. The Mr of FP-A was estimated to be 24 k by SDS-PAGE. The optimum pH of the enzyme was 8.0 using a casein substrate. These enzymes were strongly inhibited by p-chloromercuribenzoic acid but not by phenylmethane-sulfonylfluoride and EDTA. These results indicate that FP-A belongs to the cysteine proteases. The amino terminal sequence of FP-A was similar to that of papain, and the sequences was regarded to the conservative residues of cysteine protease. From the hydrolysis of peptidyl-p-NAs, the specificity of FP-A was found to be broad. It was thought that FP-A was a new protease from freesia corms.  相似文献   

16.
Cysteine protease (CP) and Cysteine protease inhibitor (CPI) or cystatin constitute a critical point in programmed cell death (PCD), a basic biological phenomenon which takes place in the plants, when they are exposed to varying biotic and abiotic stresses. In the present study we isolated and cloned cDNAs encoding cysteine protease and cystatin from early blight infected tomato plants. Using computational biology tools the sequence-structure-function relationships for the tomato cystatin and cysteine protease were elucidated. Interaction between the cystatin and cysteine protease of host and pathogen is higher as compared to interaction shown by cystatin and cysteine protease within the host. The interaction energy of (a)tomato cystatin—tomato cysteine protease, (b)tomato cystatin—fungal cysteine protease and (c)tomato cysteine protease—fungal cystatin are ?319.33 Kcal/mol, ?504.71 Kcal/mol and ?373.731 Kcal/mol respectively. Comparative protein sequence analysis with different plant cystatins and cysteine protease were also done with the sequences of cystatin and cysteine protease isolated from tomato. Structures for all the cystatin and cysteine protease were modeled along with their interactions with fungal cystatin and cysteine protease in order to explore the structural variability and its manifestation at the functional level. This helped to relate the already known functions of these proteins with their sequences as well as the predicted structures. This also served to better understand the CP-CPI interaction operational in developing this protein family and its implication in plant defense during fungal pathogenesis in tomato plants.  相似文献   

17.
18.
Shi X  Zhang G  Wang L  Li X  Zhi Y  Wang F  Fan J  Deng R 《DNA and cell biology》2011,30(6):355-362
Porcine reproductive and respiratory syndrome virus nonstructural protein 1 (nsp1) could be auto-cleaved into nsp1α and nsp1β, both of which had the papain-like cysteine protease activities. Previous studies have shown that porcine reproductive and respiratory syndrome virus nsp1 was an interferon (IFN) antagonist. However, the mechanism by which nsp1 inhibited IFN-β production was unclear. Here, we used site-directed mutagenesis that inactivated the papain-like cysteine protease activities of nsp1 to explore whether the papain-like cysteine protease activities were required for nsp1 to disrupt IFN-β production. The results showed that mutations that inactivated papain-like cysteine protease activity of nsp1α made nsp1 lose its IFN antagonism activity, whereas mutations that inactivated papain-like cysteine protease activity of nsp1β did not influence the IFN antagonism activity of nsp1. In conclusion, our present work indicated that the papain-like cysteine protease activity of nsp1α was necessary for nsp1 to inhibit IFN-β induction.  相似文献   

19.
Hook VY  Hwang SR 《Biological chemistry》2002,383(7-8):1067-1074
Secretory vesicles of neuroendocrine cells possess multiple proteases for proteolytic processing of proteins into biologically active peptide components, such as peptide hormones and neurotransmitters. The importance of proteases within secretory vesicles predicts the presence of endogenous protease inhibitors in this subcellular compartment. Notably, serpins represent a diverse class of endogenous protease inhibitors that possess selective target protease specificities, defined by the reactive site loop domains (RSL). In the search for endogenous serpins in model secretory vesicles of neuroendocrine chromaffin cells, the presence of serpins related to alpha1-antichymotrypsin (ACT) was detected by Western blots with anti-ACT. Molecular cloning revealed the primary structures of two unique serpins, endopin 1 and endopin 2, that possess homology to ACT. Of particular interest was the observation that distinct RSL domains of these new serpins predicted that endopin 1 would inhibit trypsin-like serine proteases cleaving at basic residues, and endopin 2 would inhibit both elastase and papain that represent serine and cysteine proteases, respectively. Endopin 1 showed selective inhibition of trypsin, but did not inhibit chymotrypsin, elastase, or subtilisin. Endopin 2 demonstrated cross-class inhibition of the cysteine protease papain and the serine protease elastase. Endopin 2 did not inhibit chymotrypsin, trypsin, plasmin, thrombin, furin, or cathepsin B. Endopin 1 and endopin 2 each formed SDS-stable complexes with target proteases, a characteristic property of serpins. In neuroendocrine chromaffin cells from adrenal medulla, endopin 1 and endopin 2 were both localized to secretory vesicles. Moreover, the inhibitory activity of endopin 2 was optimized under reducing conditions, which required reduced Cys-374; this property is consistent with the presence of endogenous reducing agents in secretory vesicles in vivo. These new findings demonstrate the presence of unique secretory vesicle serpins, endopin 1 and endopin 2, which possess distinct target protease selectivities. Endopin 1 inhibits trypsin-like proteases; endopin 2 possesses cross-class inhibition for inhibition of papain-like cysteine proteases and elastase-like serine proteases. It will be of interest in future studies to define the endogenous protease targets of these two novel secretory vesicle serpins.  相似文献   

20.
The cDNA for a novel Plasmodium cysteine protease (falcipain-2) has been isolated from a Plasmodium falciparum cDNA library. A 602 bp fragment was amplified from P. falciparum by PCR using degenerate oligonucleotide primers. The primers were designed based upon the amino acids flanking the active site cysteine and asparagine residues that are conserved in the eukaryotic cysteine proteases. This fragment was used to screen a P. falciparum cDNA library and isolated a 2.1 kb clone that encoded a novel cysteine protease. The sequence of the 2.1 kb clone predicted a 56 kDa protein containing a typical signal sequence, a prosequence and a 24.7 kDa mature protease with 37% identity to falcipain-1, a hemoglobin-degrading cysteine protease of P. falciparum. Northern blot analysis detected a 2.1 kb message in trophozoites. Taken together, we have isolated a novel cysteine protease of P. falciparum, which may play an important role at the late stages of the erythrocytic cycle of the parasite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号