首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 328 毫秒
1.
葡萄遗传转化研究进展   总被引:10,自引:0,他引:10  
本文从目的基因、遗传转化途径、再生系统以及筛选和鉴定四个方面评述了近10年来葡萄遗传转化的研究进展,与其它植物相比,葡萄遗传转化较困难,迄今为止仅获得了较少的转基因植株,葡萄再生频率低和葡萄组织对卡那霉素选择的敏感均是遗传转化因素的关键所在。  相似文献   

2.
葡萄再生系统研究进展   总被引:7,自引:0,他引:7  
综述近年来葡萄再生系统的研究进展及存在问题。葡萄器官发生型再生途径易产生不定芽 ,但嵌合体的比例较高 ,胚状体再生途径诱导胚状体较困难 ,仅有少部分葡萄品种能成功。今后葡萄遗传转化的重点是高效再生途径的研究。  相似文献   

3.
农杆菌介导的葡萄转化研究进展   总被引:1,自引:0,他引:1  
综述近年来以农杆菌介导法将外源基因转化葡萄的研究进展及基因型、再生途径、农杆菌菌株、菌液浓度、侵染时间、共培养及抗生素等对葡萄遗传转化的影响,并指出当前存在的问题及研究趋势。  相似文献   

4.
葡萄基因工程研究进展   总被引:6,自引:0,他引:6  
植物基因工程技术为培育优良葡萄品种开辟了一条全新而有效的途径。葡萄基因转化受体系统的建立主要包括器官发生途径和胚状体发生途径,建立良好的受体系统是葡萄基因转化成功的关键,遗传转化途径主要有根癌农杆菌介导的遗传转化和基因枪法。概述了迄今国内外葡萄基因工程的研究进展,着重对葡萄基因转化受体系统的建立、转化的方法、转化植株的筛选和检测、影响葡萄基因转化的主要因素等进行了综述,并展望了葡萄基因工程的发展前景。  相似文献   

5.
人参的遗传改良*   总被引:1,自引:0,他引:1  
遗传改良是人参育种的重要手段之一,而遗传转化和再生体系的建立是开展人参遗传改良工作的前提和基础。人参植株再生可以通过器官发生和体细胞胚发生,间接体细胞胚发生是人参植株再生的主要途径,从不同外植体,不同碳源,体细胞胚优化和无激素再生等方面进行了综述。在人参遗传转化方面,发根农杆菌和根癌农杆菌对人参的遗传转化均已成功,人参皂苷合成途径中的关键酶基因和抗除草剂基因也已陆续导入人参,得到了遗传改良的转化人参。发根培养系统可用于大量生产人参皂苷,讨论了rolC基因对人参发根诱导的作用,发根植株再生能力及生物反应器培养,最后指出了人参基因工程研究中存在的问题。  相似文献   

6.
高效遗传转化技术体系的建立对植物功能基因组学研究和作物新品种的培育均具有促进作用,目前,再生效率低下是限制许多植物高效遗传转化体系建立的主要技术屏障之一。随着对植物分生组织和体细胞胚形成过程研究的深入,鉴定到了一些关键调控基因,统称为发育调节因子。发育调节因子应用于植物遗传转化后,可以有效改善植物分生组织诱导和再生能力,为提高遗传转化效率提供了重要机遇。综述了7类发育调节因子在提高植物遗传转化效率中的研究进展,重点介绍了其中3类在促进玉米遗传转化中的应用,最后展望了建立植物高效遗传转化体系的发展方向。  相似文献   

7.
辣椒离体再生及遗传转化研究进展   总被引:2,自引:0,他引:2  
离体再生技术与遗传转化技术促进了传统农作物育种技术的发展并定向改良了辣椒性状.但由于辣椒较其它茄科植物再生困难,导致在利用DNA重组技术改良辣椒对生物和非生物胁迫抗性时增加了难度.近年来,辣椒器官再生、花药培养、胚培养和细胞培养等离体培养技术取得了巨大的成果.就辣椒离体培养及相关生物技术进行了综述,并指出了存在的问题并对其应用前景进行展望.  相似文献   

8.
甘蓝型油菜的各种外植体经遗传转化、组织培养后可以再生为转基因植株,但再生频率会因外植体的基因型、年龄、培养基添加成分和农杆菌共培养的不同而发生变化。转化方法包括农杆菌介导转化、基因枪法、花粉介导法、PEG介导法等,其应用前景非常广阔。甘蓝型油菜的遗传转化在其品质改良、抗逆性提高、雄性不育系的获得和一些特殊性状方面都取得了很大成就。简要介绍甘蓝型油菜的再生体系建立、转化方法及所取得的部分成就。  相似文献   

9.
草坪草生物技术研究进展   总被引:3,自引:0,他引:3  
概述了草坪草植株再生体系和遗传转化体系建立的方法和进展.通过愈伤组织培养、悬浮细胞培养和原生质体培养方法对草坪草的一些种已建立较为完善的植株再生体系.在建立再生体系的基础上,利用原生质体融合、农杆菌介导、基因枪和碳化硅纤维介导等转基因方法在一些草坪草种上建立了遗传转化体系并获得了有一定价值的转基因植株.最后,对草坪草转基因存在的问题和前景作了讨论.  相似文献   

10.
影响农杆菌介导的杨树遗传转化技术的因素   总被引:1,自引:0,他引:1  
杨属树种是农杆菌的天然寄主之一,但木本植物一般再生能力较差,如何提高杨树的遗传转化频率就成为目前研究者最为关心的问题。本文结合农杆菌介导杨树遗传转化研究的最新进展和我们的实际工作对农杆菌的遗传转化原理、转移方法、以及影响农杆菌转化的因素进行了全新而深入的论述,并针对如何提高木本植物的转化频率,提出了一些改良的措施和方法。  相似文献   

11.

Background  

Efficient transformation and regeneration methods are a priority for successful application of genetic engineering to vegetative propagated plants such as grape. The current methods for the production of transgenic grape plants are based on Agrobacterium-mediated transformation followed by regeneration from embryogenic callus. However, grape embryogenic calli are laborious to establish and the phenotype of the regenerated plants can be altered.  相似文献   

12.
Progress in grapevine breeding   总被引:8,自引:0,他引:8  
Summary The European, or bunch grape, Vitis vinifera, is widely grown because of its high fruit quality and its capacity to grow in a wide range of climatic conditions. However, they are susceptible to fungal diseases and insect pests, especially when grown in cool, wet climates. The aim of a number of grapevine breeding programs throughout the world is to develop new varieties resistant to diseases using complex hybrids between European and American species of Vitis. Within these breeding programs it is essential to maintain heterozygosity and desirable hybrids are multiplied by asexual propagation. New approaches to grapevine improvement include the use of protoplast fusion to overcome sexual barriers, however the routine regeneration of plantlets from protoplasts and calluses is difficult. In vitro rescue of ovules from varieties with stenospermocarpic seeds shows considerable promise for breeding new seedless grapes. Eventually the use of plant transformation techniques to insert specific pieces of DNA coding for desirable genetic characteristics will provide opportunities for equipping well known grape cultivars with new characteristics.  相似文献   

13.
Agrobacterium tumefaciens technology is the battle horse for tomato genetic transformation. However, tomato varieties with low regeneration capacity are very difficult to transform. In the past, tomato transformation through Agrobacterium infection was focused on varieties capable of high regeneration yield, while successful transformation of low regenerable cultivars has not been reported. The genotype response to tissue culture conditions is believed to drive the frequency of regeneration of transgenic plant, whereas the capacity for cell proliferation could determine the transformation efficiency through this technology. The Campbell-28 cultivar is an example of constraints arising from a high morphogenetic potential with low conversion compared to normal plants. In the present work the roles that contribute to improved transgenic plant recovery from this recalcitrant variety were explored for factors like Agrobacterium concentration and antibiotics for bacterial removal and transformant selection. Analysis of the efficiency from independent transformation experiments revealed a more than twofold increase of transformant regeneration after selection on ammonium glufosinate compared to kanamycin selection, showing a transformation efficiency of 21.5%.  相似文献   

14.
A protocol for preserving grape embryogenic cultures indefinitely has been defined, and through recurrent cycles of secondary embryogenesis, Vitis rupestris Scheele cultures are still regenerating after 10 years. The morphogenic competence of a sample of 1,204 somatic embryos with such a long history has been evaluated. Within a 15-month-long culture, secondary embryogenesis regeneration reached an average efficiency of 23%, proving that morphogenic competence is retained during prolonged culture times. While the culture maintenance described here was one of the crucial aspects of our genetic transformation protocol, several V. rupestris plants with various exogenous genes have been regenerated during these last 10 years.  相似文献   

15.
Ticarcillin/potassium clavulanate is a very effective combination of antibiotics to eliminate Agrobacterium tumefaciens during tomato transformation. It shows no toxicity to tomato tissues at a concentration of 150 mg/l and significantly promotes callus formation and shoot regeneration. The transformation frequency was raised more than 40% in comparison to cefotaxime. Cefotaxime itself did not inhibit callus growth in culture medium, but it clearly decreased shoot differentiation. Together with kanamycin, cefotaxime shows a strong negative effect on callus growth, shoot regeneration and transformation efficiency. Unlike the widely used carbenicillin and cefotaxime, ticarcillin/potassium clavulanate is light stable and resistant to inactivation by β-lactamase. Furthermore, ticarcillin/potassium clavulanate is more economical than carbenicillin and cefotaxime. In conclusion, ticarcillin/potassium clavulanate is a very good alternative to eliminate Agrobacterium tumefaciens in plant transformation and has the potential to be widely used for plants which are sensitive to carbenicillin and cefotaxime. Received: 22 September 1997 / Revision received: 7 November 1997 / Accepted: 15 December 1997  相似文献   

16.
Castor and Jatropha belong to the Euphorbiaceae family. This review highlights the role of biotechnological tools in the genetic improvement of castor and jatropha. Castor is monotypic and breeding programmes have mostly relied on the variability available in the primary gene pool. The major constraints limiting profitable cultivation are: vulnerability to insect pests and diseases, and the press cake is toxic which restrict its use as cattle feed. Conventional breeding techniques have limited scope in improvement of resistance to biotic stresses and in quality improvement owing to low genetic variability for these traits. Genetic diversity was assessed using protein based markers while use of molecular markers is at infancy. In vitro studies in castor have been successful in shoot proliferation from meristematic explants, but not callus-mediated regeneration. Genetic transformation experiments have been initiated for development of insect resistant and ricin-free transgenics with very low transformation frequency. In tropical and subtropical countries jatropha is viewed as a potential biofuel crop. The limitations in available germplasm include; lack of knowledge of the genetic base, poor yields, low genetic diversity and vulnerability to a wide array of insects and diseases. Great scope exists for genetic improvement through conventional methods, induced mutations, interspecific hybridization and genetic transformation. Reliable and highly efficient tissue culture protocols for direct and callus-mediated shoot regeneration and somatic embryogenesis are established for jatropha which indicates potential for widening the genetic base through biotechnological tools. Assessment of genetic diversity using molecular markers disclosed low interaccessional variability in local Jatropha curcas germplasm. The current status and future prospects of in vitro regeneration, genetic transformation and the role of molecular tools in the genetic enhancement of the two-oilseed crops are discussed.  相似文献   

17.
Insertion mutant collections are powerful tools for genetic studies in plants. Although large-scale insertional mutagenesis using T-DNA is not feasible in legumes, the Tnt1 tobacco retrotransposon can be used as a very efficient mutagen in the Medicago truncatula R108 genotype. In this article, we show that Tnt1 can also be exploited to create insertional mutants via transformation and/or regeneration in the reference cultivar Jemalong. Tnt1 insertional mutagenesis in Jemalong following Agrobacterium tumefaciens-mediated transformation was found to be very efficient, with an average of greater than 15 insertions/line. In contrast, regeneration using low-copy transgenic starter lines resulted in a highly variable rate of new Tnt1 insertions. With the goal of increasing the number of additional Tnt1 insertions during regeneration of starter lines, we have compared the insertion frequencies for a number of different regeneration protocols. In addition, we have been able to show that sucrose-mediated osmotic shock preceding regeneration significantly increases the transposition frequency. Under optimal conditions, 95% of the regenerated Jemalong plants possess new insertions.  相似文献   

18.
A good culture system provides considerable quantities of highly regenerable target tissues. Embryogenic callus cultures are ideal for micro-projectile-mediated transformation, because regenerable cells are not very stable. Effective exploitation of genetic transformation requires good regeneration systems. We selected three sugarcane genotypes for the establishment and optimization of good in vitro regeneration systems, viz., S-2003-us-359, S-2006-sp-30, and S-2003-us-165. Three callus induction media were investigated. These media were composed of Murashige and Skoog (MS) medium salt plus 1, 2, and 3 mg/L 2,4-dichlorophenoxyacetic acid (2,4-D). Medium with 3 mg/L 2,4-D gave the greatest mass of embryogenic calli. The calli produced on the three callus induction media were transferred to 18 types of regeneration media (RM1-RM18). They varied with respect to plant growth regulators and sucrose levels but the basal medium was MS. Two levels of sucrose (30 and 40 g/L), three levels of 2,4-D (0.1, 0.25, 0.5 mg/L) and three levels of 6-benzylaminopurine (0, 0.25 and 0.5 mg/L) were studied in the regeneration media. The effects of callus age on regeneration were evaluated by transferring the calli to regeneration media after 15, 21, 28, and 35 days of culture. The 21-day-old callus of the genotype S-2003-us-359 on RM3 yielded the largest number of plants and was selected as the best for transformation. Six RAPD DNA primers were used to check genetic stability; this medium did not affect the sugarcane genomes.  相似文献   

19.
When harvested grape clusters were stored at 40°C, the decrement of acidity in grape juice was recognized. The decrement was caused by transformation of malic acid to lactic acid. It is advised to keep the grapes at 40°C as a storing temperature because of drying efficiency, sterile effect on wild microbes and preservation of biological activity of grape clusters. As the period of storage 4 days for Kôshû and 3 days for Merlot were most suitable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号