首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 298 毫秒
1.
Any change in a plant that occurs following herbivory or environmental factors is an induced response. These changes include phytochemical induction, increases in physical defenses, emission of volatiles that attract predators and parasitoids of herbivores, and reduction in plant nutritional quality for herbivores, which is termed induced resistance. Induced resistance has been demonstrated ubiquitously in plants. It is one of our goals to review what is known about the induced resistance to herbivorous insects in cotton, including three resistance secondary metabolites (terpenoid, tannin, and flavonoids) that are contained at any significant levels of resistance to herbivorous insects in cotton cultivates. In many cases, the quantities or quality of secondary metabolites in plant are changed after attacked by insects. This review focuses on induced plant resistance as quantitative or qualitative enhancement of defense mechanism against insect pests, especially on the abiotic-elicitors-induced resistance in cotton plants. The abiotic-elicitor of cupric chloride, an exogenous inorganic compound, may induce the secondary metabolites accumulation and is referred to as a copperinducible elicitor (CIE). Finally, we discuss how copperinducible elicitor may be used in the Integrated Pest Management (IPM) system for cotton resistance control.  相似文献   

2.
硅对植物抗虫性的影响及其机制   总被引:4,自引:0,他引:4  
硅不是植物必需营养元素,但硅在提高植物对一系列非生物和生物胁迫的抗性方面都具有重要作用。综述了硅对植物抗虫性的影响及其机制。在多数植物中,增施硅肥可增强其抗虫性;所增强的抗性与硅肥种类和施用方式之间存在关系。植物组织中沉积的硅可增加其硬度和耐磨度,降低植物可消化性,从而增强植物组成性防御,包括延缓昆虫生长发育、降低繁殖力、减轻植物受害程度;植物体内的硅含量以及硅沉积的位点和排列方式影响组成性防御作用的强度。此外,硅可以调节植物诱导性防御,包括直接防御和间接防御,直接防御涉及增加有毒物质含量、产生局部过敏反应或系统获得抗性、产生有毒化合物和防御蛋白,从而延缓昆虫发育;间接防御主要通过释放挥发性化合物吸引植食性昆虫的捕食性和寄生性天敌而导致植食性昆虫种群下降。  相似文献   

3.
Small marine herbivores that live on the plants they consume often selectively eat seaweeds that are chemically defended from fishes. Their feeding is unaffected or stimulated by the plant metabolites that deter fishes, and these small herbivores dramatically reduce their susceptibility to predation by associating with host plants that are noxious to fishes. Ecological similarities between these small marine herbivores and numerous terrestrial insects suggest that herbivorous insects also may have evolved a preference for toxic plants because this diminishes their losses to predators, parasites and pathogens. Although marine and terrestrial plants and herbivores evolved in strikingly different environments, the ease of experimentation in some marine systems makes them ideal for addressing certain questions of fundamental importance to both terrestrial and marine workers.  相似文献   

4.
Cotton plants (genus Gossypium) are grown on more than 30 million hectares worldwide and are a major source of fiber. The plants possess a wide range of direct and indirect resistance mechanisms against herbivorous arthropods. Direct resistance mechanisms include morphological traits such as trichomes and a range of secondary metabolites. The best known insecticidal compounds are the terpenoid gossypol and its precursors and related compounds. Indirect resistance mechanisms include herbivore-induced volatiles and extrafloral nectaries that allow plants to attract and sustain natural enemy populations. We discuss these resistance traits of cotton, their induction by herbivores, and their impact on herbivores and natural enemies. In addition, we discuss the use of genetically engineered cotton plants to control pest Lepidoptera and the influence of environmental factors on the resistance traits.  相似文献   

5.
虫害诱导植物间接防御反应的激发与信号转导途径   总被引:2,自引:0,他引:2  
植物通过产生和释放挥发性物质增加植食性昆虫的天敌对其寄主或猎物的定位,减少植食性昆虫对植物的取食,从而达到间接防御的目的。植物对植食性昆虫所做出间接防御反应激发因子和信号转导途径的研究,对应用虫害诱导植物挥发物引诱害虫天敌,并进一步从植物、植食性昆虫及其天敌间三级营养关系,研究动植物协同进化机理和病虫害防治具有深远意义。本文根据国内外最新研究进展,对虫害诱导植物间接防御反应的激发因子,昆虫取食信号的转导途径及对植物间接防御相关基因的激活等方面进行了系统地综述。  相似文献   

6.
Plants may respond both to feeding and oviposition by herbivorous insects. While responses of plants to feeding damage by herbivores have been studied intensively during the past decades, only a few, but growing number of studies consider the reactions of plants towards egg deposition by herbivorous insects. Plants showing defensive response to oviposition by herbivores do not `wait' until being damaged by feeding, but may instead react towards one of the initial steps of herbivore attack, the egg deposition. Direct plant defensive responses to feeding act directly against the feeding stages of the herbivores. However, a plant may also show direct defensive responses to egg deposition by (a) formation of neoplasms, (b) formation of necrotic tissue (= hypersensitive response), and (c) production of oviposition deterrents. All these plant reactions have directly negative effects on the eggs, hatching larvae, or on the ovipositing females. Indirect plant defensive responses to feeding result in the emission of volatiles (= synomones) that attract predators or parasitoids of the feeding stages. A few recent studies have shown that plants are able to emit volatiles also in response to egg deposition and that these volatiles attract egg parasitoids. Studies on the mechanisms of induction of synomones by egg deposition show several parallels to the mechanisms of induction of plant responses by feeding damage. When considering induced plant defence against herbivores from an evolutionary point of view, the question arises whether herbivores evolved the ability to circumvent or even to exploit the plant's defensive responses. The reactions of herbivores to oviposition induced plant responses are compared with their reactions to feeding induced plant responses.  相似文献   

7.
8.
In their defence against pathogens, herbivorous insects, and mites, plants employ many induced responses. One of these responses is the induced emission of volatiles upon herbivory. These volatiles can guide predators or parasitoids to their herbivorous prey, and thus benefit both plant and carnivore. This use of carnivores by plants is termed indirect defence and has been reported for many plant species, including elm, pine, maize, Lima bean, cotton, cucumber, tobacco, tomato, cabbage, and Arabidopsis thaliana. Herbivory activates an intricate signalling web and finally results in defence responses such as increased production of volatiles. Although several components of this signalling web are known (for example the plant hormones jasmonic acid, salicylic acid, and ethylene), our understanding of how these components interact and how other components are involved is still limited. Here we review the knowledge on elicitation and signal transduction of herbivory-induced volatile production. Additionally, we discuss how use of the model plant Arabidopsis thaliana can enhance our understanding of signal transduction in indirect defence and how cross-talk and trade-offs with signal transduction in direct defence against herbivores and pathogens influences plant responses.  相似文献   

9.
Glucosinolates are sulphur‐containing secondary metabolites characteristic of Brassicaceous plants. Glucosinolate breakdown products, which include isothiocyanates, are released following tissue damage when hydrolytic enzymes act on them. The isothiocyanates have toxic effects on generalist herbivores when they attempt to feed on oilseed rape, Brassica napus, and also function as repellents. However, specialist herbivores such as Brevicoryne brassicae aphids, flea beetles, Psylliodes chrysocephala and the Lepidopteran pest, Pieris rapae, are adapted to the presence of glucosinolates and thrive on plants containing them. They may do this by avoiding tissue damage to prevent the formation of isothiocyanates or by metabolising or tolerating glucosinolates. For many specialist herbivores, the isothiocyanates function as attractants and glucosinolates can even be sequestered for defence against predatory insects. Thus, these herbivores have evolved resistance to host‐plant secondary metabolites and this type of evolutionary history may have given some insects an enhanced ability to adapt to xenobiotics. In an agricultural context, this may make pests better able to evolve resistance to artificially applied pesticides. The effect of increased glucosinolate content in making oilseed rape cultivars more susceptible to specialist pests was highlighted in a seminal article in the Annals of Applied Biology in 1995. This review of the literature considers developments in this area since then.  相似文献   

10.
Background Plants are hotbeds for parasites such as arthropod herbivores, which acquire nutrients and energy from their hosts in order to grow and reproduce. Hence plants are selected to evolve resistance, which in turn selects for herbivores that can cope with this resistance. To preserve their fitness when attacked by herbivores, plants can employ complex strategies that include reallocation of resources and the production of defensive metabolites and structures. Plant defences can be either prefabricated or be produced only upon attack. Those that are ready-made are referred to as constitutive defences. Some constitutive defences are operational at any time while others require activation. Defences produced only when herbivores are present are referred to as induced defences. These can be established via de novo biosynthesis of defensive substances or via modifications of prefabricated substances and consequently these are active only when needed. Inducibility of defence may serve to save energy and to prevent self-intoxication but also implies that there is a delay in these defences becoming operational. Induced defences can be characterized by alterations in plant morphology and molecular chemistry and are associated with a decrease in herbivore performance. These alterations are set in motion by signals generated by herbivores. Finally, a subset of induced metabolites are released into the air as volatiles and function as a beacon for foraging natural enemies searching for prey, and this is referred to as induced indirect defence.Scope The objective of this review is to evaluate (1) which strategies plants have evolved to cope with herbivores and (2) which traits herbivores have evolved that enable them to counter these defences. The primary focus is on the induction and suppression of plant defences and the review outlines how the palette of traits that determine induction/suppression of, and resistance/susceptibility of herbivores to, plant defences can give rise to exploitative competition and facilitation within ecological communities “inhabiting” a plant.Conclusions Herbivores have evolved diverse strategies, which are not mutually exclusive, to decrease the negative effects of plant defences in order to maximize the conversion of plant material into offspring. Numerous adaptations have been found in herbivores, enabling them to dismantle or bypass defensive barriers, to avoid tissues with relatively high levels of defensive chemicals or to metabolize these chemicals once ingested. In addition, some herbivores interfere with the onset or completion of induced plant defences, resulting in the plant’s resistance being partly or fully suppressed. The ability to suppress induced plant defences appears to occur across plant parasites from different kingdoms, including herbivorous arthropods, and there is remarkable diversity in suppression mechanisms. Suppression may strongly affect the structure of the food web, because the ability to suppress the activation of defences of a communal host may facilitate competitors, whereas the ability of a herbivore to cope with activated plant defences will not. Further characterization of the mechanisms and traits that give rise to suppression of plant defences will enable us to determine their role in shaping direct and indirect interactions in food webs and the extent to which these determine the coexistence and persistence of species.  相似文献   

11.
Plants respond to herbivory through various morphological, biochemicals, and molecular mechanisms to counter/offset the effects of herbivore attack. The biochemical mechanisms of defense against the herbivores are wide-ranging, highly dynamic, and are mediated both by direct and indirect defenses. The defensive compounds are either produced constitutively or in response to plant damage, and affect feeding, growth, and survival of herbivores. In addition, plants also release volatile organic compounds that attract the natural enemies of the herbivores. These strategies either act independently or in conjunction with each other. However, our understanding of these defensive mechanisms is still limited. Induced resistance could be exploited as an important tool for the pest management to minimize the amounts of insecticides used for pest control. Host plant resistance to insects, particularly, induced resistance, can also be manipulated with the use of chemical elicitors of secondary metabolites, which confer resistance to insects. By understanding the mechanisms of induced resistance, we can predict the herbivores that are likely to be affected by induced responses. The elicitors of induced responses can be sprayed on crop plants to build up the natural defense system against damage caused by herbivores. The induced responses can also be engineered genetically, so that the defensive compounds are constitutively produced in plants against are challenged by the herbivory. Induced resistance can be exploited for developing crop cultivars, which readily produce the inducible response upon mild infestation, and can act as one of components of integrated pest management for sustainable crop production.  相似文献   

12.
植食性昆虫与寄主植物关系的本质是化学。植食性昆虫搜寻寄主的嗅觉媒介是植物气味即化学信息物质。在介绍植物气味构成及其扩散模型基础上,阐述了植物气味在地上植食性昆虫成虫、幼虫和地下植食性昆虫搜寻寄主过程中的嗅觉导向作用,并指出了今后相关研究需要注意的问题。从植物与环境因子的关系来看,植物气味包括构成性气味和诱发性气味两类,这两类气味的概念既相联系而又不同。构成性气味组分及构成因植物分类地位等而不同。诱发性气味组分因植食性昆虫取食、植物病原微生物、机械致伤等因子的胁迫而变化,这种变化性状随植物属和/或种、植株生长发育阶段、胁迫因子性质及其作用方式而不同。无论是哪种植物气味,其释放均具有节律性。气味扩散过程比较复杂,扩散状态可用数学模型表征。对于地上植食性昆虫成虫,植物气味对其寄主搜寻行为具有导向特异性,重点分析了这种特异性形成的两个假说;鳞翅目昆虫幼虫,能够利用植物化学信息物质趋向寄主植物或回避非寄主植物;地下植食性昆虫搜寻寄主,既与寄主植物地下组织释放或分泌的次级代谢物有关,又与一些初级代谢物有关。初级代谢物中的CO2,起着“搜寻触发器”作用。有助于增强人们对昆虫与植...  相似文献   

13.
The roles of plant and insect cuticular lipids in insect and plant interactions are reviewed. Emphasis is given to the influence that the host plant and the surface lipids of the host plant have upon insect herbivores and the predators and parasitoids of these herbivores. Variations in cuticular lipids of herbivorous insects are dependent upon the host plant, and these variations may affect the behavior of predators and parasitoids. The cuticular lipids of species which interact on multiple trophic levels are compared. Similarities were found between the hydrocarbons of herbivorous insects, their host plants, and their predators or parasitoids.  相似文献   

14.
陈澄宇  康志娇  史雪岩  高希武 《昆虫学报》2015,58(10):1126-1130
植物次生物质(plant secondary metabolites)对昆虫的取食行为、生长发育及繁殖可以产生不利影响,甚至对昆虫可以产生毒杀作用。为了应对植物次生物质的不利影响,昆虫通过对植物次生物质忌避取食、解毒代谢等多种机制,而对寄主植物产生适应性。其中,昆虫的解毒代谢酶包括昆虫细胞色素P450酶系(P450s)及谷胱甘肽硫转移酶(GSTs)等,在昆虫对植物次生物质的解毒代谢及对寄主植物的适应性中发挥了重要作用。昆虫的解毒酶系统不仅可以代谢植物次生物质,还可能代谢化学杀虫剂,因而昆虫对寄主植物的适应性与其对杀虫剂的耐药性甚至抗药性密切相关。昆虫细胞色素P450s和GSTs等代谢解毒酶活性及相关基因的表达可以被植物次生物质影响,这不仅使昆虫对寄主植物的防御产生了适应性,还影响了昆虫对杀虫剂的解毒代谢,因而改变昆虫的耐药性或抗药性。掌握昆虫对植物次生物质的代谢适应机制及其在昆虫抗药性中的作用,对于明确昆虫的抗药性机制具有重要的参考意义。本文综述了植物次生物质对昆虫的影响、昆虫对寄主植物次生物质的代谢机制、昆虫对植物次生物质的代谢适应性对昆虫耐药性及抗药性的影响等方面的研究进展。  相似文献   

15.

Main conclusion

Coleoptera, the largest and the most diverse Insecta order, is characterized by multiple adaptations to plant feeding. Insect-associated microorganisms can be important mediators and modulators of interactions between insects and plants. Interactions between plants and insects are highly complex and involve multiple factors. There are various defense mechanisms initiated by plants upon attack by herbivorous insects, including the development of morphological structures and the synthesis of toxic secondary metabolites and volatiles. In turn, herbivores have adapted to feeding on plants and further sophisticated adaptations to overcome plant responses may continue to evolve. Herbivorous insects may detoxify toxic phytocompounds, sequester poisonous plant factors, and alter their own overall gene expression pattern. Moreover, insects are associated with microbes, which not only considerably affect insects, but can also modify plant defense responses to the benefit of their host. Plants are also frequently associated with endophytes, which may act as bioinsecticides. Therefore, it is very important to consider the factors influencing the interaction between plants and insects. Herbivorous insects cause considerable damage to global crop production. Coleoptera is the largest and the most diverse order in the class Insecta. In this review, various aspects of the interactions among insects, microbes, and plants are described with a focus on coleopteran species, their bacterial symbionts, and their plant hosts to demonstrate that many factors contribute to the success of coleopteran herbivory.
  相似文献   

16.
The variability in the genetic variance–covariance (G‐matrix) in plant resistance and its role in the evolution of invasive plants have been long overlooked. We conducted an additional analysis of the data of a reciprocal transplant experiment with tall goldenrod, Solidago altissima, in multiple garden sites within its native range (USA) and introduced range (Japan). We explored the differences in G‐matrix of resistance to two types of foliar herbivores: (a) a lace bug that is native to the USA and recently introduced to Japan, (b) and other herbivorous insects in response to plant origins and environments. A negative genetic covariance was found between plant resistances to lace bugs and other herbivorous insects, in all combinations of garden locations and plant origins except for US plants planted in US gardens. The G‐matrix of the resistance indices did not differ between US and Japanese plants either in US or Japanese gardens, while it differed between US and Japanese gardens in both US and Japanese plants. Our results suggested that the G‐matrix of the plant resistance may have changed in response to novel environmental differences including herbivore communities and/or other biotic and abiotic factors in the introduced range. This may have revealed a hidden trade‐off between resistances, masked by the environmental factors in the origin range. These results suggest that the stability of the genetic covariance during invasion, and the environmentally triggered variability in the G‐matrices of plant resistance may help to protect the plant against multiple herbivore species without changing its genetic architecture and that this may lead to a rapid adaptation of resistance in exotic plants. Local environments of the plant also have a critical effect on plant resistance and should be considered in order to understand trait evolution in exotic plants.  相似文献   

17.
Predators and plant resistance may act together to control herbivorous arthropod populations or antagonistically, which would reduce the control of pest populations. In a field experiment we enhanced predation by adding simulated leaf domatia to plants. Leaf domatia are small structures that often harbor predaceous arthropods that are potentially beneficial to the plant. We also manipulated host plant quality by inducing resistance with controlled, early season exposure of seedlings to spider mite herbivory.
Our manipulations had profound consequences for the natural community of arthropods that inhabited the plants. Leaf domatia had a direct positive effect on abundances of two species of bugs and one species of thrips, all of which are largely predators of herbivores. On leaves with domatia, each of the predators was found inside the domatia two to three times more often than outside the domatia. Eggs of predaceous bugs inside leaf domatia were protected from parasitism compared to eggs outside the domatia. The positive effects of leaf domatia on predator abundances were associated with reduced populations of herbivorous spider mites, aphids, and whiteflies. Plants with experimental leaf domatia showed significantly enhanced reproductive performance.
Induced resistance also affected the community of arthropods. Of the abundant predators, all of which also fed on the plant, only minute pirate bugs were negatively affected by induced resistance. Populations of herbivorous spider mites and whiteflies were directly and negatively affected by induction. In contrast, aphid populations were higher on plants with induced resistance compared to uninduced plants. Effects of induced resistance and domatia were additive for each of the predators and for aphids. However, spider mite and whitefly populations were not suppressed further by employing both induced resistance and domatia compared to each strategy alone. Our manipulations suggest that plant defense strategies can have positive effects on some species and negative effects on others. Negative effects of “resistance traits” on predators and positive effects on some herbivores may reduce the benefits of constitutive expression of resistance traits and may favor inducible defense strategies. Multiple plant strategies such as inducible resistance and morphological traits that aid in the recruitment of predators of herbivores may act together to maximize plant defenses, although they may also be redundant and not act additively.  相似文献   

18.
Jasmonate-mediated induced plant resistance affects a community of herbivores   总被引:17,自引:0,他引:17  
1. The negative effect of induced plant resistance on the preference and performance of herbivores is a well‐documented ecological phenomenon that is thought to be important for both plants and herbivores. This study links the well‐developed mechanistic understanding of the biochemistry of induced plant resistance in the tomato system with an examination of how these mechanisms affect the community of herbivores in the field. 2. Several proteins that are induced in tomato foliage following herbivore damage have been linked causally to reductions in herbivore performance under laboratory conditions. Application of jasmonic acid, a natural elicitor of these defensive proteins, to tomato foliage stimulates induced responses to herbivory. 3. Jasmonic acid was sprayed on plants in three doses to generate plants with varying levels of induced responses, which were measured as increases in the activities of proteinase inhibitors and polyphenol oxidase. 4. Field experiments conducted over 3 years indicated that induction of these defensive proteins is associated with decreases in the abundance of all four naturally abundant herbivores, including insects in three feeding guilds, caterpillars, flea beetles, aphids, and thrips. Induced resistance killed early instars of noctuid caterpillars. Adult flea beetles strongly preferred control plants over induced plants, and this effect on host plant preference probably contributed to differences in the natural abundance of flea beetles. 5. The general nature of the effects observed in this study suggests that induced resistance will suppress many members of the herbivore community. By linking plant biochemistry, insect preference, performance, and abundance, tools can be developed to manipulate plant resistance sensibly and to predict its outcome under field conditions.  相似文献   

19.
茉莉酸对棉花单宁含量和抗虫相关酶活性的诱导效应   总被引:4,自引:0,他引:4  
杨世勇  王蒙蒙  谢建春 《生态学报》2013,33(5):1615-1625
以植物生长调节物茉莉酸(Jasmonic acid,JA)为诱导子,以常规棉为研究对象,探讨了外源茉莉酸对棉花幼苗单宁和蛋白酶抑制素以及其它抗虫相关酶活性诱导的浓度依赖性和持久性,讨论了棉花抗虫相关物质的抗虫效果.结果表明,0.01、0.1和1.0 mmol/L茉莉酸都能在2周内诱导棉花单宁和胰蛋白酶抑制素(Proteinase inhibitors,PIs)含量增加,诱导多酚氧化酶(Polyphenol oxidase,PPO)、苯丙氨酸解氨酶(Phenylalanine ammonia-lyase,PAL)、过氧化物酶(Peroxidase,POD)和过氧化氢酶(Catalase,CAT)活性升高.对3种浓度茉莉酸的诱导效应进行分析表明,0.1 mmol/L茉莉酸对于诱导PIs、PPO、POD和CAT最有效,0.1和1.0 mmol/L茉莉酸对于诱导棉花单宁和苯丙氨酸解氨酶等效,二者的诱导效应均高于0.01 mmol/L.对茉莉酸诱导抗性的持久性进行分析表明,最佳诱导效应发生的时间各不相同:POD活性在JA处理后第1天最高,随后呈下降趋势,PIs和单宁含量分别在JA处理后第7天和第14天达最大值;JA处理后第1天和第7天的PPO活性无明显差异,但明显高于第14天;JA处理后第7天和第14天的PAL活性无明显差异,但明显高于第1天;JA处理后第1、7和14天棉花叶片的CAT活性均无明显差异.以上结果表明,茉莉酸可通过增加棉叶单宁和PIs含量、提高棉叶PAL、PPO、POD和CAT活性等增强棉花幼苗的抗虫性.  相似文献   

20.
1. Plant responses to herbivore attack may have community‐wide effects on the composition of the plant‐associated insect community. Thereby, plant responses to an early‐season herbivore may have profound consequences for the amount and type of future attack. 2. Here we studied the effect of early‐season herbivory by caterpillars of Pieris rapae on the composition of the insect herbivore community on domesticated Brassica oleracea plants. We compared the effect of herbivory on two cultivars that differ in the degree of susceptibility to herbivores to analyse whether induced plant responses supersede differences caused by constitutive resistance. 3. Early‐season herbivory affected the herbivore community, having contrasting effects on different herbivore species, while these effects were similar on the two cultivars. Generalist insect herbivores avoided plants that had been induced, whereas these plants were colonised preferentially by specialist herbivores belonging to both leaf‐chewing and sap‐sucking guilds. 4. Our results show that community‐wide effects of early‐season herbivory may prevail over effects of constitutive plant resistance. Induced responses triggered by prior herbivory may lead to an increase in susceptibility to the dominant specialists in the herbivorous insect community. The outcome of the balance between contrasting responses of herbivorous community members to induced plants therefore determines whether induced plant responses result in enhanced plant resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号