首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Li W  Green WR 《Journal of virology》2006,80(12):5777-5789
LP-BM5, a retroviral isolate, induces a disease featuring retrovirus-induced immunodeficiency, designated murine AIDS (MAIDS). Many of the features of the LP-BM5-induced syndrome are shared with human immunodeficiency virus-induced disease. For example, CD4 T cells are critical to the development of MAIDS. In vivo depletion of CD4 T cells before LP-BM5 infection rendered genetically susceptible B6 mice MAIDS resistant. Similarly, MAIDS did not develop in B6.nude mice. However, if reconstituted with CD4 T cells, B6.nude mice develop full-blown MAIDS. Our laboratory has shown that the interaction of B and CD4 T cells that is central to MAIDS pathogenesis requires ligation of CD154 on CD4 T cells with CD40 on B cells. However, it is not clear which additional characteristics of the phenotypically and functionally heterogeneous CD4 T-cell compartment are required. Here, in vivo adoptive transfer experiments using B6.nude recipients are employed to compare the pathogenic abilities of CD4 T-cell subsets defined on the basis of cell surface phenotypic or functional differences. Th1 and Th2 CD4 T cells equally supported MAIDS induction. The rare Thy1.2(-) CD4 subset that expands upon LP-BM5 infection was not necessary for MAIDS. Interestingly, CD45RB(low) CD4 T cells supported significantly less disease than CD45RB(high) CD4 T cells. Because the decreased MAIDS pathogenesis could not be attributed to inhibition by CD45RB(low) CD25(+) natural T-regulatory cells, an intrinsic property of the CD45RB(low) cells appeared responsible. Similarly, there was no evidence that natural T-regulatory cells played a role in LP-BM5-induced pathogenesis in the context of the intact CD4 T-cell population.  相似文献   

2.
Genetically susceptible C57BL/6 (B6) mice that are infected with the LP-BM5 isolate of murine retroviruses develop profound splenomegaly, lymphadenopathy, hypergammaglobulinemia, terminal B-cell lymphomas, and an immunodeficiency state bearing many similarities to the pathologies seen in AIDS. Because of these similarities, this syndrome has been called murine AIDS (MAIDS). We have previously shown that CD154 (CD40 ligand)-CD40 molecular interactions are required both for the initiation and progression of MAIDS. Thus, in vivo anti-CD154 monoclonal antibody (MAb) treatment inhibited MAIDS symptoms in LP-BM5-infected wild-type mice when either a short course of anti-CD154 MAb treatment was started on the day of infection or a course was initiated 3 to 4 weeks after LP-BM5 administration, after disease was established. Here, we further characterize this required CD154-CD40 interaction by a series of adoptive transfer experiments designed to elucidate which cellular subsets must express CD154 or CD40 for LP-BM5 to induce MAIDS. Specifically with regard to CD154 expression, MAIDS-insusceptible B6 nude mice reconstituted with highly purified CD4+ T cells from wild-type, but not from CD154 knockout, B6 donors displayed clear MAIDS after LP-BM5 infection. In contrast, nude B6 recipients that received CD8+ T cells from wild-type B6 donors did not develop MAIDS after LP-BM5 infection. B6 CD40 knockout mice, which are also relatively resistant to LP-BM5-induced MAIDS, became susceptible to LP-BM5-induced disease after reconstitution with highly purified wild-type B cells but not after receiving purified wild-type dendritic cells (DC) or a combined CD40+ population composed of DC and macrophages obtained from B6 SCID mouse donors. Based on these and other experiments, we thus conclude that the cellular basis for the requirement for CD154-CD40 interactions for MAIDS induction and progression can be accounted for by CD154 expression on CD4+ T cells and CD40 expression on B cells.  相似文献   

3.
The mixture of retroviruses termed LP-BM5 murine leukemia virus (MuLV) contains a replication-defective genome (BM5def), the crucial element for induction of murine AIDS (MAIDS), as well as helper B-tropic ecotropic and mink cell focus-forming MuLV. Among Fv-1b mouse strains, C57BL mice are sensitive to infection by these viruses and to development of MAIDS, but A/J mice are highly resistant to all viral components and to induction of disease. Inasmuch as previous genetic studies indicated a major role in susceptibility for the H-2D locus within the MHC, the effect of CD8+ T cells in A/J resistance to MAIDS was analyzed by depletion of this subset using mAb. A/J mice treated with anti-CD8 mAb beginning soon after inoculation with LP-BM5 MuLV developed disease within 5 wk after virus inoculation. Histopathologic and flow cytometry alteration of tissues and cells from the mAb-treated mice were identical to those seen in virus-infected MAIDS-sensitive strains, and assays for MuLV demonstrated high-level expression of ecotropic MuLV and integration of BM5def. Parallel studies of A/J mice treated with anti-CD4 mAb after infection revealed enhanced expression of ecotropic MuLV but no integration of BM5def, and no signs of MAIDS were detected. These observations indicate that CD8+ T cells are critical in the resistance of A/J mice to LP-BM5 MuLV replication and development of disease and suggest that CD4+ T cells play a role in regulation of ecotropic virus replication.  相似文献   

4.
Strong CD4 T cell activation and proliferation are seen in susceptible mice infected with the murine retroviral inoculum, LP-BM5, which produces an immunodeficiency syndrome called murine AIDS (MAIDS). We developed a short term adoptive transfer model of MAIDS to examine the requirements for the CD4 T cell response. Naive CD4 T cells from uninfected donors responded quickly after adoptive transfer into MAIDS-infected hosts, becoming activated and proliferating within several days. Using blocking mAbs to costimulatory ligands and CD4 T cells deficient in expression of their receptors, we found that the CD4 T cell response requires CD28:B7.1/B7.2 interactions, but not CTLA4 or CD40-CD40 ligand interactions. Naive CD4 T cells did not respond in H-2M-deficient mice with MAIDS, suggesting that disease requires recognition of self peptide-MHC complexes. The self MHC-dependent division and accumulation of large numbers of CD4 T cells suggest that MAIDS involves a disruption of the balance of homeostatic signals. Supporting this hypothesis, CD4 T cells from mice with MAIDS failed to regulate the homeostatic division of naive CD4 T cells in a cotransfer model. Thus, a combination of up-regulation of costimulatory ligands and disruption of homeostatic control may be responsible for CD4 lymphoproliferation in MAIDS.  相似文献   

5.
Green KA  Cook WJ  Sharpe AH  Green WR 《Journal of virology》2002,76(24):13106-13110
C57BL/6 (B6) mice infected with LP-BM5 retroviruses develop disease, including an immunodeficiency similar to AIDS. This disease, murine AIDS (MAIDS), is inhibited by in vivo anti-CD154 monoclonal antibody treatment. The similar levels of insusceptibility of CD40(-/-) and CD154(-/-) B6 mice indicate that CD154/CD40 molecular interactions are required for MAIDS. CD4(+) T and B cells, respectively, provide the CD154 and CD40 expression needed for MAIDS induction. Here, the required CD154/CD40 interaction is shown to be independent of CD80 and CD86 expression: CD80/CD86(-/-) B6 mice develop MAIDS after LP-BM5 infection.  相似文献   

6.
Li W  Green WR 《Journal of virology》2011,85(24):13342-13353
LP-BM5 retrovirus induces a complex disease featuring an acquired immunodeficiency syndrome termed murine AIDS (MAIDS) in susceptible strains of mice, such as C57BL/6 (B6). CD4 T helper effector cells are required for MAIDS induction and progression of viral pathogenesis. CD8 T cells are not needed for viral pathogenesis, but rather, are essential for protection from disease in resistant strains, such as BALB/c. We have discovered an immunodominant cytolytic T lymphocyte (CTL) epitope encoded in a previously unrecognized LP-BM5 retroviral alternative (+1 nucleotide [nt]) gag translational open reading frame. CTLs specific for this cryptic gag epitope are the basis of protection from LP-BM5-induced immunodeficiency in BALB/c mice, and the inability of B6 mice to mount an anti-gag CTL response appears critical to the initiation and progression of LP-BM5-induced MAIDS. However, uninfected B6 mice primed by LP-BM5-induced tumors can generate CTL responses to an LP-BM5 retrovirus infection-associated epitope(s) that is especially prevalent on such MAIDS tumor cells, indicating the potential to mount a protective CD8 T-cell response. Here, we utilized this LP-BM5 retrovirus-induced disease system to test whether modulation of normal immune down-regulatory mechanisms can alter retroviral pathogenesis. Thus, following in vivo depletion of CD4 T regulatory (Treg) cells and/or selective interruption of PD-1 negative signaling in the CD8 T-cell compartment, retroviral pathogenesis was significantly decreased, with the combined treatment of CD4 Treg cell depletion and PD-1 blockade working in a synergistic fashion to substantially reduce the induction of MAIDS.  相似文献   

7.
After infection with LP-BM5 murine leukemia viruses, susceptible strains of mice develop a severe and progressive immunodeficiency disease, termed murine AIDS (MAIDS), features of which include markedly impaired T cell response to mitogens or specific Ag stimulation and decreased production of IL-2. Since an elevation of intracellular calcium concentration resulting from binding of Ag to the TCR is associated with IL-2 production, T cells from mice either uninfected or infected with LP-BM5 murine leukemia viruses were examined by a calcium mobilization assay. Both CD4+ and CD8+ T cells from infected mice manifested impaired calcium mobilization responses upon in vitro stimulation with anti-CD3 mAb or Con A. The abnormalities appeared early after virus inoculation and showed no difference in time course between subsets of T cells. Frequencies of prestimulation calcium-positive cells among both CD4+ and CD8+ cells in mice with MAIDS were significantly higher than those for uninfected mice. These abnormalities were associated with presence of the MAIDS-inducing defective virus genome, but were not induced by infection of mice genetically resistant to development of MAIDS or with nonpathogenic helper murine leukemia virus, a virus component that induces high spontaneous proliferation of T cells, even in MAIDS-resistant mice.  相似文献   

8.
CD95 (Fas)/CD95 ligand (CD95 L)-mediated apoptosis is thought to be involved in the delayed progression of murine AIDS (MAIDS) induced by LP-BM5 murine leukemia virus (MuLV). We show evidence of apoptosis in lymphocytes of Peyer's patches (PP) at the early stage of MAIDS. Both T and B cells in PP expressed CD95 at the early stage of MAIDS and decreased in number thereafter. The decrease in T cells was not evident in CD95-mutated lpr mice with MAIDS, suggesting that CD95/CD95 L interaction is involved in the apoptosis of T cells in PP during the course of MAIDS. On the other hand, the number of B cells was also decreased in PP of lpr mice with MAIDS. The proliferative ability of B cells in PP of MAIDS mice in response to immunoglobulin M cross-linking or lipopolysaccharide was severely impaired, while the B cells normally proliferated in response to anti-CD40 monoclonal antibody. These findings imply that aberrantly activated B cells in PP undergo apoptosis independently of the CD95/CD95 L system during the course of infection with MAIDS virus.  相似文献   

9.
Infection of genetically susceptible mice with the LP-BM5 mixture of murine leukemia viruses including an etiologic defective virus (BM5def) causes an immunodeficiency syndrome called murine AIDS (MAIDS). The disease is characterized by interactions between B cells and CD4(+) T cells resulting in polyclonal activation of both cell types. It is known that BM5def is expressed at highest levels in B cells and that B cells serve as viral APC. The CD19-CD21 complex and CD22 on the surface of B cells play critical roles as regulators of B cell responses to a variety of stimuli, influencing cell activation, differentiation, and survival. CD19 integrates positive signals induced by B cell receptor ligation by interacting with the protooncogene Vav, which leads to subsequent tyrosine phosphorylation of this molecule. In contrast, CD22 negatively regulates Vav phosphorylation. To analyze the role of CD19, CD21, Vav, and CD22 in MAIDS, we infected mice deficient in CD19, CD21 (CR2), Vav-1, or CD22 with LP-BM5 murine leukemia viruses. Infected CR2(-/-) mice developed MAIDS with a time course and severity indistinguishable from that of wild-type mice. In contrast, CD19 as well as Vav-1 deficiency restricted viral replication and suppressed the development of typical signs of MAIDS including splenomegaly, lymphadenopathy, and hypergammaglobulinemia. Finally, CD22 deficiency was found to accelerate MAIDS development. These results provide novel insights into the B cell signaling pathways required for normal induction and progression of MAIDS.  相似文献   

10.
In murine allogeneic bone marrow transplantation recipients, treatment of the hosts with a nonmyeloablative regimen, including depleting anti-CD4 and anti-CD8 mAbs, allows establishment of long-term mixed chimerism and donor-specific tolerance. However, in the xenogeneic rat-to-mouse combination, additional anti-Thy1.2 and anti-NK1.1 mAbs are required. We have now attempted to identify the xenoresistant mouse cell populations that are targeted by anti-NK1.1 and anti-Thy1.2 mAbs. C57BL/6 (B6) wild-type, B6 TCRbeta(-/-), and B6 TCRdelta(-/-) mice received anti-CD4 and anti-CD8 mAbs, followed by 3 Gy of whole body irradiation, 7 Gy of thymic irradiation, and transplantation of T cell-depleted rat bone marrow cells. Anti-NK1.1 and anti-Thy1.2 mAbs were additionally administered to some groups. Increased rat chimerism was observed in TCRdelta(-/-) mice treated with anti-CD4, anti-CD8, and anti-NK1.1 mAbs compared with similarly treated TCRbeta(-/-) mice. In TCRbeta(-/-) mice, but not in TCR delta(-/-) mice, donor chimerism was increased by treatment with anti-Thy1.2 mAb, indicating that CD4(-)CD8(-)TCRgammadelta(+)Thy1. 2(+)NK1.1(-) cells (gammadelta T cells) are involved in the rejection of rat marrow. In addition, chimerism was enhanced in both TCRbeta(-/-) and TCRdelta(-/-) mice treated with anti-CD4, anti-CD8, and anti-Thy1.2 mAbs by the addition of anti-NK1.1 mAb to the conditioning regimen. Donor-specific skin graft prolongation was enhanced by anti-Thy1.2 and anti-NK1.1 mAbs in TCRdelta(-/-) mice. Therefore, in addition to CD4 and CD8 T cells, gammadelta T cells and NK cells play a role in resisting engraftment of rat marrow and the induction of xenograft tolerance in mice.  相似文献   

11.
Infection of genetically susceptible C57BL/6 mice with the LP-BM5 isolate of murine retroviruses cause profound splenomegaly, hypergammaglobulinemia, lymphadenopathy, and an immunodeficiency syndrome which includes the development of terminal B-cell lymphomas. Because many of these and the other manifestations of LP-BM5 virus-induced disease are similar to those seen in AIDS, this syndrome has been named murine AIDS, or MAIDS. Previous reports have shown that the onset of MAIDS depends on the presence of both CD4+ T cells and B cells and have suggested that CD4+ T-cell-B-cell interactions are important to disease pathogenesis. Here, we assessed the possibility that interactions between CD40 and its ligand on activated CD4+ T cells, CD40 ligand/gp39, are involved in the development of MAIDS. To test this hypothesis, LP-BM5-infected B6 mice were treated in vivo with anti-gp39 monoclonal antibody. As a result, MAIDS-associated splenomegaly, hypergammaglobulinemia, germinal center formation, and the loss of in vitro responsiveness to the T- and B-cell mitogens concanavalin A and lipopolysaccharide were inhibited. Anti-gp39 monoclonal antibody-treated LP-BM5-infected mice were also able to mount essentially normal alloantigen-specific cytolytic T-lymphocyte responses. These results support the possibility that molecular interactions between CD40 and gp39 are critical to the development of MAIDS.  相似文献   

12.
We investigated the effect of CD137 costimulatory blockade in the development of murine acute and chronic graft-vs-host diseases (GVHD). The administration of anti-CD137 ligand (anti-CD137L) mAb at the time of GVHD induction ameliorated the lethality of acute GVHD, but enhanced IgE and anti-dsDNA IgG autoantibody production in chronic GVHD. The anti-CD137L mAb treatment efficiently inhibited donor CD8(+) T cell expansion and IFN-gamma expression by CD8(+) T cells in both GVHD models and CD8(+) T cell-mediated cytotoxicity against host-alloantigen in acute GVHD. However, a clear inhibition of donor CD4(+) T cell expansion and activation has not been observed. On the contrary, in chronic GVHD, the number of CD4(+) T cells producing IL-4 was enhanced by anti-CD137L mAb treatment. This suggests that the reduction of CD8(+) T cells producing IFN-gamma promotes Th2 cell differentiation and may result in exacerbation of chronic GVHD. Our results highlight the effective inactivation of CD8(+) T cells and the lesser effect on CD4(+) T cell inactivation by CD137 blockade. Intervention of the CD137 costimulatory pathway may be beneficial for some selected diseases in which CD8(+) T cells are major effector or pathogenic cells. Otherwise, a combinatorial approach will be required for intervention of CD4(+) T cell function.  相似文献   

13.
Glycyrrhizin (GL), a plant extract, has been evaluated for its inhibitory effect on HIV replicationin vitro and for its improvement of clinical symptoms in HIV-infected patients. In this study, we used GL in a murine AIDS model (MAIDS) to evaluate these effects. C57BL/6 mice were inoculated with LP-BM5 murine leukemia virus to cause MAIDS. Treatment with GL supplemented with glycine and cysteine (Stronger Neo-Minophagen C, SNMC) was then begun on day 0 or 4 wks after virus inoculation. SNMC was administered three times a week for up to 19 wks. Immunological abnormalities were monitored with respect to the surface phenotype identified by two-color staining for CD3 and IL-2 receptorβ-chain. All mice infected with the virus alone developed MAIDS and died by 14 wks after infection. The immunopathogenesis was estimated to be an abnormal expansion of intermediate CD3 cells (i.e., extrathymic T cells) as well as other types of lymphocytes. SNMC did not change the total mortality rate. However, some mice that began the treatment on day 0 or 4 wks after infection survived 3 wks longer. Splenomegaly and lymphadenopathy in such mice were suppressed. These mice showed normal phenotypic features and normal responses to Con A. These results suggest that SNMC is effective in some MAIDS mice in preventing the progression of disease. When lymphocytes isolated from the liver, spleen and lymph nodes of diseased mice were culturedin vitro, they showed a spontaneous proliferation. Interestingly, such proliferation was inhibited by addition of liver lymphocytes, but not splenic lymphocytes, obtained from normal or SNMC-treated mice. Since liver lymphocytes contains intermediate CD3 cells with autoreactivity, they may possibly suppress the progression of disease.  相似文献   

14.
In the DBA/2 --> unirradiated (C57BL/6 x DBA/2)F(1) model of chronic graft-vs-host disease (cGVHD), donor CD4(+) T cells play a critical role in breaking host B cell tolerance, while donor CD8(+) T cells are rapidly removed and the remaining cells fall into anergy. Previously we have demonstrated that in vivo ligation of GITR (glucocorticoid-induced TNF receptor-related gene) can activate donor CD8(+) T cells, subsequently converting the disease pattern from cGVHD to an acute form. In this study, we investigated the effect of an agonistic mAb against CD40 on cGVHD. Treatment of anti-CD40 mAb inhibited the production of anti-DNA IgG1 autoantibody and the development of glomerulonephritis. The inhibition of cGVHD occurred because anti-CD40 mAb prevented donor CD8(+) T cell anergy such that subsequently activated donor CD8(+) T cells deleted host CD4(+) T cells and host B cells involved in autoantibody production. Additionally, functionally activated donor CD8(+) T cells induced full engraftment of donor hematopoietic cells and exhibited an increased graft-vs-leukemia effect. However, induction of acute GVHD by donor CD8(+) T cells seemed to be not so apparent. Further CTL analysis indicated that there were lower levels of donor CTL activity against host cells in mice that received anti-CD40 mAb, compared with mice that received anti-GITR mAb. Taken together, our results suggest that a different intensity of donor CTL activity is required for removal of host hematopoietic cells, including leukemia vs induction of acute GVHD.  相似文献   

15.
We developed a culture system for the rapid generation of CD4+ T cells that have both helper and killer functions. CD4+ T cells isolated from human PBL did not proliferate or develop significant cytotoxicity when treated with rIL-2 because of the lack of p75 IL-2R expression. However, culture of isolated CD4+ T cells with immobilized anti-CD3 mAb plus rIL-2 resulted in a marked proliferation (500-fold increase in 14 days) of CD4+ T cells. The proliferating CD4+ T cells produced IL-2 (92 U/ml) and showed strong cytotoxicity against OKT3 hybridoma cells and Daudi, K562, and U937 tumor cells in an anti-CD3 mAb-dependent manner. The CD4+ T cells contained significant amounts of cytolytic granule-related proteins such as serine esterase and perforin. Activated CD4+ helper/killer cells can be generated from both healthy donors and tumor patients and can be propagated in vitro for 14 to 35 days by biweekly restimulation with immobilized anti-CD3 mAb plus rIL-2. This culture yielded about 20,000-fold increase in cell number after a 21-day culture. Bispecific antibody containing anti-CD3 and anti-glioma Fab components enhanced the cytotoxicity of activated CD4+ helper/killer cells against IMR32 glioma cells. Moreover, the activated CD4+ helper/killer cells showed both helper and antitumor activity in vivo and prevented growth of anti-CD3 hybridoma cells in nude mice whether or not IL-2 was administered. These results indicate that anti-CD3 mAb plus IL-2-activated CD4+ helper/killer cells may provide an effective strategy for adoptive tumor immunotherapy of cancer.  相似文献   

16.
We reported previously that CD4+ T cells and B cells in mice with retrovirus-induced murine acquired immunodeficiency syndrome (MAIDS) caused by LP-BM5 murine leukemia virus (MuLV) mixtures increased the expression of Fas antigen (Fas) during progression of the disease. However, the contribution of the Fas/Fas ligand (Fas L) system to the pathogenesis of MAIDS remained unknown. Here, we examined the susceptibility of C57BL/6 (B6) lpr/lpr mice, which has been reported to be defective for the expression of Fas, to MAIDS. We found that the Thy 1.2? CD4 T cells and IgK dull B220+ cells, which are characteristic of MAIDS, increased after the inoculation of LP-BM5 MuLV in B6 lpr/lpr mice. B22+ TCR αβ T cells, unique to lupus prone mice, also increased in the B6 lpr/lpr mice after infection. CD4+ B220+ TCR αβ T cells increased profoundly among the B220+ TCR αβ T cells from LP-BM5 MuLV-infected B6 lpr/lpr mice, while the B220+ TCR αβ T cells observed in non-infected B6 lpr/lpr mice were largely of the CD4? CD8? phenotype. A DNA PCR analysis of the LP-BM5 MuLV-infected B6 lpr/lpr mice revealed the genome integration of defective LP-BM5 virus, further confirming that MAIDS is inducible to B6 lpr/lpr mice. LP-BM5 MuLV-infected lpr/lpr mice died within 3 months, while MAIDS-infected B6 +/+ mice usually died within 5 to 6 months, and B6 lpr/lpr mice not infected with LP-BM5 MuLV lived more than 6 months. Taken together, these results suggest that MAIDS is inducible independently with functional Fas expression and the possibility of accelerated progression of murine AIDS and lpr-associated autoimmune disease in B6 lpr/lpr mice infected with LP-BM5 MuLV.  相似文献   

17.
Exocrinopathy and pancreatitis-like injury were developed in C57BL/6 (B6) mice infected with LP-BM5 murine leukemia virus, which is known to induce murine acquired immunodeficiency syndrome (MAIDS). The role of chemokines, especially CXCL10/interferon (IFN)-gamma-inducible protein 10 (IP-10), a chemokine to attract CXCR3+ T helper 1-type CD4+ T cells, has not been investigated thoroughly in the pathogenesis of pancreatitis. B6 mice were inoculated intraperitoneally with LP-BM5 and then injected every week with either an antibody against IP-10 or a control antibody. Eight weeks after infection, we analyzed the effect of IP-10 neutralization. Anti-IP-10 antibody treatment did not change the generalized lymphadenopathy and hepatosplenomegaly of mice with MAIDS. The treatment significantly reduced the number of IP-10- and CXCR3-positive cells in the mesenteric lymph nodes (mLNs) but not the phenotypes and gross numbers of cells. In contrast, IP-10 neutralization reduced the number of mononuclear cells infiltrating into the pancreas. Anti-IP-10 antibody treatment did not change the numbers of IFN-gamma+ and IL10+ cells in the mLN but significantly reduced their numbers, especially IFN-gamma+ and IL-10+ CD4+ T cells and IFN-gamma+ Mac-1+ cells, in the pancreas. IP-10 neutralization ameliorated the pancreatic lesions of mice with MAIDS probably by blocking the cellular infiltration of CD4+ T cells and IFN-gamma+ Mac-1+ cells into the pancreas at least at 8 wk after infection, suggesting that IP-10 and these cells might play a key role in the development of chronic autoimmune pancreatitis.  相似文献   

18.
Complement plays an important role in the immunotherapeutic action of the anti-CD20 mAb rituximab, and therefore we investigated whether complement might be the limiting factor in rituximab therapy. Our in vitro studies indicate that at high cell densities, binding of rituximab to human CD20(+) cells leads to loss of complement activity and consumption of component C2. Infusion of rituximab in chronic lymphocytic leukemia patients also depletes complement; sera of treated patients have reduced capacity to C3b opsonize and kill CD20(+) cells unless supplemented with normal serum or component C2. Initiation of rituximab infusion in chronic lymphocytic leukemia patients leads to rapid clearance of CD20(+) cells. However, substantial numbers of B cells, with significantly reduced levels of CD20, return to the bloodstream immediately after rituximab infusion. In addition, a mAb specific for the Fc region of rituximab does not bind to these recirculating cells, suggesting that the rituximab-opsonized cells were temporarily sequestered by the mononuclear phagocytic system, and then released back into the circulation after the rituximab-CD20 complexes were removed by phagocytic cells. Western blots provide additional evidence for this escape mechanism that appears to occur as a consequence of CD20 loss. Treatment paradigms to prevent this escape, such as use of engineered or alternative anti-CD20 mAbs, may allow for more effective immunotherapy of chronic lymphocytic leukemia.  相似文献   

19.
Cytolytic T lymphocytes (CTL) can be raised against C57BL/6 B-cell lymphomas from mice with LP-BM5 murine leukemia virus-induced AIDS (MAIDS). Adoptive transfer of polyclonal anti-MAIDS tumor CTL or two CTL clones specific for the B6-1710 MAIDS lymphoma caused preservation of major histocompatibility complex-restricted and allogeneic CTL responses, which may be interpreted as indices of protection from LP-BM5 murine leukemia virus-induced immunodeficiency.  相似文献   

20.
The interplay of CD4(+) and CD8(+) T cells targeting autoantigens is responsible for the progression of a number of autoimmune diseases, including type 1 diabetes mellitus (T1D). Understanding the molecular mechanisms that regulate T cell activation is crucial for designing effective therapies for autoimmune diseases. We probed a panel of Abs with T cell-modulating activity and identified a mAb specific for the H chain of CD98 (CD98hc) that was able to suppress T cell proliferation. The anti-CD98hc mAb also inhibited Ag-specific proliferation and the acquisition of effector function by CD4(+) and CD8(+) T cells in vitro and in vivo. Injection of the anti-CD98hc mAb completely prevented the onset of cyclophosphamide-induced diabetes in NOD mice. Treatment of diabetic NOD mice with anti-CD98hc reversed the diabetic state to normal levels, coincident with decreased proliferation of CD4(+) T cells. Furthermore, treatment of diabetic NOD mice with CD98hc small interfering RNA resolved T1D. These data indicate that strategies targeting CD98hc might have clinical application for treating T1D and other T cell-mediated autoimmune diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号