首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To investigate the roles of gammadelta T cells in Salmonella infection, we examined the resolution of an intraperitoneal infection with avirulent Salmonella choleraesuis 31N-1 in mice lacking T-cell-receptor (TCR) alphabeta T cells by disruption of the TCRbeta chain gene (TCRbeta(-/-)). The bacteria in TCRbeta(-/-) mice decreased with kinetics similar to that seen in control mice (TCRbeta(+/+)) after infection. The number of natural killer (NK) cells in the peritoneal cavity increased on day 6 after infection and thereafter decreased in both TCRbeta(-/-) and TCRbeta(+/+) mice, whereas the number of gammadelta T cells, in place of alphabeta T cells, increased remarkably in the peritoneal cavity of TCRbeta(-/-) mice on day 6 after infection. The NK cells from Salmonella-infected TCRbeta(-/-) mice produced interferon-gamma (IFN-gamma) but neither interleukin-4 (IL-4) nor IL-13 in response to immobilized anti-NK1.1 monoclonal antibody (mAb). The gammadelta T cells produced IFN-gamma but neither IL-4 nor IL-13 in response to heat-killed Salmonella, whereas both IFN-gamma and IL-13 but no IL-4 was produced by the gammadelta T cells stimulated with immobilized anti-TCRgammadelta mAb. In vivo administration of anti-NK1.1 mAb inhibited the reduction of Salmonella, whereas anti-TCRgammadelta mAb treatment did not affect the bacterial growth in TCRbeta(-/-) mice after Salmonella infection. However, neutralization of endogenous IL-13 with anti-IL-13 mAb enhanced the bacterial clearance in TCRbeta(-/-) mice after infection. These results suggest that NK1.1(+) cells serve mainly to protect against avirulent Salmonella infection in the absence of alphabeta T cells, whereas gammadelta T cells may play dichotomous roles in Salmonella infection through IFN-gamma and IL-13 in TCRbeta(-/-) mice.  相似文献   

2.
To investigate the consequences of the simultaneous expression in progenitor cells of a TCRgammadelta and a pre-TCR on alphabeta/gammadelta lineage commitment, we have forced expression of functionally rearranged TCRbeta, TCRgamma, and TCRdelta chains by means of transgenes. Mice transgenic for the three TCR chains contain numbers of gammadelta thymocytes comparable to those of mice transgenic for both TCRgamma and TCRdelta chains, and numbers of alphabeta thymocytes similar to those found in mice solely transgenic for a rearranged TCRbeta chain gene. gammadelta T cells from the triple transgenic mice express the transgenic TCRbeta chain, but do not express a TCRalpha chain, and, by a number of phenotypic and molecular parameters, appear to be bona fide gammadelta thymocytes. Our results reveal a remarkable degree of independence in the generation of alphabeta and gammadelta lineage cells from progenitor cells that, in theory, could simultaneously express a TCRgammadelta and a pre-TCR.  相似文献   

3.
Development of the alphabeta and gammadelta T cell lineages is dependent upon the rearrangement and expression of the TCRalpha and beta or gamma and delta genes, respectively. Although the timing and sequence of rearrangements of the TCRalpha and TCRbeta loci in adult murine thymic precursors has been characterized, no similar information is available for the TCRgamma and TCRdelta loci. In this report, we show that approximately half of the total TCRdelta alleles initiate rearrangements at the CD44highCD25+ stage, whereas the TCRbeta locus is mainly in germline configuration. In the subsequent CD44lowCD25+ stage, most TCRdelta alleles are fully recombined, whereas TCRbeta rearrangements are only complete on 10-30% of alleles. These results indicate that rearrangement at the TCRdelta locus can precede that of TCRbeta locus recombination by one developmental stage. In addition, we find a bias toward productive rearrangements of both TCRdelta and TCRgamma genes among CD44highCD25+ thymocytes, suggesting that functional gammadelta TCR complexes can be formed before the rearrangement of TCRbeta. These data support a model of lineage commitment in which sequential TCR gene rearrangements may influence alphabeta/gammadelta lineage decisions. Further, because TCR gene rearrangements are generally limited to T lineage cells, these analyses provide molecular evidence that irreversible commitment to the T lineage can occur as early as the CD44highCD25+ stage of development.  相似文献   

4.
West Nile (WN) virus causes fatal meningoencephalitis in laboratory mice, and gammadelta T cells are involved in the protective immune response against viral challenge. We have now examined whether gammadelta T cells contribute to the development of adaptive immune responses that help control WN virus infection. Approximately 15% of TCRdelta(-/-) mice survived primary infection with WN virus compared with 80-85% of the wild-type mice. These mice were more susceptible to secondary challenge with WN virus than the wild-type mice that survived primary challenge with the virus. Depletion of gammadelta T cells in wild-type mice that survived the primary infection, however, does not affect host susceptibility during secondary challenge with WN virus. Furthermore, gammadelta T cells do not influence the development of Ab responses during primary and at the early stages of secondary infection with WN virus. Adoptive transfer of CD8(+) T cells from wild-type mice that survived primary infection with WN virus to naive mice afforded partial protection from lethal infection. In contrast, transfer of CD8(+) T cells from TCRdelta(-/-) mice that survived primary challenge with WN virus failed to alter infection in naive mice. This difference in survival correlated with the numeric and functional reduction of CD8 memory T cells in these mice. These data demonstrate that gammadelta T cells directly link innate and adaptive immunity during WN virus infection.  相似文献   

5.
Allogeneic bone marrow chimerism induces robust systemic tolerance to donor alloantigens. Achievement of chimerism requires avoidance of marrow rejection by pre-existing CD4 and CD8 T cells, either of which can reject fully MHC-mismatched marrow. Both barriers are overcome with a minimal regimen involving anti-CD154 and low dose (3 Gy) total body irradiation, allowing achievement of mixed chimerism and tolerance in mice. CD4 cells are required to prevent marrow rejection by CD8 cells via a novel pathway, wherein recipient CD4 cells interacting with recipient class II MHC tolerize directly alloreactive CD8 cells. We demonstrate a critical role for recipient MHC class II, B cells, and dendritic cells in a pathway culminating in deletional tolerance of peripheral alloreactive CD8 cells.  相似文献   

6.
NK1.1+ T cells in the mouse thymus and bone marrow were compared because some marrow NK1.1+ T cells have been reported to be extrathymically derived. Almost all NK1.1+ T cells in the thymus were depleted in the CD1-/-, beta2m-/-, and Jalpha281-/- mice as compared with wild-type mice. CD8+NK1.1+ T cells were not clearly detected, even in the wild-type mice. In bone marrow from the wild-type mice, CD8+NK1.1+ T cells were easily detected, about twice as numerous as CD4+NK1.1+ T cells, and were similar in number to CD4-CD8-NK1.1+ T cells. All three marrow NK1.1+ T cell subsets were reduced about 4-fold in CD1-/- mice. No reduction was observed in CD8+NK1.1+ T cells in the bone marrow of Jalpha281-/- mice, but marrow CD8+NK1.1+ T cells were markedly depleted in beta2m-/- mice. All NK1.1+ T cell subsets in the marrow of wild-type mice produced high levels of IFN-gamma, IL-4, and IL-10. Although the numbers of marrow CD4-CD8-NK1.1+ T cells in beta2m-/- and Jalpha281-/- mice were similar to those in wild-type mice, these cells had a Th1-like pattern (high IFN-gamma, and low IL-4 and IL-10). In conclusion, the large majority of NK1.1+ T cells in the bone marrow are CD1 dependent. Marrow NK1.1+ T cells include CD8+, Valpha14-Jalpha281-, and beta2m-independent subsets that are not clearly detected in the thymus.  相似文献   

7.
In a recently developed mouse model for neurocysticercosis, the immune response was characterized by a massive influx of gammadelta T cells and a type 1 pathway of cytokine expression. To understand the role of gammadelta T cells during this infection, the cellular and cytokine response was analyzed in mice that lack gammadelta T cells (TCRdelta(-/-)). In TCRdelta(-/-) mice, Mesocestoides corti metacestodes preferentially invaded the extraparenchymal areas of the brain. Furthermore, parasites were able to escape from the brain and establish a systemic infection with liver and peritoneal involvement. Immunopathological studies indicated that TCRdelta(-/-) mice develop little inflammatory response and less neurological symptomatology. Significantly reduced numbers of T cells, macrophages, dendritic cells, and mast cells were present in the brain. The cytokine response in the brain of TCRdelta(-/-) mice appears to be a mixed type1/type 2 response with low levels of IL-2, IL-4, IL-10, IL-12, IL-13, IL-15, and IFN-gamma. To further investigate the immunological significance of this cell population, gammadelta T cells were adoptively transferred into intracranially infected TCRdelta(-/-) mice. gammadelta T cells were specifically recruited into the CNS in response to this parasitic infection, and they were able to target the infected brain within 12 h after transfer. These results suggest that gammadelta T cells are key players in the immune response elicited during this CNS infection and direct a type 1 response in wild-type mice upon infection.  相似文献   

8.
West Nile (WN) virus causes fatal meningoencephalitis in laboratory mice, thereby partially mimicking human disease. Using this model, we have demonstrated that mice deficient in gammadelta T cells are more susceptible to WN virus infection. TCRdelta(-/-) mice have elevated viral loads and greater dissemination of the pathogen to the CNS. In wild-type mice, gammadelta T cells expanded significantly during WN virus infection, produced IFN-gamma in ex vivo assays, and enhanced perforin expression by splenic T cells. Adoptive transfer of gammadelta T cells to TCRdelta(-/-) mice reduced the susceptibility of these mice to WN virus, and this effect was primarily due to IFN-gamma-producing gammadelta T cells. These data demonstrate a distinct role for gammadelta T cells in the control of and prevention of mortality from murine WN virus infection.  相似文献   

9.
Programmed death receptor 1 (PD-1) is expressed on thymocytes in addition to activated lymphocyte cells. Its ligation is thought to negatively regulate T cell activation, and PD-1(-/-) mice develop autoimmunity. To study the role of PD-1 on the development and function of a monoclonal CD8(+) T cell population, 2C TCR-transgenic/recombination-activating gene 2(-/-)/PD-1(-/-) mice were generated. Unexpectedly, approximately 30% of peripheral T cells in these mice were CD4/CD8 double negative (DN). Although the DN cells were not activated by Ag-expressing APCs, they functioned normally in response to anti-CD3/anti-CD28. These cells had a naive surface phenotype and lacked expression of NK1.1, B220, and gammadelta TCR; and the majority did not up-regulate CD8alphaalpha expression upon activation, arguing that they are not predominantly diverted gammadelta-lineage cells. The thymus was studied in detail to infer the mechanism of generation of DN peripheral T cells. Total thymus cellularity was reduced in 2C TCR-transgenic/recombination-activating gene 2(-/-)/PD-1(-/-) mice, and a relative increase in DN cells and decrease in double-positive (DP) cells were observed. Increased annexin V(+) cells among the DP population argued for augmented negative selection in PD-1(-/-) mice. In addition, an increased fraction of the DN thymocytes was HSA negative, suggesting that they had undergone positive selection. This possibility was supported by decreased emergence of DN PD-1(-/-) 2C cells in H-2(k) bone marrow chimera recipients. Our results are consistent with a model in which absence of PD-1 leads to greater negative selection of strongly interacting DP cells as well as increased emergence of DN alphabeta peripheral T cells.  相似文献   

10.
Mixed chimerism and donor-specific tolerance are achieved in mice receiving 3 Gy of total body irradiation and anti-CD154 mAb followed by allogeneic bone marrow (BM) transplantation. In this model, recipient CD4 cells are critically important for CD8 tolerance. To evaluate the role of CD4 cells recognizing donor MHC class II directly, we used class II-deficient donor marrow and were not able to achieve chimerism unless recipient CD8 cells were depleted, indicating that directly alloreactive CD4 cells were necessary for CD8 tolerance. To identify the MHC class II(+) donor cells promoting this tolerance, we used donor BM lacking certain cell populations or used positively selected cell populations. Neither donor CD11c(+) dendritic cells, B cells, T cells, nor donor-derived IL-10 were critical for chimerism induction. Purified donor B cells induced early chimerism and donor-specific cell-mediated lympholysis tolerance in both strain combinations tested. In contrast, positively selected CD11b(+) monocytes/myeloid cells did not induce early chimerism in either strain combination. Donor cell preparations containing B cells were able to induce early deletion of donor-reactive TCR-transgenic 2C CD8 T cells, whereas those devoid of B cells had reduced activity. Thus, induction of stable mixed chimerism depends on the expression of MHC class II on the donor marrow, but no requisite donor cell lineage was identified. Donor BM-derived B cells induced early chimerism, donor-specific cell-mediated lympholysis tolerance, and deletion of donor-reactive CD8 T cells, whereas CD11b(+) cells did not. Thus, BM-derived B cells are potent tolerogenic APCs for alloreactive CD8 cells.  相似文献   

11.
In contrast to Ag-specific alphabeta T cells, gammadelta T cells can kill malignantly transformed cells in a manner that does not require the recognition of tumor-specific Ags. Although such observations have contributed to the emerging view that gammadelta T cells provide protective innate immunosurveillance against certain malignancies, particularly those of epithelial origin, they also provide a rationale for developing novel clinical approaches to exploit the innate antitumor properties of gammadelta T cells for the treatment of cancer. Using TRAMP, a transgenic mouse model of prostate cancer, proof-of-concept studies were performed to first establish that gammadelta T cells can indeed provide protective immunosurveillance against spontaneously arising mouse prostate cancer. TRAMP mice, which predictably develop prostate adenocarcinoma, were backcrossed with gammadelta T cell-deficient mice (TCRdelta(-/-) mice) yielding TRAMP x TCRdelta(-/-) mice, a proportion of which developed more extensive disease compared with control TRAMP mice. By extension, these findings were then used as a rationale for developing an adoptive immunotherapy model for treating prostate cancer. Using TRAMP-C2 cells derived from TRAMP mice (C57BL/6 genetic background), disease was first established in otherwise healthy wild-type C57BL/6 mice. In models of localized and disseminated disease, tumor-bearing mice treated i.v. with supraphysiological numbers of syngeneic gammadelta T cells (C57BL/6-derived) developed measurably less disease compared with untreated mice. Disease-bearing mice treated i.v. with gammadelta T cells also displayed superior survival compared with untreated mice. These findings provide a biological rationale for clinical trials designed to adoptively transfer ex vivo expanded autologous gammadelta T cells for the treatment of prostate cancer.  相似文献   

12.
To evaluate the role of the TCR in the alphabeta/gammadelta lineage choice during human thymocyte development, molecular analyses of the TCRbeta locus in gammadelta cells and the TCRgamma and delta loci in alphabeta cells were undertaken. TCRbeta variable gene segments remained largely in germline configuration in gammadelta cells, indicating that commitment to the gammadelta lineage occurred before complete TCRbeta rearrangements in most cases. The few TCRbeta rearrangements detected were primarily out-of-frame, suggesting that productive TCRbeta rearrangements diverted cells away from the gammadelta lineage. In contrast, in alphabeta cells, the TCRgamma locus was almost completely rearranged with a random productivity profile; the TCRdelta locus contained primarily nonproductive rearrangements. Productive gamma rearrangements were, however, depleted compared with preselected cells. Productive TCRgamma and delta rearrangements rarely occurred in the same cell, suggesting that alphabeta cells developed from cells unable to produce a functional gammadelta TCR. Intracellular TCRbeta expression correlated with the up-regulation of CD4 and concomitant down-regulation of CD34, and plateaued at the early double positive stage. Surprisingly, however, some early double positive thymocytes retained gammadelta potential in culture. We present a model for human thymopoiesis which includes gammadelta development as a default pathway, an instructional role for the TCR in the alphabeta/gammadelta lineage choice, and a prolonged developmental window for beta selection and gammadelta lineage commitment. Aspects that differ from the mouse are the status of TCR gene rearrangements at the nonexpressed loci, the timing of beta selection, and maintenance of gammadelta potential through the early double positive stage of development.  相似文献   

13.
14.
We have previously shown that pretransplant donor lymphocyte infusion (DLI) together with transient depletion of CD4(+) T cells could induce permanent rat-to-mouse heart graft survival, whereas depleting CD4(+) T cells alone failed to do so. In this study, we investigated the mechanism leading to long-term xenograft survival. We found that peripheral CD4(+) T cells from DLI/anti-CD4-treated mice could mount rat heart graft rejection after adoptive transfer into B6 CD4(-/-) mice. Infusing donor-Ag-loaded mature dendritic cells (DCs) could break long-term cardiac xenograft survival in DLI/anti-CD4-treated mice. Interestingly, when the number and phenotype of graft-infiltrating cells were compared between anti-CD4- and DLI/anti-CD4-treated groups, we observed a significant increase in both the number and suppressive activity of alphabeta-TCR(+)CD3(+)CD4(-)CD8(-) double negative regulatory T cells and decrease in the numbers of CD4(+) and CD8(+) T cells in the xenografts of DLI/anti-CD4-treated mice. Moreover, there was a significant reduction in MHC class II-high DCs within the xenografts of DLI/anti-CD4-treated recipients. DCs isolated from the xenografts of anti-CD4- but not DLI/anti-CD4-treated recipients could stimulate CD4(+) T cell proliferation. Our data indicate that functional anti-donor T cells are present in the secondary lymphoid organs of the mice that permanently accepted cardiac xenografts. Their failure to reject xenografts is associated with an increase in double negative regulatory T cells as well as a reduction in Ag stimulation by DCs found within grafts. These findings suggest that local regulatory mechanisms need to be taken into account to control anti-xenograft T cell responses.  相似文献   

15.
Using an intrathymic injection assay on B10 Thy-1 congenic mice, it was demonstrated that thymic prelymphoma cells first developed within the thymuses from 4 to 8 days after split-dose irradiation and were detected in more than 63% of the test donor thymuses when examined at 21 and 31 days after irradiation. Moreover, some mice (25%) at 2 mo after split-dose irradiation had already developed thymic lymphomas in their thymuses. To characterize these thymic prelymphoma cells, the thymocytes from B10 Thy-1.1 mice 1 mo after irradiation were stained with anti-CD4 and anti-CD8 mAb and were sorted into four subpopulations. These fractionated cells were injected into the recipient thymuses to examine which subpopulation contained thymic prelymphoma cells. The results indicated that thymic prelymphoma cells existed mainly in CD4- CD8- and CD4- CD8+ thymocyte subpopulations and also in CD4+ CD8+ subpopulation. T cell lymphomas derived from CD4- CD8- prelymphoma cells had mainly CD4- CD8- or CD4- CD8+ phenotypes. T cell lymphomas developed from CD4- CD8+ prelymphoma cells mainly expressed CD4- CD8+ or CD4+ CD8+ phenotype. T cell lymphomas originating from CD4+ CD8+ prelymphoma cells were mainly CD4+ CD8+ but some CD4- CD8+ or CD4+ CD8- cells were also present. These thymic prelymphoma cells were further characterized phenotypically in relation to their expression of the marker defined by the mAb against J11d marker and TL-2 (thymus-leukemia) Ag, which is not expressed on normal thymocytes of B10.Thy-1.2 or B10.Thy-1.1 strain, but appears on the thymocytes of lymphomagenic irradiated mice. The results indicated that the prelymphoma cells existed in J11d+, TL-2+ cells.  相似文献   

16.
Costimulatory blockade can be used to promote allogeneic marrow engraftment and tolerance induction, but on its own is not 100% reliable. We sought to determine whether one or the other of the CD4 or CD8 T cell subsets of the recipient was primarily responsible for resistance to allogeneic marrow engraftment in mice receiving costimulatory blockade, and to use this information to develop a more reliable, minimal conditioning regimen for induction of mixed chimerism and transplantation tolerance. We demonstrate that a single anti-CD40 ligand mAb treatment is sufficient to completely overcome CD4 cell-mediated resistance to allogeneic marrow engraftment and rapidly induce CD4 cell tolerance, but does not reliably overcome CD8 CTL-mediated alloresistance. The data suggest that costimulation, which activates alloreactive CTL, is insufficient to activate alloreactive CD4 cells when the CD40 pathway is blocked. The addition of host CD8 T cell depletion to anti-CD40 ligand treatment reliably allows the induction of mixed chimerism and donor-specific skin graft tolerance in 3 Gy-irradiated mice receiving fully MHC-mismatched bone marrow grafts. Thus, despite the existence of multiple costimulatory pathways and pathways of APC activation, our studies demonstrate an absolute dependence on CD40-mediated events for CD4 cell-mediated rejection of allogeneic marrow. Exposure to donor bone marrow allows rapid tolerization of alloreactive CD4 cells when the CD40 pathway is blocked, leading to permanent marrow engraftment and intrathymic tolerization of T cells that develop subsequently.  相似文献   

17.
We recently reported that NK cells and CD8(+) T cells contribute to the antimetastatic effect in the liver induced by alpha-galactosylceramide (alpha-GalCer). In the present study, we further investigated how CD8(+) T cells contribute to the antimetastatic effect induced by alpha-GalCer. The injection of anti-CD8 Ab into mice 3 days before alpha-GalCer injection (2 days before intrasplenic injection of B16 tumors) did not inhibit IFN-gamma production nor did it reduce the NK activity of liver mononuclear cells after alpha-GalCer stimulation. However, it did cause a reduction in the proliferation of liver mononuclear cells and mouse survival time. Furthermore, although the depletion of NK and NKT cells (by anti-NK1.1 Ab) 2 days after alpha-GalCer injection no longer decreased the survival rate of B16 tumor-injected mice, the depletion of CD8(+) T cells did. CD122(+)CD8(+) T cells in the liver increased after alpha-GalCer injection, and antitumor cytotoxicity of CD8(+) T cells in the liver gradually increased until day 6. These CD8(+) T cells exhibited an antitumor cytotoxicity toward not only B16 cells, but also EL-4 cells, and their cytotoxicity significantly decreased by the depletion of CD122(+)CD8(+) T cells. The critical, but bystander role of CD122(+)CD8(+) T cells was further confirmed by adoptive transfer experiments into CD8(+) T cell-depleted mice. Furthermore, it took 14 days after the first intrasplenic B16/alpha-GalCer injection for the mice to generate CD8(+) T cells that can reject s.c. rechallenged B16 cells. These findings suggest that alpha-GalCer activates bystander antitumor CD122(+)CD8(+) T cells following NK cells and further induces an adaptive antitumor immunity due to tumor-specific memory CD8(+) CTLs.  相似文献   

18.
We investigated the effect of in vivo administration of antibodies against T-cell subsets and natural killer (NK) cells on endogenous gamma interferon (IFN-γ) production and granuloma formation in Rhodococcus aurantiacus-infected mice. High titers of endogenous IFN-γ were detected in the extracts of the livers and spleens during 24 hr of the infection, reaching the peak at 8 hr, and the IFN-γ production was reduced by in vivo administration of anti-NK 1.1 monoclonal antibody (MAb) or antibody against asialo GM1+ cells. Endogenous IFN-γ declined until 2 days of the infection, then reappeared from 1 week and peaked at 3 weeks. Endogenous IFN-γ at 1 and 3 weeks was reduced by in vivo administration of anti-CD8 MAb, but not by anti-CD4 MAb or anti-NK 1.1 MAb. Granulomatous lesions in the livers and spleens began to appear from 1 week of the infection and developed in 3 weeks. In vivo administration of rat anti-IFN-γ MAb reduced the development of granulomas. In addition, granuloma formation was reduced by depletion of NK cells prior to the infection or depletion of CD8+ T cells at 1 week of the infection. Based on these findings, it is presumed that the biphasic production of IFN-γ is attributable to NK cells in the early phase of the infection and CD8+ T cells in the phase of granuloma formation, and that granuloma formation is regulated by NK cells and CD8+ T cells through the secretion of endogenous IFN-γ.  相似文献   

19.
Sha Z  Compans RW 《Journal of virology》2000,74(11):4999-5005
Through cognate interaction between antigen-specific B-cell and CD4(+) alphabeta T cells, the CD4(+) alphabeta T cells secrete cytokines that initiate immunoglobulin (Ig) class switching from IgM to IgG. In this study, we show that formalin-inactivated influenza PR8 virus induces virus-specific IgM and IgG responses in the absence of CD4(+) T cells and that all four subclasses of IgG are produced. The immunized CD4-deficient mice were also found to be completely protected against lethal infection with live, pathogenic influenza virus. The ability of CD4(+) T-cell-deficient mice to generate these IgG responses was not found to be impaired when these mice were depleted of CD8(+) T cells with an anti-CD8 monoclonal antibody. In contrast, alphabeta T-cell-deficient mice (TCRbeta(-/-)) were not found to produce significant amounts of IgG upon immunization with formalin-inactivated PR8 virus. These results suggest that CD4(-) CD8(-) double-negative alphabeta T cells are playing a role in regulating Ig class switching in the absence of CD4(+) T cells.  相似文献   

20.
Peritoneal resident cells of mice normally contain small populations of NK cells and NK1.1(+) alphabetaT cells. These populations increased after either 3LL or EL4 tumor inoculations into the peritoneal cavity. In vivo depletion of NK cell alone by anti-asialo GM1 (ASGM1) Ab significantly decreased survival time of tumor-injected mice, while depletion of both NK cells and NK1.1(+) T cells by anti-NK 1.1 Ab greatly shortened mouse survival time. NK1. 1(+) T cells in peritoneal cavity consist of a larger proportion of double-negative T cells and smaller populations of CD4(+) T cells and Vbeta8(+) T cells compared with liver NK1.1(+) T cells and normally lack Vbeta2(+) T cells. Tumor inoculation induced rapid IL-12 and IFN-gamma mRNA in tumor-infiltrating mononuclear cells (TIM). Although anti-NK1 Ab pretreatment in vivo abrogated IFN-gamma mRNA expression and IFN-gamma production of TIM, NK cell depletion alone by anti-ASGM1 Ab pretreatment retained IFN-gamma mRNA expression and partly inhibited IFN-gamma production of TIM. Peritoneal NK cells as well as NK1.1(+) T cells but not NK1.1(-) T cells of 3LL cell- or EL4 cell-injected mice showed cytotoxicities against the same tumor cells. Further, either anti-IL-12 Ab or anti-IFN-gamma Ab ip injection significantly shortened EL4 cell-inoculated mouse survival time. Our findings suggest that peritoneal macrophages activated by tumors produce IL-12 which activates NK cells and NK1.1(+) T cells to produce IFN-gamma and both NK cells and NK1.1(+) T cells are important in suppressing the growth of the intraperitoneal tumors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号