首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 947 毫秒
1.
火烧对草地土壤氮总矿化、硝化及无机氮消耗速率的影响   总被引:9,自引:1,他引:8  
采用同位素^15N库稀释技术结合扰动较小的管型取样法,测定了羊草草地火烧区与未烧区不同季节土壤氮的总矿化速率、总硝化速率、无机氮消耗速率.结果表明,火烧地的氮总矿化与硝化速率在牧草返青后的4、5月份均高于未烧地,7月份差异不显著,到生长季末的9月份又低于未烧地;火烧地NH^4-N的消耗速率7月份以前均高于未烧地,9月份低于未烧地,N03^--N的消耗4、5份火烧地要高于未烧地,7、9月份又低于未烧地;火烧地土壤NH4^ -N含量在4、5和7月份均高于未烧地,9月份基本没有差别,而N03^--N在4、5月份无大差别,7、9月份高于未烧地.  相似文献   

2.
云雾山典型草原火烧不同恢复年限土壤化学性质变化   总被引:8,自引:2,他引:6  
李媛  程积民  魏琳  陈芙蓉 《生态学报》2013,33(7):2131-2138
云雾山典型草原处于黄土高原半干旱地区,也是草原火灾多发区,试验比较了未烧地与新烧地、火烧后3 a和火烧后11 a土壤有机碳(SOC)、全N、全P和速效K含量的变化过程。测量的土壤深度为50 cm,每10 cm一层,比较了4个样地0—10 cm、10—20 cm、20—30 cm、30—40 cm、40—50 cm土壤养分的变化。结果表明:(1)新烧地土壤剖面各层SOC、全N、全P和速效K含量都显著高于未烧地。(2)火烧后3 a样地土壤剖面各层SOC、全N、全P和速效K含量与未烧地差异不显著。(3)火烧后11 a样地土壤剖面各层全N含量都显著高于未烧地,SOC、全P和速效K含量除了0—10 cm层与未烧地差异不显著外,其它土层均显著增加。(4)4个样地的土壤剖面各层从上到下SOC、土壤全N、全P和速效K含量呈递减趋势。(5)3个火烧样地土壤表层(0—10 cm)的pH值和未烧地差异不显著。  相似文献   

3.
以大兴安岭呼中林区不同强度的火烧迹地为研究对象,对森林地上植被(乔木层、灌木层和草本层)碳储量进行分层采样,采用异速生长方程和生物量收获法获得各层生物量并转换为碳储量,分析了不同火烧强度下研究区地上植被碳储量的差异.结果表明: 火烧强度显著影响研究区森林地上植被碳储量,表现为未火烧>轻度火烧>中度火烧>重度火烧.相同火烧强度下,各林层碳储量变化状况表现为乔木层>灌木层>草本层.乔木层碳储量在不同火烧强度下表现为未火烧>轻度火烧>中度火烧>重度火烧;灌木层碳储量在不同火烧强度下表现为轻度火烧>未火烧>中度火烧>重度火烧;草本层的碳储量在不同火烧强度下表现为轻度火烧>未火烧>重度火烧>中度火烧.火烧强度显著影响森林生态系统乔木层和草本层的碳储量,对灌木层碳储量的影响不显著.  相似文献   

4.
内蒙古典型草原的生物量与生产力   总被引:7,自引:0,他引:7  
草原地上生物量是由植物的绿色部分(活植物体)、立枯体(未脱离母体的枯枝叶)和凋落物(落到地面上的枯枝叶)三部分组成,生物量是随季节、气温、雨量而变动,以8月份最高,4月初和9月底最低。生物量中的绿色量和立枯量在季节动态中的消长关系明显相反。立枯物在旱象较明显的6月中旬出现后,随着群落生物量达到高峰后,气温降低,绿色体大量枯萎,立枯量急剧增加,到9月上中旬立枯量与绿色量持平。随后,立枯量迅速超过绿色量,到10月中旬,绿色体完  相似文献   

5.
不同时间火烧后草原一些特征的变化   总被引:2,自引:0,他引:2  
草原不同时间火烧后,一些特征发生了明显的不同变化。秋烧后土壤含水量比未烧和春烧低,春季不同时间火烧后的差别不大。秋烧地产量及群落组成和物种多样性都明显比未烧地和春烧地低,但一年生植物种类增多。春季不同时间火烧后产量变化差异不显着,但晚春火烧后顶芽植物种类减少。不同生活型的种类对同一次火烧的反应不同,这不仅表现在个体生长方面,也表现在种群产量方面。  相似文献   

6.
火因子对荒漠化草原草本层片植物群落组成的影响   总被引:2,自引:0,他引:2  
火烧是世界许多地区关键的生态因子,也是人工和自然生态系统重要的干扰因素和管理工具,对格局与过程有着深刻的影响。采用人为放火试验研究了春季不同时间火烧对典型温带荒漠化草原草本植物群落组成的影响,结果表明:晚春火烧后当年,草本植物层片物种多度显著高于未火烧样地(P<0.05),而晚春火烧后第2年和早春火烧当年草本植物层片物种多度与未火烧样地差异不显著(P>0.05);晚春火烧后当年和第2年及早春火烧后当年,草本植物物种丰富度、多样性和均匀度均有所降低,且晚春火烧对植物群落组成的影响大于早春火烧。晚春火烧当年草本植物层片地上部分生物量显著大于未火烧样地(P<0.05),而晚春火烧后第2年和早春火烧当年草本植物层片地上部分生物量大于未火烧样地,但差异不显著(P>0.05);不同物种多度、高生长对火因子的响应不同。表明春季不同时间火烧处理对荒漠化草原草本植物层片植物群落组成的影响存在差异。  相似文献   

7.
为探讨火烧干扰以及微地貌差异对高原湿草甸植被的影响,以高原湿草甸优势种华扁穗草( Blysmus sinocompressus Tang et F. T. Wang)为研究对象,分别在经历火烧干扰和未烧的湿地中选择平地和地垄作为样地,研究了不同生长期以及不同年份华扁穗草地上部的灰分含量和热值(包括干质量热值和去灰分热值)变化。结果表明:在火烧平地、火烧地垄、未烧平地和未烧地垄4类样地中,不同生长期以及不同年份间华扁穗草地上部的灰分含量和热值均有一定差异。在火烧平地、火烧地垄和未烧平地3类样地中,与生长初期相比,生长旺盛期华扁穗草地上部的灰分含量均降低,其干质量热值和去灰分热值均升高;而在未烧地垄样地中,与生长初期相比,生长旺盛期华扁穗草地上部的灰分含量显著升高,其干质量热值和去灰分热值则均略降低。从样地类型看,在生长旺盛期,平地样地中华扁穗草地上部的灰分含量均低于地垄样地,其干质量热值和去灰分热值均高于地垄样地,其中,其灰分含量在火烧平地样地中最低、在未烧地垄样地中最高;其干质量热值和去灰分热值在火烧地垄样地中均最低、在未烧平地样地中均最高,但总体无显著差异。随时间推移,火烧样地特别是火烧平地样地中华扁穗草地上部的灰分含量增加,而其干质量热值和去灰分热值则有所降低但总体上与未烧样地间无显著差异。总体上看,在火烧样地中,华扁穗草地上部的干质量热值和去灰分热值低于未烧样地;而在平地样地中,其干质量热值和去灰分热值高于地垄样地。研究结果显示:火烧干扰和微地貌差异对华扁穗草地上部的灰分含量和热值均有一定的影响,据此,建议将植物地上部的灰分含量和热值作为高原湿草甸植被优势种响应环境扰动的参考指标。  相似文献   

8.
松嫩草原不同时间火烧后群落特征的变化   总被引:13,自引:3,他引:10  
松嫩草原早春火烧后,种类密度、物种多样性和丰富度增高,均匀度降低;晚春火烧后则相反.无论是早春火烧还是晚春火烧.群落高度降低,但晚烧更低.火烧能刺激羊草生长活力,晚烧作用更明显.火烧后,羊草叶产量增高,叶茎比例以晚烧地为最高.早烧后,群落地下现存量增多,晚烧相反.  相似文献   

9.
松嫩草原优势植物羊草立枯体分解的研究   总被引:7,自引:2,他引:5  
在羊草草原上当年羊草的枯死体大部分以立枯体的形态存在,立枯量约占枯死量的75.34%。立枯体与凋落物的分解速率的季节变化趋势基本相同,均呈抛物线型。每月凋落物的分解速率均大于立枯体分解速率,二者最小值均出现在10月份。其中立枯体分解速率最大值出现在7月,凋落物出现在8月。立枯体和凋落物损失率的季节变化曲线均呈指数形式,立枯体的所损失量约占凋落物损失量的77.11%。立枯体的分解与水热因子均呈指数正  相似文献   

10.
松嫩草原碱茅(Puccinellia tenuiflora)热值和能量动态的研究   总被引:3,自引:0,他引:3  
郭继勋  王若丹 《生态学报》2001,21(6):896-899
碱茅植株热值的季节变化出现3个峰值,并依次降低,最大值在5月初。茎、叶、穗和立枯体热值的季节变化不规则,茎和叶最大值均在5月初,最小值茎在7月初,叶在6月初;穗最大值在7月中旬,最小值在6月初;立枯体最大值在8月初,最小值在7月中旬。在整个生长季表现为穗热值>叶>茎>立枯体。碱茅种群地上部能量现存量的季节变化,呈单峰曲线,峰值出现在9月初,为6967.75kJ/m^2。不同季节能量在各器官中的分配比率为,5月份为叶>茎;6月份为茎>叶;7月初至中旬为茎>叶>穗>立枯体;8月初至9月初为茎>叶>立枯体>穗;9月中旬为立枯体>叶>茎>穗。能量现存量垂直结构,地上部为从地表至20cm高度逐渐增加,最大值在10-20cm层占地上部能量现存量的36.13%,然后逐渐下降,地下部的变化规律为随着浓度增加能值逐渐减小,最大值在0-10cm层占地下部能量现存量的69.01%。  相似文献   

11.
The influence of standing dead biomass on available solar radiation, leaf temperature (Tleaf) and leaf water potential (ѱleaf) of Andropogon gerardii in unburned tallgrass prairie was compared to burned prairie in eastern Kansas. The standing dead reduced photosynthetically active radiation incident on emerging shoots by 58.8% in unburned compared to burned prairie during the initial 30 days of the growing season. Aboveground production in unburned prairie was similarly reduced during this period (55.4%) compared to burned prairie. Leaf temperatures in A. gerardii were greater in unburned prairie than in burned early in the season, but were nearly equal by the end of the growing season. The maximum elevation of Tleaf in unburned prairie above burned was 9.5 C. The maximum unburned Tleaf measured was 41.5 C compared to 39.4 C in burned prairie. Lower windspeed adjacent to leaves in unburned prairie resulting in reduced convective cooling may have caused higher Tleaf in unburned prairie. Leaf water potential was significantly lower in unburned prairie than in burned prairie early in the season but was higher in unburned prairie by late season. The seasonal minimum ѱleaf in burned prairie was — 1.60 MPa compared to —1.45 MPa in unburned prairie. The combined effect of these post-burn differences in solar radiation, Tleaf and ѱleaf may be significant in contributing to the lower production in unburned compared to burned tallgrass prairie.  相似文献   

12.
Annually burned tallgrass prairie is purported to be a nitrogen-limited system, especially when compared to unburned prairie. To test the hypothesis that legumes, potential nitrogen-fixers, would increase in relative abundance in annually burned sites, we assessed their density and biomass for two seasons on upland and lowland soils in annually burned and unburned watersheds. Total legume density was significantly higher in burned (8.0 ± 1.0 [SE] stems/m2) than in unburned watersheds (3.0 ± 0.3 stems/m2). Species with higher (P < 0.05) densities in burned than in unburned prairie included Amorpha canescens, Dalea candida, Dalea purpurea, Lespedeza violacea, Psoralea tenuiflora, and Schrankia nuttallii. Desmodium illinoense was the only legume that responded negatively to annual fire. Total legume biomass did not differ between burned (11.3 ± 1.3 g/m2) and unburned prairie (10.5 ± 0.9 g/m2). Biomass productions of Dalea candida and Psoralea tenuiflora were higher (P < 0.05) in burned than in unburned sites, but biomasses of other legumes were similar between burn treatments. Average individual stem masses of Amorpha canescens and Baptisia bracteata were significantly greater in unburned than in burned prairie. Legumes were affected differentially by topographic location. Total legume density was higher (P < 0.05) on lowland soils (6.6 ± 1.0 stems/m2) than on upland soils (4.3 ± 0.5 stems/m2). However, total legume biomass was not different between lowland soils (12.0 ± 1.2 g/m2) and upland soils (9.9 ± 1.0 g/m2). Densities and biomasses of Amorpha canescens, Desmodium illinoense, and Lespedeza capitata were higher on lowland sites than on upland sites, whereas densities and biomasses of Baptisia bracteata and Dalea purpurea were higher on upland than on lowland soils. Most legume species are either fire tolerant or exhibit a positive response to fire and their persistence in annually burned prairie suggests that they may play an important role in the nitrogen budget of this ecosystem.  相似文献   

13.
大兴安岭火烧迹地恢复初期土壤微生物群落特征   总被引:3,自引:2,他引:1  
对大兴安岭兴安落叶松2003年重度和中度火烧迹地以及未过火样地的土壤微生物群落进行了考察,旨在揭示火烧迹地恢复初期土壤微生物群落变化特征。研究结果表明火烧迹地土壤养分(全氮、全碳、土壤有机质、有效氮)和土壤水分与未过火对照样地存在显著差异;火烧迹地土壤微生物量碳氮、微生物代谢活性以及碳源利用能力均显著高于对照样地;但火烧迹地与对照样地土壤微生物群落结构指标土壤微生物量碳氮比(MBC/MBN)以及多样性指数没有显著差异。相关分析结果表明:土壤微生物量、代谢活性和碳源利用能力与土壤养分指标(全碳、全氮、速效氮、有机质)和土壤水分含量有显著相关性。主成分分析的结果表明火烧与否是火烧样地与对照样地土壤微生物对碳源利用能力差异的原因。所有样地土壤微生物群落真菌比例较高,可能与该地区土壤酸碱度有关(pH=4.12—4.68)。经过6a的恢复,重度和中度火烧迹地的土壤养分和水分、土壤微生物群落的生长、代谢、以及群落多样性仍存在差异,但均不显著,表明此时火烧程度对土壤微生物群落的影响已很微弱。  相似文献   

14.
The effects of fire on forest structure and composition were studied in a severely fire-impacted landscape in the eastern Amazon. Extensive sampling of area forests was used to compare structure and compositional differences between burned and unburned forest stands. Burned forests were extremely heterogeneous, with substantial variation in forest structure and fire damage recorded over distances of <50 m. Unburned forest patches occurred within burned areas, but accounted for only six percent of the sample area. Canopy cover, living biomass, and living adult stem densities decreased with increasing fire inrensiry / frequency, and were as low as 10–30 percent of unburned forest values. Even light burns removed >70 percent of the sapling and vine populations. Pioneer abundance increased dramatically with burn intensity, with pioneers dominating the understory in severely damaged areas. Species richness was inversely related to burn severity, but no clear pattern of species selection was observed. Fire appears to be a cyclical event in the study region: <30 percent of the burned forest sample had been subjected to only one burn. Based on estimated solar radiation intensities, burning substantially increases fire susceptibility of forests. At least 50 percent of the total area of all burned forests is predicted to become flammable within 16 rainless days, as opposed to only 4 percent of the unburned forest. In heavily burned forest subjected to recurrent fires, 95 percent of the area is predicted to become flammable in <9 rain-free days. As a recurrent disturbance phenomenon, fire shows unparalleled potential to impoverish and alter the forests of the eastern Amazon.  相似文献   

15.
Severe wildfire may cause long-term changes in the soil-atmosphere exchange of carbon dioxide and methane, two gases known to force atmospheric warming. We examined the effect of a severe wildfire 10?years after burning to determine decadal-scale changes in soil gas fluxes following fire, and explored mechanisms responsible for these dynamics. We compared soil carbon dioxide efflux, methane uptake, soil temperature, soil water content, soil O horizon mass, fine root mass, and microbial biomass between a burned site and an unburned site that had similar stand conditions to the burned site before the fire. Compared to the unburned site, soil carbon dioxide efflux was 40% lower and methane uptake was 49% higher at the burned site over the 427-day measurement period. Soil O horizon mass, microbial biomass, fine root mass, and surface soil water content were lower at the burned site than the unburned site, but soil temperature was higher. A regression model showed soil carbon dioxide efflux was more sensitive to changes in soil temperature at the burned site than the unburned site. The relative importance of methane uptake to carbon dioxide efflux was higher at the burned site than the unburned site, but methane uptake compensated for only 1.5% of the warming potential of soil carbon dioxide efflux at the burned site. Our results suggest there was less carbon available at the burned site for respiration by plants and microbes, and the loss of the soil O horizon increased methane uptake in soil at the burned site.  相似文献   

16.
Measurements of mid-season live and dead aboveground biomass are reported for a 10-yr period (1975–84) in a northeast Kansas tallgrass prairie. Study sites included shallow, rocky upland and deep, non-rocky lowland soils in annually burned (April) and unburned watersheds. Lowland sites had significantly greater live biomass than upland sites for both burned and unburned prairie for the 10-yr period. Moreover, live biomass was greater on burned than unburned lowland sites, but was not significantly increased by fire on the upland sites. Averaged across upland and lowland sites, mid-season live biomass was 422 g m–2 on annually burned and 364 g m–2 on unburned sites for the 10-yr period. Each site had its lowest live biomass value during the severe drought year of 1980 (range = 185–299 g m–2). During the study period, live biomass was most strongly correlated with seasonal pan water evaporation (r = –0.45 to –0.82), whereas dead biomass was correlated with the previous yr's precipitation (r = 0.61 and 0.90 for upland and lowland sites, respectively). When aboveground biomass was sampled throughout the 1984 season and separated into several components, biomass of the graminoids was 40% lower, whereas that of forbs and woody plants was 200–300% greater in the unburned than in the annually burned site.  相似文献   

17.
In 1990 and 1991, Samoa was struck by two cyclones, Ofa and Val. In the Tafua Rain Forest Preserve on the island of Savai'i, one part of the forest also burned after the first cyclone. Here we report on patterns of regeneration and changes in tree species composition in the Tafua lowland rain forest after five years of recovery from cyclone and fire disturbance. In the unburned area, tree canopy cover increased from 27 percent after the last cyclone to 58 percent, and in the burned area from below 12 to 49 percent. Nine of the ten most common tree species decreased in relative abundance in the entire forest after the last cyclone. One fast growing pioneer species, Macaranga harveyana now makes up 42 percent of the total number of trees (>5 cm DBH) in the unburned area and 86 percent in the burned area. Large interspecific differences occur in size distribution and there are at least four distinguishable regeneration patterns, which may be related to shade tolerance. Mean number of species per plot was generally higher in the unburned area than in the burned area, while the Shannon evenness index was higher in the unburned than in the burned area only for trees above 1 cm DBH. Species with fruits known to be fed upon by birds and/or bats generally made up a larger proportion of all trees in the burned than in the unburned area. In contrast to other studies of post‐cyclone regeneration, in which recovery is often rapid due to resprouting of trees, recovery in the Tafua forest was a slow process with regeneration more dependent on vertebrate seed dispersal than on resprouting.  相似文献   

18.
Prescribed burning under mature Larch/Douglas-fir forests produced changes in elemental uptake. Elemental analyses of individual species and existing biomass three years post-burn from hot, medium, and lightly burned sites and unburned controls showed a significant shift in species composition with burn intensity. Few species from hotly burned sites had elevated levels of ions, except phosphorus and iron, but the aboveground shrub and herb biomass did have greater total cations, percent ash, and individual cations (except Ca and Mg) on hotly burned sites. Although the hotly burned sites had the greatest total biomass, only iron, manganese, total nitrogen, sodium, and phosphorus were significantly higher (5% level) in biomass from hot burns compared to control biomass (g/m2 basis). Hot burns alter the soil pH to the alkaline range making some elements like iron less soluble and available. Some species growing on hotly burned sites appeared able to alter nutrient uptake making more iron, phosphorus, and other elements available for growth, even with low available levels, compared to control sites. Three-year-old western larch (Larix occidentalis Nutt.) seedlings were able to accumulate high levels of Fe, K, and P relative to controls. Marchantia polymorpha L. concentrated some ions on hotly burned soils, but it was not possible to locate this plant on unburned areas for comparison.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号