首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
三峡库区森林生态系统有机碳密度及碳储量   总被引:12,自引:0,他引:12  
森林生态系统作为陆地生态系统的重要组成部分,在减缓全球气候变化过程中发挥重要作用.基于104块样地调查和森林资源二类清查数据,运用GIS平台,对三峡库区森林生态系统有机碳密度及储量进行研究,结果表明:(1)三峡库区森林优势树种各器官的含碳率为44.59%~54.45%,森林凋落物含碳率为30.61%~42.73%,平均为36.38%;(2)三峡库区森林生态系统平均碳密度为117.68t · hm-2,低于我国森林平均水平;植被层碳密度平均为24.15 t · hm-2,其中常绿阔叶林植被层碳密度最高,达42.80 t · hm-2;枯落物层平均碳密度为2.74 t · hm-2,土壤有机碳密度平均为9.09 kg · m-2;(3)三峡库区森林生态系统总有机碳储量为286.14×106t,其中植被层碳储量为58.72×106t,凋落物碳储量为6.67×106t,土壤碳储量为220.74×106t;(4)三峡库区马尾松林分布面积最大,其总有机碳储量为77.24×106t,占三峡库区森林有机碳总储量的26.99%;在各森林类型中,马尾松林植被层、凋落物层和土壤层有机碳储量均最高,分别达到20.70 × 106t、2.66×106t和53.89×106t;(5)三峡库区森林有机碳密度呈现"东高西低"分布格局,巴东-秭归、巫山-巫溪、石柱-武隆及江津南部有机碳密度较高.在三峡库区提高森林质量、扩大森林面积是增强森林生态系统碳汇功能的有效途径.  相似文献   

2.
利用林芝地区第六次二类森林资源清查数据,运用材积源生物量法和平均生物量法,结合不同树种的分子式含碳率,估算了林芝地区森林及其组分的碳储量、碳密度,并分析其分布特征.结果表明:2004年,林芝地区森林碳储量为2.43×1O8 t,森林平均碳密度为76.01 t·hm-2,其中,林分碳储量>灌木林碳储量>疏林碳储量>散生木碳储量>竹林碳储量>四旁树碳储量,各林分类型碳储量在2.51×105~1.27×108 t,共计占总森林碳储量的92.0%,各林分类型的平均碳密度为103.16 t·hm-2,其中冷杉林的碳储量和碳密度均最高.在区域分布上,森林碳储量由西北向东南递增,森林平均碳密度由西南向东北递增.林分碳储量以成、过熟林碳储量为主,而过熟林的碳密度在各龄级中最高.随着过熟林的增加,林芝地区森林碳储量将增加;但随着过熟林的死亡和分解,林芝地区森林碳储量将有减小趋势.  相似文献   

3.
西藏昌都地区森林植被碳储量及空间分布格局   总被引:2,自引:0,他引:2  
基于昌都地区第6次二类森林资源清查数据资料,运用生物量转换因子法进行生物量估算,以藏东南实测含碳率与国内含碳率的相关研究相结合,确定不同树种的含碳率,在此基础上,估算了昌都地区的森林碳储量和碳密度,并探讨其空间分布格局。结果表明:昌都地区的森林总碳储量约为1.058×10~8t,平均碳密度为67.31 t·hm~(-2),均低于林芝地区;各森林类型碳储量在4.5×10~2~8.21×10~7t,以云杉林的碳储量占绝对优势,为昌都地区的77.82%,碳密度则在19.88~81.16 t·hm~(-2);从龄组来看,以成、过熟林碳储量为主,占总森林碳储量的77.91%,各龄组碳密度随年龄增加呈近直线增加趋势;从森林碳储量和碳密度的分布格局来看,森林碳储量呈以左贡县最高,丁青县最低,"三江"南部区为高森林碳储量区,"三江"中游区为低森林碳储量区,"三江"上游区为中等森林碳储量区的总体分布格局;总体上,森林碳密度则呈以东北部江达县为最高,东南部的芒康县为最低,"三江"上游区平均碳密度最高,"三江"南部区次之,"三江"中游区最低,但空间分布差异相对较小(60.55~74.41 t·hm~(-2))。  相似文献   

4.
典型亚热带森林生态系统碳密度及储量空间变异特征   总被引:2,自引:0,他引:2  
戴巍  赵科理  高智群  刘康华  张峰  傅伟军 《生态学报》2017,37(22):7528-7538
以浙江省森林生态系统为研究对象,基于GIS网格布点,采集了838个森林样地样本(土壤、枯落物等),结合浙江省森林资源监测中心相关数据,利用地统计学和Moran's I相结合的方法系统研究了浙江省森林生态系统碳密度及碳储量空间变异特征。结果表明:浙江省森林生态系统平均碳密度为145.22 t/hm~2,其中森林植被、土壤、枯落物和枯死木层碳密度分别为27.34、108.89、1.79、1.38 t/hm~2。克里格空间插值和局部Moran's I指数结果表明碳密度空间分布规律呈现从西南向东北方向逐渐递减的趋势,与浙江省地形、地势较为一致,受海拔、树龄、森林类型、台风气候等自然因素和人类活动共同影响。浙江省森林生态系统碳储量为877.19 Tg C,森林植被、土壤、枯落物和枯死木层碳储量分别为203.88、656.20、10.84、6.27 Tg C,分别占总碳储量的23%、75%、1.3%、0.7%。在浙江省森林生态系统碳储量空间分布格局中,土壤层是森林生态系统中最大的碳库,约是森林植被层的3.22倍,是整个浙江省森林生态系统碳储量最主要的贡献者。浙江省森林资源丰富,大多数森林仍处于中幼龄林阶段,碳密度水平较低,但是中幼龄林生长速度较快,加强对全省中幼龄林的健康管理,是未来整体提升浙江省森林生态系统固碳潜力的关键。  相似文献   

5.
利用1:5万土壤数据库估算浙江省土壤有机碳密度及储量   总被引:2,自引:0,他引:2  
土壤有机碳库作为陆地生态系统中重要的碳库之一,对于温室效应和全球变化研究具有重要意义.利用浙江省1:5万土壤数据库,对浙江省277个土种0~100cm土层的有机碳密度进行估算,分析了全省土壤有机碳密度和储量,以及各主要土壤类型有机碳密度和分布.结果表明:浙江省土壤有机碳密度值主要集中在5~10kg·m-2;山香灰土有机碳密度最高,为52.80kg·m-2,清水砂最低,为1.82kg·m-2;红壤和水稻土土类土壤有机碳储量最大,两者之和占浙江省土壤有机碳总储量的63.8%;浙江省土壤总面积为100784.19km2,土壤有机碳储量为875.42×106t,土壤有机碳平均密度为8.69kg·m-2.通过叠加数字高程模型分析,发现土壤有机碳密度随高程、坡度和坡向的变化均呈现明显的变化趋势.  相似文献   

6.
浙江省生态公益林碳储量和固碳现状及潜力   总被引:3,自引:0,他引:3  
张骏  袁位高  葛滢  江波  朱锦茹  沈爱华  常杰 《生态学报》2010,30(14):3839-3848
生态公益林是为保护和改善人类生存环境,维持生态平衡而建立的。以浙江省的生态公益林为研究对象,共调查和估算了全省21个县149个样地(年龄从5a到50a),包括常绿阔叶林、针阔混交林、马尾松林和杉木林4种主要林型的碳储量和碳平衡。结果说明:浙江省生态公益林生态系统碳密度的加权平均值为164.43tC.hm-2;其中常绿阔叶林生态系统碳储量最高,达216.18tC.hm-2;针阔混交林其次,达181.36tC.hm-2;针叶林最低。浙江省森林以幼龄林(小于30a的占87.5%)和马尾松林(大于55%)为主离成熟状态还相差很远,尤其是针叶林远低于全国平均水平和中高纬度地区碳密度。全省生态公益林净生态系统生产力加权平均得0.08tC.hm-.2a-1,在碳积累上还有很大的潜力。通过封育改造、择伐补阔或以灌促阔等森林管理措施,加快针叶林向针阔混交林直至常绿阔叶林演替,将最大化中国亚热带地区的幼林或受干扰森林的未来碳储量(最高增长31.44%),并成为较大的碳汇。  相似文献   

7.
探讨区域尺度的碳储量及其空间分布特征,评估优势树种(组)的固碳能力,可为生态系统保护措施的制定提供数据参考。百山祖国家公园保存了我国东南沿海最为典型完整的中亚热带森林生态系统,但百山祖公园碳密度和碳储量的特征还不清楚。本研究以百山祖国家公园公益林为对象,利用森林资源一类清查数据,基于浙江省各优势树种(组)的相容性生物量方程,研究了不同优势树种(组)的碳密度、碳储量及其在不同区域的空间分布特征。结果表明:百山祖国家公园公益林乔木层的平均碳密度为58.12 t·hm-2,碳储量为2088250.4 t;在优势树种(组)中,黄山松林、阔叶混交林和针阔混交林的碳密度分别为65.36、60.64和67.27 t·hm-2,而软阔叶林和竹林的碳密度仅为29.23和16.12 t·hm-2;幼龄林、中龄林、近熟林、成熟林和过熟林的碳储量占总碳储量的比例分别为17. 42%、16.10%、19.41%、39. 10%和7. 97%;就碳密度分布特征而言,庆元县的碳密度为62. 16t·hm-2,比龙泉市和景宁县的碳密度高7.02%和125.87%;在空间上表现为北部、中部和西南部较高,而东部相对较低;总体来看,在百山祖公国家公园中,中幼林的碳储量占总碳储量的33.52%,在生态系统保护措施中应加强中幼林抚育,提高森林固碳能力。  相似文献   

8.
利用最新的森林资源二类调查分布数据和野外样地调查资料,采用InVEST模型和空间统计分析等方法,研究了海南岛森林生态系统碳储量及其空间分布特征。结果表明:海南岛森林生态系统总碳储量为338.15 TgC,其中地上生物、地下生物、凋落物和土壤的碳储量分别为85.12、18.73、2.90 TgC和231.40 TgC,所占比重依次为25.17%、5.54%、0.86%和68.43%。海南岛森林生态系统平均碳密度为147.66 MgC/hm2,其中地上生物、地下生物、凋落物和土壤碳密度分别为37.17、8.18、1.27 MgC/hm2和101.04 MgC/hm2。不同市县森林生态系统碳储量分布在8.55—35.40 TgC的范围内,最高的是琼中县。不同植被类型中,橡胶林的碳储量最高,占全岛森林生态系统总碳储量的27.72%;热带山地雨林的碳密度最高,达到249.64 MgC/hm2。在海拔梯度上,森林生态系统碳密度呈现先增加后减少的变化特征,在海拔600—1300 m范围内的碳密度最高,碳密度为20...  相似文献   

9.
中国国家森林公园碳储量及固碳速率的时空动态   总被引:1,自引:0,他引:1  
森林生态系统在调节气候变化和维持碳平衡中具有重要作用。国家森林公园是森林保护的主要载体,探明其碳储量和固碳速率的变化对于森林生态系统的固碳能力评估和可持续经营管理具有重要意义。本研究采用生态系统过程模型CEVSA2模型,模拟了1982—2017年中国881处国家森林公园的碳密度、碳储量和固碳速率的空间分布特征。结果表明: 国家森林公园平均碳密度为255.18 t C·hm-2,高于中国森林生态系统平均碳密度。2017年,国家森林公园总碳储量为3.56 Pg C,占全国森林生态系统总碳储量的11.0%~12.2%。1982—2017年国家森林公园平均固碳速率达到0.45 t C·hm-2·a-1,各地区国家森林公园固碳速率都在0.30 t C·hm-2·a-1以上。东北和西南地区国家森林公园的总碳储量最高。东北地区国家森林公园的土壤有机碳固碳速率最高,而华东和中南地区国家森林公园的植被碳固碳速率最高。国家森林公园面积占中国森林总面积的5.8%,在森林碳汇管理中占据着重要地位。准确评估国家森林公园的森林生长状况、固碳潜力和碳吸收特征,可为我国森林公园生态系统服务功能的总体评估提供借鉴和参考。  相似文献   

10.
秦岭宁陕县森林植被碳储量与碳密度特征   总被引:1,自引:0,他引:1  
邓蕾  上官周平 《西北植物学报》2011,31(11):2310-2320
以秦岭南坡中段宁陕县林区2003年二类森林调查资料为基础,采用政府间气候变化委员会(IPCC)推荐使用的森林碳储量估算方法,从森林类型、林种、年龄和林分起源的角度,对该林区森林植被碳储量和碳密度进行估算。结果显示:(1)宁陕县森林植被碳储量为12.31Tg(1Tg=1×1012 g),平均碳密度为66.36Mg/hm2(1Mg=1×106 g),其各乡镇森林植被碳储量和碳密度在空间上的分布不平衡。(2)各森林类型中针叶林总碳储量为0.71Tg,平均碳密度为64.11 Mg/hm2,阔叶林总碳储量为11.61Tg,占宁陕县总碳储量的94.3%,碳密度为67.65Mg/hm2。(3)各林种中防护林碳储量最大(8.13Tg),占宁陕县总碳储量的66%,特种用途林碳密度最大(81.43Mg/hm2)。(4)不同林分起源中,天然林碳储量为12.231Tg,占宁陕县总碳储量的99.3%,人工林碳储量较小。(5)不同年龄森林中未成熟森林(包括幼龄林、中龄林和近熟林)碳储量为12.13Tg,占总碳储量的98.5%,近熟林碳密度最大(80.14Mg/hm2),幼龄林碳密度最小(39.85Mg/hm2)。研究表明,宁陕县森林具有较大的固碳能力和固碳潜力,其森林面积和蓄积是决定森林碳储量大小的重要因子,而森林碳密度的大小与森林类型、年龄组成和林分起源方式密切相关。  相似文献   

11.
浙江省森林生态系统碳储量及其分布特征   总被引:1,自引:0,他引:1       下载免费PDF全文
利用2011-2012年野外标准地实测资料, 结合第八次全国森林资源清查资料, 研究了浙江省森林生态系统碳储量及其分布特征。结果表明: 浙江省森林生态系统碳储量为602.73 Tg, 其中乔木层、灌草层、凋落物层和土壤层碳储量分别为122.88 Tg、16.73 Tg、11.36 Tg和451.76 Tg, 分别占生态系统碳储量的20.39%、2.78%、1.88%和74.95%; 在各森林类型中, 阔叶混交林碳储量为138.03 Tg, 所占比例最大(22.90%); 在森林各龄组中, 幼、中龄林约占浙江省森林生态系统碳储量的70.66%, 是碳储量的主要贡献者。浙江省森林生态系统平均碳密度为120.80 t·hm-2, 乔木层、灌草层、凋落物层和土壤层碳密度分别为24.65 t·hm-2、3.36 t·hm-2、2.28 t·hm-2和90.51 t·hm-2。浙江省森林生态系统土壤层碳储量和生态系统碳储量呈极显著相关关系, 说明土壤层碳储量对浙江省森林生态系统碳储量贡献较大。浙江省天然林乔木层碳密度整体表现为过熟林>成熟林>近熟林>中龄林>幼龄林, 而人工林乔木层碳密度表现为过熟林>近熟林>成熟林>中龄林>幼龄林。浙江省幼、中龄林林分面积占比重较大, 占全省森林面积的76.76%, 若对现有森林进行更好的经营和管理, 可以增加浙江省森林的碳固存能力。  相似文献   

12.
《植物生态学报》2016,40(4):354
Aims
The concentration of CO2 and other greenhouse gases in the atmosphere has considerably increased over last century and is set to rise further. Forest ecosystems play a key role in reducing CO2 concentration in the atmosphere and mitigating global climate change. Our objective is to understand carbon storage and its distribution in forest ecosystems in Zhejiang Province, China.
Methods
By using the 8th forest resource inventory data and 2011-2012 field investigation data, we estimated carbon storage, density and its distribution in forest ecosystems of Zhejiang Province.
Important findings
The carbon storage of forest ecosystems in Zhejiang Province was 602.73 Tg, of which 122.88 Tg in tree layer, 16.73 Tg in shrub-herb layer, 11.36 Tg in litter layer and 451.76 Tg in soil layer accounting for 20.39%, 2.78%, 1.88% and 74.95% of the total carbon storage, respectively. The carbon storage of mixed broadleaved forests was 138.03 Tg which ranked the largest (22.90%) among all forest types. The young and middle aged forests which accounted for 70.66% of the total carbon storage were the main body of carbon storage in Zhejiang Province. The carbon density of forest ecosystems in Zhejiang Province was 120.80 t·hm-2 and that in tree layer, shrub-herb layer, litter layer and soil layer were 24.65 t·hm-2, 3.36 t·hm-2, 2.28 t·hm-2 and 90.51 t·hm-2, respectively. The significant relationship between soil organic carbon storage and forest ecosystem carbon storage indicated that soil carbon played an important role in shaping forest ecosystem carbon density. Carbon density of tree layer increased with age in natural forests, but decreased in the order over-mature > near-mature > mature > middle-aged > young forest in plantations. The proportions of young and middle aged forests were larger than any other age classes. Thereby, the carbon storage of forest ecosystems in Zhejiang Province could be increased through a proper forest management.  相似文献   

13.
 为明晰陕西省森林生态系统碳储量分布格局, 基于2009年森林资源清查资料和2011年调查所得样地实测数据, 对陕西省森林生态系统碳储量、碳密度及其空间分布特征进行了研究分析。结果表明: 陕西省森林生态系统总碳储量为790.75 Tg, 土壤层、植被层和枯落物层碳储量分别占总碳储量的72.14%、26.52%和1.34%; 其中, 栎类碳储量在各森林类型中所占比重最大(44.17%), 中、幼龄林是陕西省森林生态系统碳储量的主要贡献者, 约占总碳储量的49%。陕西省森林生态系统平均碳密度为123.70 t·hm–2, 土壤层最大, 枯落物层最小, 植被层居中; 碳密度均随龄级增加而升高, 同一龄级表现为天然林高于人工林生态系统。此外, 陕西省森林生态系统碳储量、碳密度分布格局不尽一致, 反映了森林覆盖面积及森林质量对碳储量的影响。未来应加强林地抚育管理水平, 增加造林再造林面积以增加碳储存, 应对全球气候变化。  相似文献   

14.
《植物生态学报》2016,40(4):374
Aims
Our objective was to explore the vegetation carbon storages and their variations in the broad-leaved forests in the alpine region of the Qinghai-Xizang Plateau that includes Qinghai Province and Xizang Autonomous Region.
Methods
Based on forest resource inventory data and field sampling, this paper studied the carbon storage, its sequestration rate, and the potentials in the broad-leaved forests in the alpine region of the Qinghai-Xizang Plateau.
Important findings
The vegetation carbon storage in the broad-leaved forest accounted for 310.70 Tg in 2011, with the highest value in the broad-leaved mixed forest and the lowest in Populus forest among the six broad-leaved forests that include Quercus, Betula, Populus, other hard broad-leaved species, other soft broad-leaved species, and the broadleaved mixed forest. The carbon density of the broad-leaved forest was 89.04 Mg·hm-2, with the highest value in other hard broad-leaved species forest and the lowest in other soft broad-leaved species forest. The carbon storage and carbon density in different layers of the forests followed a sequence of overstory layer > understory layer > litter layer > grass layer > dead wood layer, which all increased with forest age. In addition, the carbon storage of broad-leaved forest increased from 304.26 Tg in 2001 to 310.70 Tg in 2011. The mean annual carbon sequestration and its rate were 0.64 Tg·a-1 and 0.19 Mg·hm-2·a-1, respectively. The maximum and minimum of the carbon sequestration rate were respectively found in other soft broad-leaved species forest and other hard broad-leaved species forest, with the highest value in the mature forest and the lowest in the young forest. Moreover, the carbon sequestration potential in the tree layer of broad-leaved forest reached 19.09 Mg·hm-2 in 2011, with the highest value found in Quercus forest and the lowest in Betula forest. The carbon storage increased gradually during three inventory periods, indicating that the broad-leaved forest was well protected to maintain a healthy growth by the forest protection project of Qinghai Province and Xizang Autonomous Region.  相似文献   

15.
西藏林芝地区森林碳储量、碳密度及其分布   总被引:1,自引:0,他引:1  
李猛  刘洋  段文标 《生态学杂志》2013,32(2):319-325
利用林芝地区第六次二类森林资源清查数据,运用材积源生物量法和平均生物量法,结合不同树种的分子式含碳率,估算了林芝地区森林及其组分的碳储量、碳密度,并分析其分布特征.结果表明: 2004年,林芝地区森林碳储量为2.43×108 t,森林平均碳密度为76.01 t·hm-2,其中,林分碳储量>灌木林碳储量>疏林碳储量>散生木碳储量>竹林碳储量>四旁树碳储量,各林分类型碳储量在2.51×105~1.27×108 t,共计占总森林碳储量的92.0%,各林分类型的平均碳密度为103.16 t·hm-2,其中冷杉林的碳储量和碳密度均最高.在区域分布上,森林碳储量由西北向东南递增,森林平均碳密度由西南向东北递增.林分碳储量以成、过熟林碳储量为主,而过熟林的碳密度在各龄级中最高.随着过熟林的增加,林芝地区森林碳储量将增加;但随着过熟林的死亡和分解,林芝地区森林碳储量将有减小趋势.  相似文献   

16.
为明晰青藏高原高寒区阔叶林植被碳储量现状及其动态变化特征, 利用森林资源清查数据和标准样地实测数据, 估算了青藏高原高寒区(青海和西藏两省区)阔叶林植被的碳储量、固碳速率和固碳潜力。结果表明: 2011年青藏高原高寒区阔叶林植被碳储量为310.70 Tg, 碳密度为89.04 Mg·hm-2。六类阔叶林型(栎(Quercus)林、桦木(Betula)林、杨树(Populus)林、其他硬阔林、其他软阔林和阔叶混交林)中, 阔叶混交林的碳储量最大, 杨树林碳储量最小; 其他硬阔林碳密度最大, 其他软阔林碳密度最小。空间分配上碳储量和碳密度表现为: 乔木层>灌木层>凋落物层>草本层>枯死木层。不同龄级碳储量和碳密度总体表现为随林龄增加逐渐增大的趋势。阔叶林碳储量从2001年的304.26 Tg增加到2011年的310.70 Tg, 平均年固碳量为0.64 Tg·a-1, 固碳速率为0.19 Mg·hm-2·a-1。不同林型固碳速率表现为其他软阔林最大, 其他硬阔林最小; 不同龄级表现为成熟林最大, 幼龄林最小。阔叶林乔木层固碳潜力为19.09 Mg·hm-2, 且不同林型固碳潜力表现为栎林最大, 桦树林最小。三次调查期间阔叶林碳储量逐渐增加, 主要原因是近年来森林保护工程的开展使阔叶林生长健康良好。  相似文献   

17.
对韶关市公益林乔木层的优势树种和龄组的碳储量、碳密度和碳汇量进行分析。结果表明,韶关公益林乔木林碳储量为190.06 Tg,固碳总量优势树种以阔叶林为主,龄组以中幼林为主;平均碳密度为34.73 t·hm–2,随着龄组增加,树种的碳密度普遍呈增加趋势;公益林乔木林碳汇量为 23.90 万t·a–1,以中幼林的碳汇为主。提高阔叶林和中幼龄树种的单位面积蓄积量,是增加公益林有机碳储量和碳汇功能的主要途径。  相似文献   

18.
Afforestation is a mitigation option to reduce the increased atmospheric carbon dioxide levels as well as the predicted high possibility of climate change. In this paper, vegetation survey data, statistical database, National Forest Resource Inventory database, and allometric equations were used to estimate carbon density (carbon mass per hectare) and carbon storage, and identify the size and spatial distribution of forest carbon sinks in plantation ecosystems in sand source areas of north Beijing, China. From 2001 to the end of 2010, the forest areas increased more than 2.3 million ha, and total carbon storage in forest ecosystems was 173.02 Tg C, of which 82.80 percent was contained in soil in the top 0–100 cm layer. Younger forests have a large potential for enhancing carbon sequestration in terrestrial ecosystems than older ones. Regarding future afforestation efforts, it will be more effective to increase forest area and vegetation carbon density through selection of appropriate tree species and stand structure according to local climate and soil conditions, and application of proper forest management including land-shaping, artificial tending and fencing plantations. It would be also important to protect the organic carbon in surface soils during forest management.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号