首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
以福建省长汀县红壤侵蚀区马尾松低效林套种杨梅、无患子、油茶及黄栀子的改造模式林分为研究对象,对林分各组分生物量年净生长量、含碳率及土壤异养呼吸进行定位观测,分析套种模式对低效马尾松林分生态系统碳储量格局及碳平衡的影响。结果表明: 杨梅、无患子、油茶、黄栀子和马尾松不同器官含碳率的变化范围分别为41.1%~50.1%、42.2%~50.6%、45.1%~48.9%、44.7%~49.6%和46.1%~51.9%。不同树种同一器官之间的含碳率存在显著差异。马尾松套种杨梅及马尾松套种无患子模式植被层碳储量及年净增碳储量最高,分别为67.62~68.42 t·hm-2和9.21~9.45 t·hm-2·a-1,马尾松套种油茶和马尾松套种黄栀子模式较小,分别为31.96~36.24 t·hm-2和4.09~4.16 t·hm-2·a-1,马尾松纯林对照最小,分别为17.01 t·hm-2和2.00 t·hm-2·a-1。土壤异养呼吸年通量从高到低依次为马尾松套种杨梅模式(7.41 t·hm-2·a-1)>马尾松套种油茶模式(5.89 t·hm-2·a-1)>马尾松套种无患子模式(5.86 t·hm-2·a-1)>马尾松套种黄栀子模式(4.95 t·hm-2·a-1)>马尾松纯林对照(2.45 t·hm-2·a-1)。马尾松套种杨梅和马尾松套种无患子模式的年净生态系统碳平衡分别为2.04和3.27 t C·hm-2·a-1,表现为“碳汇”,马尾松套种油茶和马尾松套种黄栀子模式及马尾松纯林对照的年净生态系统碳平衡分别为-1.80、-0.80和-0.45 t C·hm-2·a-1,表现为“碳源”。总体上,短期内马尾松低效林套种杨梅或无患子能够提升林分的固碳增汇效益。  相似文献   

2.
宁夏回族自治区森林生态系统固碳现状   总被引:6,自引:2,他引:4  
根据宁夏回族自治区森林资源清查资料以及野外调查和室内分析的结果,研究了宁夏地区森林生态系统固碳现状,估算了该区森林生态系统的碳密度、碳储量,并分析了其空间分布特征.结果表明: 宁夏森林各植被层生物量大小顺序为: 乔木层(46.64 Mg·hm-2)>凋落物层(7.34 Mg·hm-2)>细根层(6.67 Mg·hm-2)>灌草层(0.73 Mg·hm-2).云杉类(115.43 Mg·hm-2)和油松(94.55 Mg·hm-2)的单位面积植被生物量高于其他树种.不同林龄乔木层碳密度中,过熟林最高,但由于幼龄林面积所占比例最大,其乔木层碳储量(1.90 Tg C)最大.宁夏地区森林生态系统平均碳密度为265.74 Mg C·hm-2,碳储量为43.54 Tg C,其中,植被层平均碳密度为27.24 Mg C·hm-2、碳储量为4.46 Tg C,土壤层碳储量是植被层的8.76倍.宁夏地区的森林碳储量整体呈南高北低分布,总量较低.这与其森林面积小和林龄结构低龄化有很大关系.随着林龄结构的改善和林业生态工程的进一步实施,宁夏森林生态系统将发挥巨大的固碳潜力.  相似文献   

3.
天童国家森林公园植被碳储量估算   总被引:1,自引:0,他引:1  
郭纯子  吴洋洋  倪健   《生态学杂志》2014,25(11):3099-3109
以典型木荷-栲树群落、含苦槠的木荷-栲树群落、含杨梅叶蚊母树的木荷-栲树群落、披针叶茴香-南酸枣群落、枫香-马尾松群落、黄毛耳草-毛竹群落6种群落类型样地实测数据为基础,结合文献资料汇总,采用生物量相对生长方程法,研究了天童国家森林公园森林生态系统的植被碳储量、碳密度及其组分和空间分布特征.结果表明:野外调查的6种群落类型中,含苦槠的木荷-栲树群落碳储量(12113.92 Mg C)和碳密度(165.03 Mg C·hm-2)均最高,披针叶茴香 南酸枣群落碳储量最低(680.95 Mg C),其碳密度为101.26 Mg C·hm-2.各群落类型中,常绿树种的碳储量均显著高于落叶树种,其碳密度范围分别为76.08~144.95和0.16~20.62 Mg C·hm-2.各群落类型的乔木层各组分中,植株干的碳储量均最高.各林分类型中,常绿阔叶林碳储量最高,为23092.39 Mg C,占天童林区森林生态系统碳储量的81.7%,碳密度为126.17 Mg C·hm-2.天童国家森林公园植被总碳储量为28254.22 Mg C,碳密度为96.73 Mg C·hm-2.  相似文献   

4.
青海省森林乔木层碳储量现状及固碳潜力   总被引:1,自引:0,他引:1       下载免费PDF全文
为阐明青海省森林生态系统乔木层植被碳储量现状及其分布特征, 该研究利用240个标准样地实测的乔木数据, 估算出青海省森林生态系统不同林型处于不同龄级阶段的平均碳密度, 并结合青海省森林资源清查资料所提供的不同龄级的各林型面积, 估算了青海省森林生态系统乔木层的固碳现状、速率和潜力。结果表明: 1) 2011年青海省森林乔木层平均碳密度为76.54 Mg·hm -2, 总碳储量为27.38 Tg。云杉(Picea spp.)林、柏木(Cupressus funebris)林、桦木(Betula spp.)林、杨树(Populus spp.)林是青海地区的主要林型, 占青海省森林面积的96.23%, 占青海省乔木层碳储量的86.67%, 其中云杉林的碳储量(14.78 Tg)和碳密度(106.93 Mg·hm -2)最高。按龄级划分, 乔木层碳储量表现为过熟林>中龄林>成熟林>近熟林>幼龄林。2)青海省乔木层总碳储量从2003年的23.30 Tg增加到2011年的27.38 Tg, 年平均碳增量为0.51 Tg·a -1。乔木层固碳速率为1.06 Mg·hm -2·a -1, 其中柏木林的固碳速率最大(0.44 Mg·hm -2·a -1); 桦木林的固碳速率为负值(-1.06 Mg·hm -2·a -1)。3)青海省乔木层植被固碳潜力为8.50 Tg, 其中云杉林固碳潜力最高(3.40 Tg)。该研究结果表明青海省乔木层具有较大的固碳潜力, 若对现有森林资源进行合理管理和利用, 将会增加青海省森林的碳固存能力。  相似文献   

5.
基于野外调查与室内实测数据,结合第八次全国森林资源清查资料,分析了甘肃省5种典型人工林生态系统(刺槐、杨树、油松/华山松、落叶松及云杉林)森林生态系统碳密度、碳储量,并估算了乔木层固碳潜力.结果表明: 5种典型人工林生态系统平均碳密度和总碳储量分别为139.65 t·hm-2和85.78 Tg,不同人工林类型之间差异较大.不同龄组间碳密度表现为近熟林(250.70 t·hm-2)最大,其次是成熟林(175.97 t·hm-2)和中龄林(156.92 t·hm-2),幼龄林(117.56 t·hm-2)最低.碳储量表现为幼龄林(45.47 Tg)>中龄林(19.54 Tg)>成熟林(11.84 Tg)>近熟林(8.93 Tg),幼中龄林碳储量占总碳储量的75.9%.5种典型人工林乔木层现实固碳潜力合计为7.27 Tg,刺槐林(2.49 Tg)和杨树林(2.10 Tg)最大;各龄组中,幼龄林现实固碳潜力最大(3.78 Tg),其次是中龄林(2.04 Tg),近熟林最小(0.45 Tg).5种典型人工林乔木层最大固碳潜力达27.55 Tg,表现为刺槐林(9.42 Tg)>落叶松林(6.22 Tg)≈云杉林(6.36 Tg)>杨树林(3.18 Tg)>油松/华山松林(2.37 Tg);其中,幼、中龄林最大固碳潜力分别为18.48和6.89 Tg,占总最大固碳潜力的92%.  相似文献   

6.
该文利用野外实际调查数据对四川西北部亚高山云杉(Picea asperata)天然林碳密度、净生产量、碳贮量及其分布进行了分析,结果表明,在调查区域,云杉天然林分平均生物量为230.37×103 kg·hm-2,其中乔木层为212.77×103 kg·hm-2,占林分生物量的92.30%。云杉天然林生态系统各组分的平均碳密度为树干57.85%,树皮47.12%,树枝51.22%,树叶48.27%和树根52.39%,灌木层平均碳密度49.91%,草本层平均碳密度46.34%,地被层平均碳密度43.21%,枯落物层平均碳密度39.44%,土壤碳密度平均值为1.41%,随土层深度增加各层次土壤碳密度逐渐减少。云杉林平均生态系统总碳贮量为273.79×103 kg·hm-2,其中乔木层109.30×103 kg·hm-2,占云杉林生态系统总碳贮量的39.92%,灌木层5.69×103 kg·hm-2,占2.08%,草本层1.26×103 kg·hm-2,占0.46%,地被物层0.60×103 kg·hm-2,占0.22%,枯落物层0.83×103 kg·hm-2,占0.30%,林内土壤(0~100 cm)碳贮量为156.11×103 kg·hm-2,占57.01%。云杉林的碳库分布序列为土壤(0~100 cm)>乔木层>灌木层>草本层>枯落物层>地被物层。云杉天然林分平均净生产总量为6 838.5 kg·hm-2·a-1,碳素年总净固量平均为3 584.98 kg·hm-2·a-1,其中乔木层净生产量为4 676 kg·hm-2·a-1,占林分总量的68.38%,碳素年平均固定量2 552.99 kg·hm-2·a-1,占林分总量的71.21%。  相似文献   

7.
甘肃省森林碳储量现状与固碳速率   总被引:1,自引:0,他引:1       下载免费PDF全文
针对森林碳平衡再评估的重要性和区域尺度森林生态系统碳库量化分配的不确定性, 该研究依据全国森林资源连续清查结果中甘肃省各森林类型分布的面积与蓄积比重以及林龄和起源等要素, 在甘肃省布设212个样地, 经野外调查与采样、室内分析, 并对典型样地信息按照面积权重进行尺度扩展, 估算了甘肃省森林生态系统碳储量及其分布特征。结果表明: 甘肃省森林生态系统总碳储量为612.43 Tg C, 其中植被生物量碳为179.04 Tg C, 土壤碳为433.39 Tg C。天然林是甘肃省碳储量的主要贡献者, 其值为501.42 Tg C, 是人工林的4.52倍。天然林和人工林的植被碳密度均表现为随林龄的增加而增加的趋势, 同一龄组天然林植被碳密度高于人工林。天然林土壤碳密度从幼龄林到过熟林逐渐增加, 但人工林土壤碳密度最大值主要为近熟林。全省森林植被碳密度均值为72.43 Mg C·hm-2, 天然林和人工林分别为90.52和33.79 Mg C·hm-2。基于森林清查资料和标准样地实测数据, 估算出全省天然林和人工林在1996年的植被碳储量为132.47和12.81 Tg C, 2011年分别为152.41和26.63 Tg C, 平均固碳速率分别为1.33和0.92 Tg C·a-1。甘肃省幼、中龄林面积比重较大, 占全省的62.28%, 根据碳密度随林龄的动态变化特征, 预测这些低龄林将发挥巨大的碳汇潜力。  相似文献   

8.
内蒙古森林生态系统碳储量及其空间分布   总被引:2,自引:0,他引:2       下载免费PDF全文
内蒙古森林面积居全国第一位, 林木蓄积量居第五位, 准确地估算该区域森林碳储量对于评估中国森林碳储量以及制定森林资源管理措施均具有重要意义。该研究基于内蒙古森林资源野外样方调查和室内分析, 评估了内蒙古森林生态系统的固碳现状, 估算了内蒙古森林生态系统不同林型和不同碳库(乔木、灌木、草本、凋落物和土壤碳库)的碳密度大小, 揭示了其空间分布特征。在此基础上估算了内蒙古森林碳储量大小及空间格局。结果表明: 1)内蒙古森林植被层碳储量为787.8 Tg C, 乔木层、凋落物层、草本层和灌木层分别占植被层总碳储量的93.5%、3.0%、2.7%和0.8%。内蒙古森林植被层平均碳密度为40.4 t·hm-2, 其中, 乔木层、凋落物层、草本层和灌木层的碳密度分别为35.6 t·hm-2、2.9 t·hm-2、1.2 t·hm-2和0.6 t·hm-2。2)内蒙古森林土壤层(0-100 cm)碳储量为2449.6 Tg C, 其中0-30 cm的土壤碳储量最高, 占总碳储量的79.8%。0-10 cm、10-20 cm和20-30 cm的土壤碳储量分别占0-30 cm土壤碳储量的38.8%、34.1%和27.1%。内蒙古森林土壤平均碳密度为144.4 t·hm-2。黑桦(Betula davurica)林土壤碳密度最高, 云杉(Picea asperata)林最小。土壤碳密度随土壤深度的增加而降低。3)内蒙古森林生态系统碳储量为3237.4 Tg C, 植被层和土壤层碳储量分别占森林生态系统碳储量的24.3%和75.7%。落叶松(Larix gmelinii)林总碳储量最高, 其次为白桦(Betula platyphylla)林、夏栎(Quercus robur)林、黑桦林、榆树(Ulmus pumila)疏林和山杨(Populus davidiana)林。内蒙古森林生态系统平均碳密度为184.5 t·hm-2。土壤碳密度与植被碳密度呈显著正相关关系。4)内蒙古森林生态系统碳储量和碳密度的空间分布总体上为东部地区高、西部地区低的趋势。在降水量充沛的东部地区和降水偏少的中西部地区, 有针对性地开展森林保护区建设和人工造林, 可显著提升区域的碳汇能力。  相似文献   

9.
探讨区域尺度的碳储量及其空间分布特征,评估优势树种(组)的固碳能力,可为生态系统保护措施的制定提供数据参考。百山祖国家公园保存了我国东南沿海最为典型完整的中亚热带森林生态系统,但百山祖公园碳密度和碳储量的特征还不清楚。本研究以百山祖国家公园公益林为对象,利用森林资源一类清查数据,基于浙江省各优势树种(组)的相容性生物量方程,研究了不同优势树种(组)的碳密度、碳储量及其在不同区域的空间分布特征。结果表明:百山祖国家公园公益林乔木层的平均碳密度为58.12 t·hm-2,碳储量为2088250.4 t;在优势树种(组)中,黄山松林、阔叶混交林和针阔混交林的碳密度分别为65.36、60.64和67.27 t·hm-2,而软阔叶林和竹林的碳密度仅为29.23和16.12 t·hm-2;幼龄林、中龄林、近熟林、成熟林和过熟林的碳储量占总碳储量的比例分别为17. 42%、16.10%、19.41%、39. 10%和7. 97%;就碳密度分布特征而言,庆元县的碳密度为62. 16t·hm-2,比龙泉市和景宁县的碳密度高7.02%和125.87%;在空间上表现为北部、中部和西南部较高,而东部相对较低;总体来看,在百山祖公国家公园中,中幼林的碳储量占总碳储量的33.52%,在生态系统保护措施中应加强中幼林抚育,提高森林固碳能力。  相似文献   

10.
从气候地带性和地理区域分布两方面对森林生态系统碳储量及固碳能力,以及土地利用变化对森林固碳的影响和森林固碳估算不确定性的原因进行综述.据估算,全球森林生态系统碳储量为652~927 Pg C,固碳能力达到4.02 Pg C·a-1.各气候地带森林碳储量表现为热带最大(471 Pg C),寒带次之(272 Pg C),温带(113~159 Pg C)最小,固碳能力表现为热带(1.02~1.3 Pg C·a-1)最大,温带次之(0.8 Pg C·a-1),寒带(0.5 Pg C·a-1)最小;各地理区域森林碳储量表现为南美洲(187.7~290 Pg C)最大,其次是欧洲(162.6 Pg C)、北美洲(106.7 Pg C)、非洲(98.2 Pg C)和亚洲(74.5 Pg C),而大洋洲(21.7 Pg C)最小,固碳能力为南美洲热带(1276 Tg C·a-1)和非洲热带(753 Tg C·a-1)较大,其次是北美洲(248 Tg C·a-1)和欧洲(239 Tg C·a-1),而东亚(98.8~136.5 Tg C·a-1)较小.为进一步减少森林生态系统固碳估算的不确定性,今后应综合运用连续长期观测技术、样地清查、遥感分析和模型模拟等方法.  相似文献   

11.
榆树(Ulmus pumila)疏林是浑善达克沙地的地带性隐域植被, 小叶杨(Populus simonii)是该区域主要的防风固沙造林树种。该文通过测定两种森林生态系统乔木层(叶、枝、干、根)、草本层(地上植被和地下根系)和土壤层(0-100 cm)的碳含量, 比较了两种森林生态系统的碳密度及其分配特征, 并运用空间代替时间的方法, 阐明了乔木层、土壤层和总碳密度随林龄增加的变化特征, 估算了两种森林生态系统的固碳速率。结果表明, 榆树疏林乔木层和土壤层平均碳含量都低于小叶杨人工林, 榆树疏林生态系统总碳密度是小叶杨人工林的1/2。两种森林生态系统的总碳密度中, 乔木层碳密度和土壤层碳密度总占比98%以上; 土壤层与植被层碳密度的比值随林龄的增加而降低, 过熟林时该比值分别为1.66 (榆树疏林)和1.87 (小叶杨人工林); 榆树疏林和小叶杨人工林的乔木层、土壤层和生态系统的总碳密度随林龄的增加而增加, 其中乔木层碳密度及榆树疏林总碳密度与林龄均呈现出显著的线性正相关关系。小叶杨人工林乔木层的固碳速率约为榆树疏林的5倍, 榆树疏林生态系统和小叶杨人工林生态系统的总固碳速率分别为0.81 Mg C·hm-2·a-1和5.35 Mg C·hm-2·a-1。这一研究结果有利于估算沙地森林生态系统的碳储量, 为区域生态环境恢复和增加碳汇的政策制定提供依据。  相似文献   

12.
西藏林芝地区森林碳储量、碳密度及其分布   总被引:1,自引:0,他引:1  
李猛  刘洋  段文标 《生态学杂志》2013,32(2):319-325
利用林芝地区第六次二类森林资源清查数据,运用材积源生物量法和平均生物量法,结合不同树种的分子式含碳率,估算了林芝地区森林及其组分的碳储量、碳密度,并分析其分布特征.结果表明: 2004年,林芝地区森林碳储量为2.43×108 t,森林平均碳密度为76.01 t·hm-2,其中,林分碳储量>灌木林碳储量>疏林碳储量>散生木碳储量>竹林碳储量>四旁树碳储量,各林分类型碳储量在2.51×105~1.27×108 t,共计占总森林碳储量的92.0%,各林分类型的平均碳密度为103.16 t·hm-2,其中冷杉林的碳储量和碳密度均最高.在区域分布上,森林碳储量由西北向东南递增,森林平均碳密度由西南向东北递增.林分碳储量以成、过熟林碳储量为主,而过熟林的碳密度在各龄级中最高.随着过熟林的增加,林芝地区森林碳储量将增加;但随着过熟林的死亡和分解,林芝地区森林碳储量将有减小趋势.  相似文献   

13.
我国主要森林生态系统碳贮量和碳平衡   总被引:224,自引:0,他引:224       下载免费PDF全文
在广泛收集资料的基础上,估算了我国主要森林生态系统的碳贮量和碳平衡通量,分析了它们的区域特征。主要结果如下:1)我国森林生态系统的平均碳密度是258.83t·hm-2,基本趋势是随纬度的增加而增加;其中植被的平均碳密度是57.07t·hm-2,随纬度的增加而减小;土壤碳密度约是植被碳密度的3.4倍,其区域特点与植被碳密度呈相反趋势,随纬度升高而增加;凋落物层平均碳密度是8.21t·hm-2,随水热因子的改善而减小。2)森林生态系统有机碳库包括植被、土壤和凋落物层3个部分,采用林业部调查规划设计院1989~1993年最新统计的我国森林资源清查资料,估算我国主要森林生态系统碳贮量为281.16×108t,其中植被碳库、土壤碳库、凋落物层碳库分别为62.00×108t、210.23×108t、8.92×108t。落叶阔叶林、暖性针叶林、常绿落叶阔叶林、云冷杉(Picea-Abies)林、落叶松(Larix)林占森林总碳贮量的87%,是我国森林主要的碳库。3)我国森林生态系统在与大气的气体交换中表现为碳汇,年通量为4.80×108t·a-1,基本规律是从热带向寒带,碳汇功能下降,这取决于系统碳收支的各个通量之间的动态平衡;阔叶林的固碳能力大于针叶林。我国森林生态系统可以吸收生物物质、化石燃料燃烧和人口呼吸释放总碳量(9.87×108t·a-1)的48.7%。  相似文献   

14.
采用样地清查和异速生长方程法,量化了处于衰退状态的小兴安岭谷地云冷杉林的森林碳密度和生产力.结果表明: 2011年森林碳密度总量为268.14 t C·hm-2,其中植被碳密度、碎屑碳密度和土壤碳密度分别为74.25、16.86和177.03 t C·hm-2.2006—2011年,乔木层碳密度从80.86 t C·hm-2减少到71.73 t C·hm-2,主要树种冷杉、白桦、云杉和兴安落叶松的碳密度年均减少比例分别为0.5%、1.2%、2.7%和3.7%,毛赤杨、红松和花楷槭的碳密度年均增加比例分别为2.9%、3.9%和7.2%.森林净初级生产力(NPP)为4.69 t C·hm-2·a-1,地下部和地上部NPP比值为0.56,凋落物损失部分是总NPP的最大组分,所占比例为34.5%.森林生态系统中2个主要碳输出途径异养呼吸和粗木质残体分解的年通量分别为293.67和119.29 g C·m-2·a-1.森林净生态系统生产力(NEP)为55.90 g C·m-2·a-1.研究结果表明,处于衰退状态的谷地云冷杉林仍具有一定的碳汇功能.  相似文献   

15.
吉林省森林植被固碳现状与速率   总被引:1,自引:0,他引:1       下载免费PDF全文
通过对吉林省森林植被的普遍调查、典型调查以及植被样品含碳率测定, 结合吉林省2009年和2014年森林清查数据, 估算了区域森林植被的碳储量、碳密度及固碳速率。研究结果表明: 林下植被的生物量在不同林分和同类林分中存在较大的差异, 整体不足乔木层生物量的3%, 灌木植物的生物量略高于草本植物和幼树。不同林分类型的乔木含碳率介于45.80%-52.97%之间, 整体表现为针叶林高于阔叶林; 灌木和草本植物分别为39.79%-47.25%和40%左右。吉林省森林植被碳转换系数以0.47或0.48更为准确, 若以0.50或0.45作为植被的碳转换系数计算碳储量, 会造成±5.26%的偏差。吉林省森林植被不仅维持着较高的碳库水平, 而且极具碳汇能力; 2009年和2014年碳储量分别为471.29 Tg C和505.76 Tg C, 累计碳增量34.47 Tg C, 平均每年碳增量6.89 Tg C·a-1; 碳密度由64.58 t·hm-2增至66.68 t·hm-2, 平均增加2.10 t·hm-2, 固碳速率0.92 t·hm-2·a-1。森林植被碳储量的增长主体是蒙古栎(Quercus mongolica)林和阔叶混交林, 合计碳增量占总体的90.34%。受植被发育引起的生物量增长、林分龄组晋级以及森林经营所引起的面积变化影响, 各龄组植被碳增量为幼龄林>过熟林>近熟林>中龄林, 成熟林表现为负增长; 固碳速率为过熟林>幼龄林>近熟林>中龄林>成熟林。森林植被碳储量和碳密度的市/区分布整体表现为自东向西明显的降低变化; 碳增量以东北和中东部地区较高, 西部地区较低; 固碳速率整体以南部的通化地区和白山地区相对较高, 中部的吉林地区和东部的延边地区次之, 西部的白城地区、松原地区等地呈负增长。  相似文献   

16.
基于广西喀斯特地区45块1000 m2样地的调查,研究幼龄林、中龄林、近熟林、成熟林、过熟林5个林龄阶段喀斯特森林植被与土壤碳储量的分配格局.结果表明: 广西不同林龄喀斯特森林总碳储量表现为幼龄林(86.03 t·hm-2)<近熟林(110.63 t·hm-2)<中龄林(112.11 t·hm-2)<成熟林(149.1 t·hm-2)<过熟林(244.38 t·hm-2);各林龄阶段植被不同层碳储量分配均不同,乔木层所占比例占绝对优势,达到92.3%~98.7%,随林龄的增加而增长,灌木层、草本层、凋落物层所占比例分别为0.3%~1.9%、0.3%~1.2%和0.3%~2.5%,细根所占比例为0.3%~3.3%.土壤有机碳密度随土层深度的增加而递减,土壤层碳储量为51.75~81.21 t·hm-2,所占生态系统比例为33.2%~66.2%,其随林龄的增大呈减小趋势.生态系统地上、地下部分碳储量分别为22.80~141.72和62.30~102.66 t·hm-2,除过熟林外均为地下部分>地上部分,地上碳储量随林龄的增大呈逐渐增加的趋势,地下碳储量的变化规律与土壤碳储量变化趋势一致.土壤层和乔木层为生态系统的主要碳库,二者所占比例达到了96%以上.  相似文献   

17.
广州市十种森林生态系统的碳循环   总被引:2,自引:0,他引:2  
为了探讨南亚热带森林生态系统碳循环的规律,在广泛收集资料和试验数据的基础上,对广州10种森林生态系统的碳循环进行研究.结果表明:10种森林生态系统的碳密度在108.35~151.85 t C·hm-2,其中乔木层碳密度在10.85~48.86 t C·hm-2,0~60 cm土壤层在87.74~99.01 t C·hm-2,均低于全国平均水平;从大气流向植被层的碳流量为4.41~9.15 t C·hm-2·a-1,植被层流向土壤层的碳流量为0.74~2.06 t C·hm-2·a-1,土壤层流向大气层的碳流量为3.94~5.42 t C·hm-2·a-1,即系统从大气净吸收碳在0.47~4.97 t C·hm-2·a-1之间.各种林分的净系统生产力不同,阔叶林大于针叶林,混交林大于纯林,天然次生林大于人工林.  相似文献   

18.
根据国家林业局发布的《森林生态系统服务功能评估规范》(LY/T 1721—2008),从涵养水源、保育土壤、固碳释氧和积累营养物质功能4个方面进行评价,研究小水电代燃料工程的实施对贵州省麻江县项目区森林生态服务功能的物质量及其价值的影响.结果表明: 小水电代燃料工程对森林生态系统服务功能物质量的增加有显著作用.马尾松和柏木人工林在项目区内涵养水源功能的物质量达20662.04 m3·hm-2·a-1,比项目区外增加20.5%,保育土壤量为119.1 t·hm-2·a-1,比项目区外增加29.7%,固碳释氧量为220.49 t·hm-2·a-1,比项目区外增加40.2%,林木营养积累量达3.49 t·hm-2·a-1,比项目区外增加48.5%.小水电代燃料工程对项目区森林生态系统服务功能价值增加额度表现为:固碳释氧功能(7.14 万元·hm-2·a-1)>涵养水源功能(6.01万元·hm-2·a-1)>林木营养积累功能(1.38万元·hm-2·a-1)>保育土壤功能(0.81万元·hm-2·a-1).小水电代燃料工程对提高森林生态服务功能价值和实现林区的可持续发展具有重要作用.  相似文献   

19.
《植物生态学报》2018,42(8):831
为阐明青海省森林生态系统乔木层植被碳储量现状及其分布特征, 该研究利用240个标准样地实测的乔木数据, 估算出青海省森林生态系统不同林型处于不同龄级阶段的平均碳密度, 并结合青海省森林资源清查资料所提供的不同龄级的各林型面积, 估算了青海省森林生态系统乔木层的固碳现状、速率和潜力。结果表明: 1) 2011年青海省森林乔木层平均碳密度为76.54 Mg·hm -2, 总碳储量为27.38 Tg。云杉(Picea spp.)林、柏木(Cupressus funebris)林、桦木(Betula spp.)林、杨树(Populus spp.)林是青海地区的主要林型, 占青海省森林面积的96.23%, 占青海省乔木层碳储量的86.67%, 其中云杉林的碳储量(14.78 Tg)和碳密度(106.93 Mg·hm -2)最高。按龄级划分, 乔木层碳储量表现为过熟林>中龄林>成熟林>近熟林>幼龄林。2)青海省乔木层总碳储量从2003年的23.30 Tg增加到2011年的27.38 Tg, 年平均碳增量为0.51 Tg·a -1。乔木层固碳速率为1.06 Mg·hm -2·a -1, 其中柏木林的固碳速率最大(0.44 Mg·hm -2·a -1); 桦木林的固碳速率为负值(-1.06 Mg·hm -2·a -1)。3)青海省乔木层植被固碳潜力为8.50 Tg, 其中云杉林固碳潜力最高(3.40 Tg)。该研究结果表明青海省乔木层具有较大的固碳潜力, 若对现有森林资源进行合理管理和利用, 将会增加青海省森林的碳固存能力。  相似文献   

20.
毛乌素沙地沙漠化逆转过程土壤颗粒固碳效应   总被引:3,自引:0,他引:3  
为揭示毛乌素沙地沙漠化逆转过程中土壤颗粒的固碳效应,选择陕北榆林治沙区从流沙地、半固定沙地到林龄为20~55年生的灌木和20~50年生的乔木固沙林地,采用物理分组法分析了土壤砂粒、粉粒、黏粒结合碳的演变特征和累积速率.结果表明: 对比流沙地,土壤总有机碳及各颗粒碳含量在两种固沙林地均呈显著增加趋势,并以表层0~5 cm土壤碳含量增幅最高.从流沙地到55年生灌木和50年生乔木固沙林地,0~5 cm土层砂粒碳密度增速均为0.05 Mg·hm-2·a-1,粉粒碳密度增速分别为0.05和0.08 Mg·hm-2·a-1,而黏粒碳密度增速分别为0.02和0.03 Mg·hm-2·a-1.0~20 cm土层,两种林地各颗粒碳密度增速平均为0~5 cm土层的2.1倍.按此增速到50~55年生的固沙林地时,两种林地0~20 cm土层的砂粒碳、粉粒碳和黏粒碳密度分别比流沙地平均提高6.7、18.1、4.4倍,并且颗粒碳对总有机碳的累积贡献率平均为粉粒碳(39.7%)≈砂粒碳(34.6%)>黏粒碳(25.6%).综上,毛乌素沙地沙漠化逆转过程土壤颗粒均表现出显著的固碳效应,且以砂粒和粉粒为主要固碳组分.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号