首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
应用GC和GC-MS分析了东方粘虫Mythimna separata(Walker)成虫脂肪体、血淋巴和飞翔肌内总脂类脂肪酸组成.它们的组成成分为肉豆蔻酸(C14:0),棕榈酸(C16:0),棕榈油酸(C16:1),硬脂酸(C18:0),油酸(C18:2),亚油酸(C18:2)和亚麻酸(C18:3);组成百分率为1-2:35:9-11:1:32:12-17:3-6.在吊飞1h后,脂肪体内的脂肪酸水平显著下降(20μg/mg组织·h~(-1),血淋巴内脂肪酸浓度明显升高,然而,飞翔肌内脂肪酸含量的变化不明显.从脂肪体、血淋巴和飞翔肌内脂肪酸组成成分的百分率变化可以发现东方粘虫飞翔肌在飞翔活动中主要选择性利用棕榈酸和油酸.  相似文献   

2.
沈漫  包宏 《植物学通报》1998,15(5):50-55
用高效液相色谱法和酶解的方法检测了银杏叶片磷脂酰甘油(PG)脂肪酸的分子种组成和位置分布,确定银杏叶片PG主要分子种的脂肪酸组成(sn1/sn2)是18∶3/16∶1(3t),18∶3/16∶0,18∶2/16∶1(3t),18∶2/16∶0,18∶1/16∶1(3t),16∶0/16∶1(3t),18∶1/18∶1,18∶1/16∶0和16∶0/16∶0。银杏叶片PG脂肪酸组成和位置分布的分析结果表明,C18脂肪酸主要位于sn1位,16∶1(3t)只分布于sn2位,16∶0在sn1位和sn2位上均有发现。sn1位上的不饱和度∑u大于sn2位上的∑u。  相似文献   

3.
对野生发菜(Nostocflagelliforme Bom.et Flab)的膜脂(主要成分为类囊体膜脂)及其脂肪酸组成进行了测定分析.发菜的膜脂由单半乳糖甘油二酯(MGDG)、双半乳糖甘油二酯(DGDG)、磷酯酰甘油(PG)和硫代异鼠李糖甘油二酯(SQDG)组成,其酯酰基连接有棕榈酸(16:0)、十六碳烯酸(16:1)、硬脂酸(18:0)、油酸(18:1)、亚油酸(18:2)和亚麻酸(18:3)6种脂肪酸.发菜的不饱和脂肪酸含量可达总脂的73%,特别是16:1和18:3分别高达29%和34%,远远高于已报道的其他蓝藻,说明了发菜类囊体膜具有较强的抗逆性特点.同时还对复水30 min和复水后生长24 h的发菜膜脂及其脂肪酸组成进行了分析.结果表明,复水对野生发菜的膜脂及其脂肪酸组成没有显著影响,说明发菜的膜脂和脂肪酸组成在干燥-吸水过程中能保持很高的稳定性.  相似文献   

4.
13种微藻的脂肪酸组成分析   总被引:5,自引:0,他引:5  
王铭  刘然  徐宁  李爱芬  段舜山 《生态科学》2006,25(6):542-544
分析了13种微藻(包括7种绿藻,5种杂色藻和1种红藻)的总脂含量和脂肪酸组成,结果表明,不同门类微藻的脂肪酸组成差异较大:绿藻的脂肪酸组成以C16和C18为主;杂色藻类的脂肪酸组成相近,金藻门含有14:0、16:0、18:1、18:4等特征脂肪酸,三角褐指藻主要的脂肪酸为14:0、16:0、16:1、16:3和20:5,而粉核油球藻的脂肪酸以14:0、16:0、20:5为主;紫球藻的脂肪酸组成以16:0、20:4和20:5为主。在测试的13种微藻中,杜氏盐藻的亚麻酸含量最高,占总脂肪酸的60.9%;等鞭金藻的十八碳四烯酸含量最高,占总脂肪酸的19.6%;紫球藻和粉核油球藻中花生四烯酸与二十碳五烯酸(EPA)含量分别占总脂肪酸的17.1%和20.9%。  相似文献   

5.
南海南部悬浮颗粒物脂肪酸组成   总被引:1,自引:1,他引:0  
中国水产科学研究院南海水产研究所"南锋号"科考船在2012年2月22日—3月20日调查期间,对南海南部海域0 m、75 m和150 m层水体悬浮颗粒物进行了脂肪酸(FA)组成的研究。FA含量在表层、75 m层和150 m层的变化范围分别为9.9—15.65μg/L,10.45-14.45μg/L和9.65—16.45μg/L。FA与叶绿素a的比值垂向变化非常大,在表层和150 m层都大于70,而在75 m层小于30(除A7)。悬浮颗粒物的FA组成以饱和脂肪酸和单不饱和脂肪酸为主,而多不饱和脂肪酸含量较低。饱和脂肪酸主要包括C16:0和C18:0,其次是C12:0,单不饱和脂肪酸主要包括C14:1n3、C16:1n7和C16:1n9,多不饱和脂肪酸主要为C18:2n6和C22:2n6。主成分分析表明,第一主成分主要与C16:0、C18:0、C20:0等正相关,可认为第一主成分主要表征浮游植物和碎屑,而第二主成分所表征的可能与浮游动物等有关的信息。悬浮颗粒物的脂肪酸标记物中,C16:1n7/C16:0和∑C16:1/∑FA之间呈显著正相关,同时C16:1n7/C16:0与∑C18/∑FA呈显著负相关,将C16:1n7/C16:0和C16:1/∑FA结合起来适宜于指示硅藻类的组成,∑C18/∑FA可用来指示甲藻类组成。  相似文献   

6.
阿根廷无须鳕(Merluccius hubbsi)是西南大西洋较为重要的鱼种,具较高的商业价值,为底拖网渔业的主要捕捞对象。本研究利用气相色谱质谱联用仪测定了阿根廷无须鳕肌肉组织脂肪酸组成,探究各脂肪酸含量,包括饱和脂肪酸(SFA)、单不饱和脂肪酸(MUFA)和多不饱和脂肪酸(PUFA)随体长、月份和纬度的变化。结果表明:各类脂肪酸含量高低次序依次为∑PUFA∑SFA∑MUFA;主要脂肪酸包括C22:6n3(DHA)、C16:0、C18:1n9c、C20:5n3(EPA)和C18:0,其中DHA的含量最高,占总脂肪酸含量的35.27%;高PUFA/SFA表明阿根廷无须鳕肌肉可作为PUFA的补充原料;∑SFA和∑PUFA在小体长组个体中(20.1~30.0 cm)的含量较高,特别是DHA和EPA,使得n-3/n-6增加,说明相对较大个体而言,小个体阿根廷无须鳕的营养价值更高;除n-3/n-6外,其余脂肪酸含量均无显著的月份差异;1月最高的n-3/n-6说明肌肉组织在该月份具有较高的营养价值。鱼体各脂肪酸含量随纬度和表温变化不明显。  相似文献   

7.
In an attempt to explore the relationships between phosphatidylglycerol (PG) molecular species of thylakoid membrane lipids and sensitivities to chilling-induced photoinhibition, PG molecular species, D1 protein, electron transport activities of thylakoid membrane and the potential quantum yield (FvlFm) in rice treated under middle and low photon flux density (PFD) at 11℃ were analyzed by high performance liquid chromatography, enzyme hydrolysis, gas phase chromatography (GC) and so on. Results showed that the major molecular species of PGs in rice thylakoid membrane were 18:3/16:0, 18:3/16:1(3t), 18:2/16:0, 18:2/16:1(3t), 18:1/16:0, 18:1/16:1(3t), 16:0/16:0, 16:0/16:1(3t). There were large differences in the contents of unsaturated PG molecular species such as 18:1-3/16:0-16:1(3t) and saturated PG molecular species like 16:0/16:0-16:1(3t) among japonica cv 9516 0-9516), japonica-indica hybrid F1 j-9516/i-SY63 (ji-95SY) and indica cv Shanyou 63 (i-SY63). J-9516 containing higher contents of unsaturated PG molecular species was manifest in stable D1 protein contents under chill and tolerant to chill-induced photoinhibition. In contrast to j-9516, i-SY63 with lower contents of unsaturated PG molecular species, exhibited unstable D1 protein contents under chill and was sensitive to chill-induced photoinhibition, ji-95SY containing middle contents of unsaturated PG molecular species between those of j-9516 and i-SY63, exhibited mid extent of sensitivity to chill-induced photoinhibition. The losses in D1 protein also account for the inhibition in electron transport activity of thylakoid membrane and the observed decline in FvlFm. The PG molecular species that is efficient in raising chilling-resistant capacity were those containing unsaturated fatty acids, namely, unsaturated PG molecular species. These results implied that the substrate selectivity of the glycerol-3-phosphate acyltransferase in chloroplasts towards 16:0 or 18:1 displayed greatly the difference between japonica and indica rice. Itwas possible to enhance the capacity of resistance to chilling-induced photoinhibition by improving or modifying the GPAT gene.  相似文献   

8.
紫苏种子脂肪酸组成及合成代谢研究进展   总被引:2,自引:0,他引:2  
紫苏是一种新型油料作物,种子含油量为35%左右,紫苏籽油脂肪酸组成丰富,含有棕榈酸(16:0)、硬脂酸(18:0)、油酸(18:1)、亚油酸(18:2)和α-亚麻酸(18:3)等,其中α-亚麻酸(ALA)含量高达60%,广泛用于功能性保健食品、药物及油脂化工业.介绍紫苏种子脂肪酸组成及合成代谢基本途径,对近年来脂肪酸合成代谢基因工程研究进行概述与展望.  相似文献   

9.
ω-3多不饱和脂肪酸发酵生产中两个调控指标的探讨   总被引:3,自引:0,他引:3  
为了调控长链ω 3多不饱和脂肪酸的发酵 ,对用于脂肪酸发酵调控的 2个指标 18∶3(α ) /18∶2和∑C18/∑C16进行探讨。对 2个指标从化学反应平衡角度进行阐述 ,进一步证明在合适的条件下 ,头孢霉 18∶3(α ) /18∶2的变化趋势和二十二碳六烯酸变化趋势一致 ;轮梗霉∑C18/∑C16和二十碳五烯酸变化趋势一致。 18∶3(α ) /18∶2和∑C18/∑C16可以作为发酵生产二十二碳六烯酸和二十碳五烯酸的调控指标。  相似文献   

10.
大脑功能与脑内脂肪酸成分密切相关,分析研究老年时脑脂肪酸组成及含量有助于阐明不同类型脂肪酸在老年认知能力降低过程中的作用.采用Y型电迷宫测试老年组(22月龄)和青年组(3月龄)大鼠的学习记忆能力,表明老年组大鼠的学习记忆能力显著下降.用气相色谱的方法分析大鼠大脑皮质脂肪酸的组成及含量,显示老年组和青年组大脑皮质均含有16种脂肪酸.以C23:0为内标对各种脂肪酸进行了定量,老年组总脂肪酸含量比青年组降低约15%,各脂肪酸中含量下降的脂肪酸有长链饱和脂肪酸(C14:0、C16:0、C18:0)及多不饱和脂肪酸(C18:3、C20:4、C22:4、C22:6),含量升高的脂肪酸有单不饱和脂肪酸C20:1、C24:1.用峰面积归一法计算了各脂肪酸的相对含量,老年组相对含量下降的脂肪酸有C18:0、C20:4、C22:6,相对含量升高的有极长链饱和脂肪酸(C20:0、C24:0)及单不饱和脂肪酸(C16:1、C18:1、C20:1、C22:1、C24:1).相关性分析显示,大鼠学习能力与脑皮质C22:6、C22:4、C20:4水平呈正相关,与C20:1、C24:1水平呈负相关.上述结果为阐明不同脂肪酸在老年大脑认知功能障碍中的作用提供了实验依据。  相似文献   

11.
The composition of molecular species and the positional distribution in fatty acids of phosphatidylglycerol (PG) isolated from poplar ( Populus deltoides cv. Lux 1-69/55 and Poeuramericarla cv.I- 45/51 ) leaves were analyzed by high-performance liquid chromatography (HPLC), enzym hydrolysis and gas phase chromatography (C,C), and the different cold-resistant poplars were compared with respect to the compositions of molecular species of PG isolated from their leaves. The results showed that the fatty acid compositions ( sn- 1/sn-2) of the major molecular species in PCs from poplar leaves were as follows: 18:3/18:2(18:2/18:3), 18:3/16: 1(3t); 18:3/16:0; 18:2/ 16:1 (3t); 16:0/18:2,18:2/16:0; 18: 1/16: l(3t); 16:0/16: l(3t); 18: 1/18: 1,16:0/18: 1( 18: 1/16:0); 16:0/16:0o The positional distribution of fatty acids in lPG from poplar leaves was found that 16:1(30 was exclusively occupied the sn-2 position, whereas 16:0 was present in both the sn1 position and the sn-2 position. The C18 acids were principally localized at the sn-2 position. The relative contents of the unsaturated molecular species of leaf PCs were more than 70% in both coldresistant poplar and cold-sensitive poplar. The ratio of the unsaturated/saturated molecular species of PG isolated from the cold-resistant Ⅰ -45 poplar was 3.10, which was higher than that of the PG from the cold-sensitive cottonwood, which was 2.38. The sum of the relative contents of the disaturated molecular species of the PG from poplar leaves was closely associated with the cold-resistance of plants. The ∑[ 16:0/16:0+ 16:0/16: l(3t) ] of the PG from cottonwood was higher than that of the PG from cold-resistant I -45 poplar. The differences in the compositions of molecular species and the phase transition temperatures of PCs between cold-resistant and cold-sensitive plants were discussed in terms of the pathways and the activities of selective acyhransferases involved in the PG biosynthesis in chloroplast.  相似文献   

12.
This paper reports the positional distribution of fatty acids in triacylglycerols (TAG) of Artemia franciscana nauplii enriched with each of palmitic (16:0), oleic (18:1n-9), linoleic (18:2n-6), linolenic (18:3n-3), eicosapentaenoic (20:5n-3), and docosahexaenoic (22:6n-3) acid ethyl esters. TAG extracted from the enriched and unenriched nauplii were subjected to regiospecific analysis to determine the fatty acid compositions of the sn-1(3) and sn-2 positions of TAG. In the unenriched nauplii, 16:0, 18:1n-9, and 18:2n-6 were preferentially located in the sn-1(3) position followed by the sn-2 position [i.e. sn-1(3)>sn-2], whereas 18:3n-3 was concentrated in the sn-2 position [i.e. sn-2>sn-1(3)]. Contents of 20:5n-3 and 22:6n-3 were low. After the nauplii were enriched with each of the ethyl esters for 18 h, fatty acid fed to the nauplii showed higher content in the sn-1(3) position than in the sn-2 position [i.e. sn-1(3)>sn-2]. Distribution pattern of 18:3n-3 changed from sn-2>sn-1(3) to sn-1(3)>sn-2 during the enrichment with 18:3n-3 ethyl ester. Increases in all of the fatty acids in TAG were attributed to that in the sn-1(3) position much more than that in the sn-2 position. Artemia nauplii appear to be characterized by preferential incorporation of exogenous fatty acids into the sn-1(3) position of TAG, even though endogenous fatty acids are esterified in the opposite position.  相似文献   

13.
This study was performed to determine whether fatty acids incorporated into liver cell nuclei phosphatidylcholine (PtdCho) could be remodeled in the isolated nuclear. For this reason, rat liver cell nuclei were incubated in vitro with [1-14C]20:4n-6-CoA. PtdCho molecular species with the highest specific activity had an unsaturated fatty acid at sn-1 and sn-2 positions (20:4-20:4>18:2-20:4>18:1-20:4). 16:0-20:4 and 18:0-20:4 PtdChos showed a minor specific activity. When labeled nuclei were reincubated in the absence of labeled substrate with the addition of cytosol, ATP and CoA, the specific activity of 20:4-20:4, 18:2-20:4 and 18:1-20:4 species decreased, while that of 16:0-20:4 and 18:0-20:4 increased. In conclusion, the asymmetric fatty acid distribution of saturated fatty acids at sn-1 position, and unsaturated fatty acids at sn-2 position of nuclear PtdCho molecular species was re-established by an acyl-CoA-dependent remodeling process.  相似文献   

14.
Biliary cholesterol secretion is ordinarily tightly coupled to phosphatidylcholine (PC) secretion. Bile PCs are distinct in composition and predominantly composed of molecular species with 16:0 in the sn-1 position and 18:2 and 18:1 in the sn-2 position. In an attempt to acutely change the composition of biliary PCs and to assess the effect of a change in PCs on biliary cholesterol secretion, isolated livers were perfused with a variety of single free fatty acids. Rat livers with bile duct cannulas were perfused with a recirculating medium, taurocholate (40 mumol/h), and albumin-bound 16:1, 17:1, 18:1, 20:1, 18:2, 20:4, or 20:5 fatty acids (90 mumol/h) for 2 h. Biliary lipid secretion was measured and bile and liver PC compositions were compared at the start and end of perfusion. Results showed 1) greater utilization of shorter chain than longer chain fatty acids for bile PC formation (16:1 greater than 17:1 greater than 18:2 or 18:1 greater than 20:5, 20:4 or 20:1); 2) no similar pattern of FA utilization for liver PC formation; 3) preferentially greater incorporation of fatty acids into bile PCs compared to liver PCs when perfused fatty acids were used for esterification at both sn-1 and sn-2 positions of PC (to form diunsaturated PCs); and 4) increased biliary secretion of cholesterol relative to PC only when the population of PCs that was newly formed included more hydrophilic molecular species of PC than are present in native bile (that was observed only with perfusion of 16:1). Changes in biliary PC secretion or cholesterol/PC secretion occurred independently of any change in bile salt secretion.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
The fatty acid distributions at the sn-1 and sn-2 positions in major chloroplast lipids of Chlorella kessleri 11h, monogalactosyl diacylglycerol (MGDG) and digalactosyl diacylglycerol (DGDG), were determined to show the coexistence of both C16 and C18 acids at the sn-2 position, i.e. of prokaryotic and eukaryotic types in these galactolipids. For investigation of the biosynthetic pathway for glycerolipids in C. kessleri 11h, cells were fed with [14C]acetate for 30 min, and then the distribution of the radioactivity among glycerolipids and their constituent fatty acids during the subsequent chase period was determined. MGDG and DGDG were labeled predominantly as the sn-1-C18-sn-2-C16 (C18/C16) species as early as by the start of the chase, which suggested the synthesis of these lipids within chloroplasts via a prokaryotic pathway. On the other hand, the sn-1-C18-sn-2-C18 (C18/C18) species of these galactolipids gradually gained radioactivity at later times, concomitant with a decrease in the radioactivity of the C18/C18 species of phosphatidylcholine (PC). The change at later times can be explained by the conversion of the C18/C18 species of PC into galactolipids through a eukaryotic pathway. The results showed that C. kessleri 11h, distinct from most of other green algal species that were postulated mainly to use a prokaryotic pathway for the synthesis of chloroplast lipids, is similar to a group of higher plants designated as 16:3 plants in terms of the cooperation of prokaryotic and eukaryotic pathways to synthesize chloroplast lipids. We propose that the physiological function of the eukaryotic pathway in C. kessleri 11h is to supply chloroplast membranes with 18:3/18:3-MGDG for their functioning, and that the acquisition of a eukaryotic pathway by green algae was favorable for evolution into land plants.  相似文献   

16.
The positional distribution of fatty acids was determined in the major groups of glycerolipids from the mycelium and sporangiophores of the fungus Phycomyces blakesleeanus. At the sn-1 positions of the triacylglycerols, in both regions of the fungus, greater than 65% of the fatty acids were 16:0 and 18:1. At the sn-2 positions of the triacylglycerols, 18:1, 18:2 and 18:3 comprised greater than 85% of the sporangial fatty acids and more than 90% of the mycelial fatty acids. Positions sn-3 of the triacylglycerols, from both regions of the fungus, contained approximately 40% of 16:0, approximately 30% of 18:2, and the largest proportions of 18:3 (21%) in the triacyglycerols. The major phosphoglycerides of P. blakesleeanus mycelium and sporangiophores are phosphatidylcholine and phosphatidylethanolamine, and more than 85% of the fatty acids at the sn-1 positions of these phosphatides consisted of 16:0, 18:2, and 18:3. The sn-2 positions of phosphatidylcholine and phosphatidylethanolamine contained approximately 98% unsaturated fatty acids. In the phosphoglycerides of both regions of the fungus, 18:2 and 18:3 constituted greater than 85% of the total fatty acids. Although the mycelium and sporangiophores of P. blakesleeanus had different morphological and physiological characteristics, the major glycerolipids of the two regions had similar stereospecific distributions of fatty acids.  相似文献   

17.
Triacylglycerols secreted by liver and carried by very low density lipoprotein (VLDL) are hydrolysed in circulation by lipoprotein and hepatic lipases. These enzymes have been shown to have positional and fatty acid specificity in vitro. If there were specificity in basal lipolysis in vivo, triacylglycerol compositions of circulating and newly secreted VLDL would be different. To study this we compared the composition of normal fasting VLDL triacylglycerol of Wistar rats to that obtained after blocking lipolysis by Triton WR1339, which increased plasma VLDL triacylglycerol concentration about 4.7-fold in 2 h. Analyses of molecular species of sn-1,2- and sn-2,3-diacylglycerol moieties and stereospecific triacylglycerol analysis revealed major differences between the groups in the VLDL triacylglycerol composition. In nontreated rats, the proportion of 16:0 was higher and that of 18:2n-6 lower in the sn-1 position. The proportion of 14:0 was lower in all positions and that of 18:0 was lower in the sn-1 and sn-3 positions in nontreated rats whereas the proportions of 20:4n-6, 20:5n-3, 22:5n-3 and 22:6n-3 were higher in the sn-1 and lower in the sn-2 position. These results suggest that the fatty acid of the sn-1 position is the most decisive factor in determining the sensitivity for hydrolysis of the triacylglycerol. In addition, triacylglycerol species with highly unsaturated fatty acids in the sn-2 position also favoured hydrolysis. The in vivo substrate specificity followed only partly that obtained in in vitro studies indicating that the nature of molecular association of fatty acids in natural triacylglycerol affects its susceptibility to lipolysis. To conclude, our results indicate that preferential basal lipolysis leads to major structural differences between circulating and newly secreted VLDL triacylglycerol. These differences extend beyond those anticipated from analysis of total fatty acids and constitute a previously unrecognized feature of VLDL triacylglycerol metabolism.  相似文献   

18.
Algal preparations from Acetabularia crenulata were analyzed for their fatty acid composition to establish the suitability of this alga as a model to study fatty acid oxidation and oxylipin biosynthesis. The work was based on two goals. The first goal of this study was to determine the contribution of fatty acids from contaminating bacteria and how this influenced the total fatty acid composition of cell homogenates of A. crenulata collected in the wild as compared to specimens cultured in sterile conditions. The major fatty acids detected for both specimens were palmitic (C16:0), palmitoleic (C16:1n-7), oleic (C18:1n-9), linoleic (C18:2n-6), linolenic (C18:3n-3), and octadecatetraenoic acid (C18:4n-3). Significant amounts of odd-chain fatty acids common to bacteria were not detected in either sample. Furthermore, branched-chain fatty acids, typical bacterial biomarkers, were not detected in either sample. Data suggest that bacteria do not greatly contribute to the total fatty acid pool of A. crenulata. The second goal was to compare the fatty acid composition of cell homogenates with that of isolated chloroplasts. Comparatively speaking palmitoleic and octadecatetraenoic acid were found at significantly lower concentrations in the chloroplast whereas oleic and linolenic acid were found at significantly higher amounts in this organelle. Furthermore, the amount of hexadecatrienoic acid (C16:3), a fatty acid commonly esterified to monogalactosyldiacylglycerol (MGDG; lipid present at high concentrations inside the chloroplasts of algae), was present at very low concentrations in these plastids (0.7%). Typically green algal follow the "prokaryotic pathway" for MGDG biosynthesis where C18:3 is esterified at the sn-1 position of the glycerol backbone and C18:3 or C16:3 at the sn-2 position, making C16:3 a major fatty acid inside chloroplasts. Interestingly, our results suggest that chloroplasts of A. crenulata appear to follow the "eukaryotic pathway" for MGDG biosynthesis where C18:3 is both at the sn-1 and sn-2 position of MGDG. Taking into account the exceptions noted, the fatty acid composition for A. crenulata is similar to that reported for most chlorophytes.  相似文献   

19.
The molecular species of highly purified phosphatidylinositol from soybeans were determined as an aid in the investigation of the mechanism of their reported selective cytotoxicity towards tumor cells. Unlike the animal phosphatidylinositol, which contains predominantly stearic acid in the sn-1 and arachidonic in the sn-2 position (18:0 20:4), the soybean phosphatidylinositol was found to contain mainly linoleic acid in the sn-2 position and palmitic (16:0 18:2), stearic (18:0 18:2) and linoleic (18:2 18:2) acids in the sn-1 position of its molecular species.  相似文献   

20.
We have previously reported that fetal rabbit lung tissue in organ culture produces a lamellar body material (pulmonary surfactant) with a lower percentage of disaturated phosphatidylcholine than is typically found in rabbit lung in vivo (Longmuir, K.J., C. Resele-Tiden, and L. Sykes. 1985. Biochim. Biophys. Acta. 833: 135-143). This investigation was conducted to identify all fatty acids present in the lamellar body phosphatidylcholine, and to determine whether the low level of disaturated phosphatidylcholine is due to excessive unsaturated fatty acid at position sn-1, sn-2, or both. Fetal rabbit lung tissue, 23 days gestation, was maintained in culture for 7 days in defined (serum-free) medium. Phospholipids were labeled in culture with [1-14C]acetate or [U-14C]glycerol (to follow de novo fatty acid biosynthesis), or with [1-14C]palmitic acid (to follow incorporation of exogenously supplied fatty acid). Radiolabeled fatty acid methyl esters obtained from lamellar body phosphatidylcholine were first separated by reverse-phase thin-layer chromatography (TLC) into two fractions of 1) 14:0 + 16:1 and 2) 16:0 + 18:1. Complete separation of the individual saturated and monoenoic fatty acids was achieved by silver nitrate TLC of the two fractions. Monoenoic fatty acid double bond position was determined by permanganate-periodate oxidation followed by HPLC of the carboxylic acid phenacyl esters. Lamellar body phosphatidylcholine contained four monoenoic fatty acids: 1) palmitoleic acid, 16:1 cis-9; 2) oleic acid, 18:1 cis-9; 3) cis-vaccenic acid, 18:1 cis-11; and 4) 6-hexadecenoic acid, 16:1 cis-6. In addition, 8-octadecenoic acid, 18:1 cis-8, was found in the fatty acids of the tissue homogenate. The abnormally low disaturated phosphatidylcholine content in lamellar body material was the result of abnormally high levels of monoenoic fatty acid (principally 16:1 cis-9) found at position sn-2. Position sn-1 contained normal levels of saturated fatty acid. The biosynthesis of the unusual n-10 fatty acids was observed from the start of culture throughout the entire 7-day culture period, and was observed in incubations of tissue slices of day 23 fetal rabbit lung. This is the first report of the biosynthesis of n-10 fatty acids (16:1 cis-6 and 18:1 cis-8) in a mammalian tissue other than skin, where these fatty acids are found in the secretory product (sebum) of sebaceous glands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号