首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
最近发现,内皮素(endothelin,ET)不仅具有强烈的血管活性作用,还可能作为激素调节肽参与性激素的调节。在下丘脑-垂体-卵巢轴的器官和胎盘都有丰富的ETmRNA和ET受体存在。Kanyicska等在培养的雌性大鼠垂体前叶细胞,应用ET-3(10~(-14)~10~(-6)mol/L)明显抑制垂体前叶细胞分泌催乳素(PRL),增加促黄体生成素(LH)、促卵泡素(FSH)和促甲状腺素(TSH)的释放。ET的刺激效  相似文献   

2.
作者给22天的未成年雌性大鼠注射孕马血清促性腺激素,于25天处死,取卵巢,将卵泡液处理后得到大鼠卵泡液性腺素(gonadocrinin)的粗制剂。将此性腺素制剂加入垂体细胞单层培养以后,培养液中的LH和FSH均增加。而以同样方式处理大鼠肝脏所得到的制剂无此作用。在大鼠间情期第二天,静脉注射该性腺素,血清LH水平的变化与用LRF处理的大鼠相似。这说明,在体及离体条件下,性腺素均能刺激垂体分泌促性腺激素。离体条件下,性腺素仅仅刺激LH和FSH的分泌,对其它几种垂体激素(PRL、GH及TSH)的分泌均无影响。这提示性腺素的作用具有特异性。用放射免疫测定法证明,该性腺素制剂中没有可测出量的FSH、LH、雌激素、孕酮及睾丸酮。  相似文献   

3.
草鱼催乳素抗血清的制备与鉴定   总被引:1,自引:0,他引:1  
应用从草鱼垂体中分离纯化的催乳素免疫兔子制备了特异抗血清。用常规酶联免疫吸附测定法检测表明该抗血清与马哈鱼生长激素及促性腺激素完全没有交叉反应,而与草鱼生长湟级向弱交叉反应。免疫细胞化学染色表明该抗血清主要与草鱼垂体前叶催乳素细胞发生结合反应,与垂体间叶细胞有微弱染色反应,但与神经垂体琢垂体后叶细胞则完全没有免疫结合反应。  相似文献   

4.
Ren HM  Zhou SK  He ZY  Gu DY 《生理学报》2001,53(5):329-333
研究者普遍认为糖蛋白激素存在于促性腺激素(gonadotrophin,GTH)细胞的颗粒内,目前在生殖内分泌领域内对糖蛋白激素形成与释放的研究也主要集中在细胞内颗粒的变化上,我们近年的研究发现,大鼠垂体GTH细胞内黄体生成激素(luteinizing hormone,LH)的分泌与细胞内液泡的形态变化有密切的关系。铁形态也随液泡的形态变化而变化,因而推测“LH的储存与释放可能与液泡有极大的关系”,为进一步揭示垂体细胞的液泡内是否存在LH和探讨哺乳动物垂体细胞的液泡是否具有储存与释放LH的功能,本研究对大鼠垂体细胞的液泡进行了分离和纯化。用SDS-PAGE,Western immunobloting及Con A/HRP等方法分别对纯化的垂体,大脑皮层及肝脏组织的液泡进行了蛋白质,LH及糖蛋白的分析。结果显示:(1)垂体,皮层及肝脏细胞的液泡内均含有丰富的,分子量大小不等的蛋白质成分,不同组织的细胞液泡内蛋白质成分有许多是相似的;(2)垂体组织及其液泡内均含有LH,而且在相同浓度的蛋白量中,两者LH的水平并无明显差异;(3)垂体,皮层和肝脏组织液泡内均有分子量不同的糖蛋白,但只有垂体细胞的液泡内才有与LH位置相同的糖蛋白染色谱带。上述结果表明:虽然哺乳动物不同组织的细胞液泡内含有许多相似的蛋白质成分,但LH是特异性地存在于垂体细胞液泡内。在这些LH分子中,至少有一部分是已经装配了糖基的完整LH分子。因此,垂体细胞的液泡有可能具有储存与释放LH的功能。  相似文献   

5.
现在已清楚许多激素,包括生长激素、促肾上腺皮质激素、胰岛素、雄激素、甲状腺素、糖皮质激素和盐皮质激素,在增加器官重量、RNA和蛋白质合成、DNA合成和有丝分裂活性以及鸟氨酸脱羧酶活性方面能促进肾生长。除了这些促进肾生长的激素以外,Nicholson等证明,还有一种绵羊垂体分泌的多肽片断能促肾增大,其依据是这一因子能增加经阉割并切除垂体的大鼠肾重量。经生化分析这一多肽片断主要由LH组成,不含生长激素、促肾上腺皮质激素、γ-促脂解激素、加压素和催乳素,而仅含少量的TSH和FSH。每天给切除垂体的大鼠注射生长激素、促肾上腺皮质激素、催乳素、TSH和FSH都不能刺激肾生长。为了解答垂体分泌的促肾素(renotropin)活性是否归因于LH内在活性的疑问,Nicholson等检测了  相似文献   

6.
垂体与性腺相互之间的内分泌关系甚为密切,而近年的研究资料表明中枢神经系统,尤其是丘脑下部,对垂体有调节性的影响;因此探讨神经系统机能状态在激素失调诱发垂体肿瘤中的作用是重要的。于雌激素的长期持续作用下,垂体前叶的某些机能受到抑制,实验动物如小鼠或大鼠的垂体前叶细胞增生,以至于有腺瘤的形成;叙利亚金色地鼠  相似文献   

7.
十几年前曾有人报告在动物和人的下丘脑正中隆起提取液中存在类促性腺激素的生物活性。近来Ema-nuele等人观察到,在大鼠脑内散在地分布有类LH肽的免疫活性。在切除垂体后,该物质仍然存在。说明大鼠脑中的类LH物质来源于脑,而不可能来源于垂体。传统的观念认为,下丘脑控制腺垂体的激素分泌,而腺垂体激素又可通过短反馈的途径作用于下丘脑,调节其机能。但上述资料表明,下丘脑的类LH物质并非来自腺垂体,那么它对腺垂体的LH释放是否具有调节作用呢?Emanuele等对这一问题进行了研究。他们分别测定了成年雌性大鼠动情周期各期和去卵巢或假手术雌鼠下丘脑、腺垂体及血清中的LH含量。结果观察到,下丘脑中的LH含量随周期而变化,于  相似文献   

8.
垂体特异性转录因子祖先蛋白(PROP l),是成对同源转录因子,在垂体腺中呈特异性表达,参与早期胚胎垂体的发育,因此,PROP1基因对于垂体前叶的发育是必需的。PROP1启动胚胎期垂体特异性转录因子(PIT-1)的起始表达并维持个体出生后的持续表达,且可直接促使PIT-1细胞系的前体分化为促性腺细胞系。其基因突变可使人、鼠患有联合垂体激素缺乏症(CPHD),表现为生长激素(GH)、促乳素(PRL)、促甲状腺素(TSH)以及促黄体激素(LH)、促卵泡激素(FSH)或促肾上腺皮质激素(ACTH)缺乏,垂体核磁共振成像显示垂体萎缩。在其它哺乳动物中PROP1突变也会引起垂体和性腺激素异常。就PROP1基因的结构与功能,以及与CPHD间的关系作一综述。  相似文献   

9.
用兔抗羊 LH 血清和放射性碘标记的羊 LH 建立了大白鼠血清中 LH 的双抗体放射免疫测定法。在这异源的系统中羊 LH 和大鼠 LH 的剂量反应曲线是平行的。当用羊LH_(2-2-1)作参考标准时测量的灵敏度为0.1ng/管。当用大鼠 LH-RP-1作参考标准时测量的灵敏度为10ng/管。大鼠的 FSH 没有交叉反应,所以 FSH 不会干扰血清 LH 的测定。用这个系统我们研究了去卵巢以及去卵巢后给予孕酮和巳烯雌酚以后大鼠血清中LH 水平的变化。结果表明性类固醇激素对大鼠垂体 LH 的分泌具有一个负反馈的调节机制。本文中还研究了棉酚对大鼠 LH 分泌的影响。我们发现成年雄鼠服用棉酚以后血浆 LH 的水平以及垂体对 LRH 的反应均无显著的变化。结果表明新的男性抗生育药物——棉酚似乎不影响垂体的 LH 分泌功能。  相似文献   

10.
林麝FSHB和LHβ基因是调控林麝的繁殖和泌香的重要垂体激素.本研究克隆了林麝FSHβ和LHβ基因DNA全序列,林麝FSHβ和LHβ基因与其他反刍动物相似,具有3个外显子区域;哺乳动物FSHβ和LHβ全基因序列的差异大于外显子之间的差异.在哺乳动物中,林麝FSHβ和LHβ蛋白序列与人、马同源性并不是最高,因此,在林麝的催情、人工授精以及用于二次催香反应中应考虑使用相似性更高的激素或自生激素以减少人工繁殖和泌香失败.  相似文献   

11.
We have recently purified a novel pituitary polypeptide designated 7B2. By raising polyclonal antibodies to a synthetic 7B2 fragment in rabbits, we have developed a sensitive and specific radioimmunoassay for this novel polypeptide, and it has been used for the study of the release of immunoreactive 7B2 from rat anterior pituitary cells in vitro. In addition, immunocytochemical study shows that 7B2 is present in the gonadotropin cells of rat anterior pituitary. The aim of the present studies is to investigate the effect of human beta-inhibin, testosterone, and combined testosterone plus human beta-inhibin on the induced release of immunoreactive 7B2, follicle-stimulating hormone (FSH), and luteinizing hormone (LH) in rat anterior pituitary cell culture in vitro. Our results show that both human beta-inhibin and testosterone effectively suppress the stimulatory effect of luteinizing hormone-releasing hormone (LHRH) on immunoreactive 7B2, FSH, and LH release. The present data indicate that the regulation of secretion of 7B2 and pituitary gonadotropins may be under a similar type of feedback mechanism.  相似文献   

12.
The purpose of this study was to investigate whether progesterone exerted progesterone receptor mediated direct effects on the anterior pituitary in the secretion of FSH and whether such effects were mediated through the 5 alpha-reduction of progesterone. Treatment of anterior pituitary dispersed cells for 48 h with 0.5 nM estradiol reduced the ED50 for gonadotropin releasing hormone (GnRH)-stimulated FSH release from 0.58 to 0.36 ng/ml and the ED50 for GnRH-induced LH release from 0.54 to 0.19 ng/ml. When dispersed pituitary cells were treated with 0.5 nM estradiol and exposed to various doses of progesterone for 1 to 6 h, the most consistent rise in basal and GnRH-stimulated FSH release was observed with the 50 nM dose of progesterone with a 3-h exposure period. All three doses of progesterone elevated basal LH and GnRH-stimulated LH was increased by the 50 and 100 nM doses of progesterone during the 3-h period of treatment. Using the 50 nM dose of progesterone, basal and GnRH-stimulated LH was increased after 2, 3 and 6 h of progesterone treatment. When the period of exposure of progesterone was extended to 12, 36 or 48 h, there was a significant inhibition of GnRH-stimulated FSH release. GnRH-stimulated LH release was inhibited at 36 and 48 but not 12 h after progesterone treatment. These studies showed that the effect of progesterone administered for periods of 1 to 6 h enhanced the secretion of LH and FSH whereas progesterone administered for periods beyond 12 h inhibited FSH and LH release by dispersed pituitary cells in culture. These results are similar to those observed in vivo after progesterone treatment. Furthermore estrogen priming of the dispersed pituitary cells was necessary to observe the effects of progesterone. The progesterone antagonist RU486 prevented the progesterone-induced rise in GnRH-stimulated FSH release. Furthermore the 5 alpha-reductase inhibitor N,N-diethyl-4-methyl-3-oxo-4-aza-5 alpha-androstane- 17 beta-carboxamide also prevented the progesterone-induced rise in GnRH-stimulated FSH release in estrogen-treated dispersed pituitary cells. These results indicate that the anterior pituitary is a major site of action of progesterone in the release of FSH and that 5 alpha-reduction of progesterone plays an important role in FSH release.  相似文献   

13.
The effects of thymulin and GnRH on FSH and LH release were studied in suspension cultures of anterior pituitary cells from female adult rats sacrificed on each day of the estrous cycle. The spontaneous release of gonadotropins by pituitaries, as well as their response to GnRH or thymulin addition, fluctuated during the estrous cycle. Adding thymulin to pituitary cells from rats in diestrus 1 increased the concentration of FSH; while in cells from rats in estrus, FSH level decreased. Thymulin had a stimulatory effect on the basal concentration of LH during most days of the estrous cycle. Adding GnRH increased FSH release in cells from rats in diestrus 1, diestrus 2, or proestrus, and resulted in higher LH levels in cells obtained from rats in all days of the estrous cycle. Compared to the GnRH treatment, the simultaneous addition of thymulin and GnRH to cells from rats in diestrus 1, diestrus 2, or proestrus resulted in lower FSH concentrations. Similar results were observed in the LH release by cells from rats in diestrus 1, while in cells from rats in proestrus or estrus, LH concentrations increased. A directly proportional relation between progesterone serum levels and the effects of thymulin on FSH release was observed. These data suggest that thymulin plays a dual role in the release of gonadotropins, and that its effects depend on the hormonal status of the donor's pituitary.  相似文献   

14.
Stimulation of FSH release by erythroid differentiation factor (EDF)   总被引:2,自引:0,他引:2  
The action of erythroid differentiation factor (EDF) on primary culture of rat anterior pituitary cells was examined. EDF stimulates FSH secretion in a dose dependent manner but not of LH secretion. ED50 of EDF for FSH secretion was 5 X 10(-10) M, while ED50 of LHRH for FSH secretion was 5 X 10(-9) M. These data indicate that EDF is a potent agonist for FSH secretion and the biological activity of EDF on anterior pituitary seems to be identical as that of FSH releasing protein (FRP).  相似文献   

15.
As is the case in other tetrapod species, the chicken gonadotropins LH and FSH consist of a common alpha subunit and a hormone-specific beta subunit. Gonadotrophs containing LH were shown earlier to be distributed throughout both the caudal and cephalic lobes of the chicken anterior pituitary, but the cellular distribution of FSH in avian species is still uncertain. The purpose of this study was to determine the cellular distribution of FSH-containing chicken gonadotrophs by use of FSH-specific monoclonal antibodies (mAbs). Three new mAbs toward chicken FSH were proven hormone specific by immunodetection of purified hormones on dot blots and by dual-label immunohistochemistry (IHC) on sagittal sections of chicken pituitaries. A rabbit antibody was used to detect chicken LH. Results showed that LH-containing gonadotrophs were densely distributed throughout the anterior pituitary, whereas gonadotrophs containing FSH were much less numerous; in addition, while also present in both lobes, FSH-positive cells were largely absent from the outer margin of the gland. Dual-label IHC revealed that LH and FSH reside almost exclusively in separate gonadotrophs. The identity of FSH-containing cells was further confirmed through use of an antibody to the chicken alpha subunit, which showed that FSH immunoreactivity was always colocalized with the alpha subunit. Our results suggest the possibility that production and secretion of LH and FSH may be regulated differently in chickens than in most other species studied to date.  相似文献   

16.
K A Elias  C A Blake 《Life sciences》1980,26(10):749-755
Experiments were undertaken to investigate if changes occur at the level of the anterior pituitary gland to result in selective follicle-stimulating hormone (FSH) release during late proestrus in the cyclic rat. At 1200 h proestrus, prior to the preovulatory luteinizing hormone (LH) surge in serum and the accompanying first phase of FSH release, serum LH and FSH concentrations were low. At 2400 h proestrus, after the LH surge and shortly after the onset of the second or selective phase of FSH release, serum LH was low, serum FSH was elevated about 4-fold, pituitary LH concentration was decreased about one-half and pituitary FSH concentration was not significantly decreased. During a two hour invitro incubation, pituitaries collected at 2400 h released nearly two-thirds less LH and 2.5 times more FSH than did pituitaries collected at 1200 h. Addition of luteinizing hormone releasing hormone (LHRH) to the incubations caused increased pituitary LH and FSH release. However, the LH and FSH increments due to LHRH in the 2400 h pituitaries were not different from those in the 1200 h pituitaries. The results indicate that a change occurs in the rat anterior pituitary gland during the period of the LH surge and first phase of FSH release which results in a selective increase in the basal FSH secretory rate. It is suggested that this change is primarily responsible for the selective increase in serum FSH which occurs during the second phase of FSH release.  相似文献   

17.
A recent report provides new evidence for the presence of glucokinase (GK) in the anterior pituitary. In the present study, immunohistochemistry was used to identify the cells containing GK in the pituitary of rats and monkeys. In rats, GK was detected as a generalized cytoplasmic staining in a discrete population of cells in the anterior pituitary. In colocalization experiments, the majority of cells expressing follicle-stimulating hormone (FSH) or luteinizing hormone (LH) also contained GK. In addition to the gonadotropes, GK was observed in a subpopulation of corticotropes and thyrotropes. GK was not detected in cells expressing growth hormone or prolactin. In monkeys, GK was also observed in a discrete population of cells. Intracellular distribution differed from the rat in that GK in most cells was concentrated in a perinuclear location that appeared to be associated with the Golgi apparatus. However, similar to rats, colocalization experiments showed that the majority of cells expressing FSH or LH also contained GK. In addition to the gonadotropes, GK was observed in a subpopulation of corticotropes and thyrotropes. In the monkey, only a few cells had generalized cytoplasmic staining for GK. These experiments provide further evidence for the presence of GK in the anterior pituitary. Although some corticotropes and thyrotropes contained GK, the predominant cell type expressing GK was gonadotropes. In view of the generally accepted role of GK as a glucose sensor in a variety of cells including the insulin-producing pancreatic beta-cells as the prototypical example, it is hypothesized that hormone synthesis and/or release in pituitary cells containing GK may be directly influenced by blood glucose.  相似文献   

18.
Monolayer cultures of anterior pituitary cells from male or female pigs of 60, 80, 105 days of fetal life or of 60, 160 and 250 days of post-natal life were prepared and treated with LHRH (1 pM to 10 nM). Dose-related increases of LH were first seen at 80 days of gestation in both sexes, while only female fetuses responded to maximal LHRH at 60 days. Basal and stimulated LH release doubled in cultures from 105-day-old fetuses when compared with those at 80 days. Compared to late fetal stages LH release was 20- to 30-fold higher in cell cultures from 60-day-old (post-natal) donors without further change during the post-natal period. In all pre- and post-natal age groups basal and maximal LH release of pituitary cells from males was lower than that of females. FSH stimulation started in male and female cells at 80 days of gestation only at LHRH concentrations exceeding or equal to 0.1 nM. By 105 days FSH secretion was dose-related and pituitary cells of females responded with higher FSH values than did those of males. In general, post-natal cells released much higher amounts of FSH than did prenatal cells. Basal and maximal release of FSH decreased during post-natal development in both sexes. Basal as well as maximal FSH release of cultures from female donors was higher than that found in cultures from male donors. Determination of total LH and FSH content in fetal pituitary cell cultures indicated that the developmental increase in gonadotrophin release potential is a function of the total gonadotrophin content in vitro. We conclude that (1) the in-vitro release of gonadotrophins to LHRH is dose-, age- and sex-dependent; (2) in the female fetal pig LH responsiveness develops earlier than FSH responsiveness; (3) apparently, these maturational changes mainly reflect alterations in pituitary gonadotrophin content; and (4) there is no simple relationship between in-vitro release and circulating gonadotrophins.  相似文献   

19.
The influence of endothelin-3 (ET-3) on anterior pituitary hormone secretion was investigated over a wide range of concentrations (from 10(-14) to 10(-6) M) and incubation times (from 4 to 48 hours). ET-3 elicited a concentration-dependent inhibition of prolactin (PRL) secretion and stimulated the release of luteinizing hormone (LH), follicle stimulating hormone (FSH) and thyroid stimulating hormone (TSH) from primary monolayer cultures of anterior pituitary cells derived from female rats. The responsiveness of different pituitary cells to ET-3 differs markedly in terms of onset and duration: the maximal inhibition of PRL secretion occurred after 12 hours and the stimulation of LH, FSH and TSH reached the maximum after 4, 48 and 48 hours of incubation, respectively. These data corroborate the concept that ET-3 has an important role as a neuroendocrine modulator. Moreover, the data presented suggest different intracellular mechanisms underlying ET-3 actions.  相似文献   

20.
Summary Rapid freeze-substitution fixation was employed in immunocytochemical studies on the localization of LH and FSH in the typical gonadotrophs of the anterior pituitary in the untreated male rat; a modification of a recently described ferritin antibody method (Inoue et al. 1982) was used in these studies. It was shown that rapid freeze-substitution fixation provides good preservation not only of the ultrastructure but also of the antigenicity. Both LH and FSH were clearly demonstrated in the same gonadotrophic cells, but the subcellular localization of these gonadotrophins differed: (i) LH was mainly located in small secretory granules, 250–300 nm in diameter; (ii) FSH was mainly present in large secretory granules, up to 500 nm in diameter. In the pituitary gland of the adult male rat, all gonadotrophs that react to antibodies against gonadotrophins are characterized by small and large secretory granules. Other types of cells of the anterior pituitary containing either small secretory granules or resembling corticotrophs with secretory granules assembled at cell periphery did not react to either anti-LH beta or anti-FSH beta serum.For light microscopy, the peroxidase antibody method was used. All of the gonadotrophin-positive cells contain both LH and FSH. None of the pituitary cells reacted to antibody against only one gonadotrophin. However, some cells are LH-rich while other cells are FSH-rich.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号