首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 390 毫秒
1.
NO对植物生长发育的调控机制   总被引:25,自引:0,他引:25  
一氧化氮(NO)是具有生物活性和信号转导作用的易扩散分子,它不仅对植物的许多生命活动如种子萌发、叶片扩展、根系生长、逆境生理以及细胞的程序性死亡等具有直接的生理调节功能,而且作为防御反应中的关键信使.参与了植物对外界环境胁迫的应答。近期研究表明,NO与激素在调节植物的生理活动与信号转导方面有明显的协同作用,通过激素起作用可能是植物内源NO作用的机理之一。本文主要通过对NO的产生及其对生理活动的调节机制和在代谢中的信号转导作用等方面来阐述NO在植物生长发育中的作用。  相似文献   

2.
一氧化氮在植物体内的来源和功能   总被引:10,自引:0,他引:10  
一氧化氮(nitric oxide,NO)是生物体内重要的活性分子。NO参与了动物体内血管松弛、神经传递及免疫防御反应等一系列生理功能而被认为是可扩散的多功能第二信使。在植物体内NO也是一种广泛存在的信号分子,参与调节了许多重要的生理过程如生长、发育、抗病防御反应、细胞程序性死亡和抗逆反应。对NO在植物体内的来源、信号转导、调节植物生长发育和对胁迫的响应方面所发挥的作用进行了综述,并讨论了其潜在的一些功能。  相似文献   

3.
夏海威  施国新  黄敏  吴娟 《生态学报》2015,35(10):3139-3147
一氧化氮(NO)作为一种重要的信号分子,在调节植物重金属胁迫抗性方面上起着非常重要的作用。综述了NO在植物体内的产生途径,重金属胁迫下植物体内内源NO含量的变化以及外源NO与内源NO对植物重金属胁迫抗性的影响。大量研究表明外源NO能够增强植物对重金属胁迫的抗性,一方面是通过增强植物细胞的抗氧化系统或直接清除活性氧,另一方面是通过影响植物对重金属的吸收以及重金属在植物细胞内的分布。然而内源NO在调节植物重金属胁迫抗性上的功能角色仍存在争议。有些研究表明内源NO是有益的,能够缓解重金属胁迫诱导的毒性;但是也有证据表明内源NO是有害的,能够通过促进植物对重金属的吸收以及对植物螯合素进行S-亚硝基化弱化其解毒功能,从而参与重金属诱导的毒害反应和细胞凋亡过程。  相似文献   

4.
一氧化氮(nitric oxide,NO)作为重要的信号分子,调控植物的种子萌发、根形态建成和花器官发生等许多生长发育过程,并参与气孔运动的调节以及植物对多种非生物胁迫和病原体侵染的应答过程。已经知道,精氨酸依赖的NOS途径和亚硝酸盐依赖的NR途径是植物细胞NO产生的主要酶促合成途径。NO及其衍生物能够直接修饰底物蛋白的金属基团、半胱氨酸和酪氨酸残基,通过金属亚硝基化、巯基亚硝基化和Tyr.硝基化等化学修饰方式,调节靶蛋白的活性,并影响cGMP和Ca2+信使系统等下游信号途径,调控相应的生理过程。最新的一些研究结果也显示,MAPK级联系统与NO信号转导途径之间存在复杂的交叉调控。此外,作为活跃的小分子信号,NO和活性氧相互依赖并相互影响,共同介导了植物的胁迫应答和激素响应过程。文章综述了植物NO信号转导研究领域中一些新的研究进展,对NO与活性氧信号途径间的交叉作用等也作了简要介绍。  相似文献   

5.
水分是决定植物分布与作物生产力的主要因素之一。水分缺乏可引起植物生命活动的各个方面,包括生长发育、形态解剖与生理代谢等的改变,但是它的最主要而直接的影响是对生长发育的改变。生长调节物质对植物的生长发育有广泛的调节作用。因此关于植物在水分胁迫条件下,内源激素发生什么变化以及激  相似文献   

6.
一氧化氮(NO)是植物的重要生物活性分子,它参与植物生长发育的许多过程,如种子萌发、下胚轴伸长、叶扩展、根生长、侧根形成、细胞凋亡以及植物抗逆反应等。大量的证据表明,植物可以通过与动物NO合酶类似的酶产生NO。此外,植物还可通过硝酸还原酶产生NO。NO在植物中的信号传递途径仍不十分清楚,植物有可能采用与动物相类似的机制。由于植物的大多数生长发育现象都受到植物激素的调节和控制,NO与植物激素之间的关系也受到越来越多的关注。通过激素起作用可能是植物内源NO作用的机理之一。  相似文献   

7.
一氧化氮(NO)是一种易扩散的生物活性分子,是生物体内重要的信号分子。植物细胞通过NO合酶、硝酸还原酶、或非生化反应途径产生NO。NO参与植物生长发育调控和对生物与非生物环境胁迫的应答反应,大量证据表明NO是植物防御反应中的关键信使,其信号转导机制也受到越来越多的关注。本文主要通过讨论NO的产生、对植物生长周期的影响、在植物代谢中的信号调节以及参与细胞凋亡来阐述NO在植物中的作用。  相似文献   

8.
植物细胞一氧化氮信号转导研究进展   总被引:5,自引:0,他引:5  
一氧化氮(nitric oxide, NO)作为重要的信号分子, 调控植物的种子萌发、根形态建成和花器官发生等许多生长发育过程, 并参与气孔运动的调节以及植物对多种非生物胁迫和病原体侵染的应答过程。已经知道, 精氨酸依赖的NOS途径和亚硝酸盐依赖的NR途径是植物细胞NO产生的主要酶促合成途径。NO及其衍生物能够直接修饰底物蛋白的金属基团、半胱氨酸和酪氨酸残基, 通过金属亚硝基化、巯基亚硝基化和Tyr-硝基化等化学修饰方式, 调节靶蛋白的活性, 并影响cGMP和Ca2+信使系统等下游信号途径, 调控相应的生理过程。最新的一些研究结果也显示, MAPK级联系统与NO信号转导途径之间存在复杂的交叉调控。此外, 作为活跃的小分子信号, NO和活性氧相互依赖并相互影响, 共同介导了植物的胁迫应答和激素响应过程。文章综述了植物NO信号转导研究领域中一些新的研究进展, 对NO与活性氧信号途径间的交叉作用等也作了简要介绍。  相似文献   

9.
植物一氧化氮(NO)研究进展   总被引:21,自引:0,他引:21  
一氧化氮(NO)是植物的重要生物活性分子,它参与植物生长发育的许多过程,如种子萌发、下胚轴伸长、叶扩展、根生长、侧根形成、细胞凋亡以及植物抗逆反应等。大量的证据表明,植物可以通过与动物NO合酶类似的酶产生NO。此外,植物还可通过硝酸还原酶产生NO。NO在植物中的信号传递途径仍不十分清楚,植物有可能采用与动物相类似的机制。由于植物的大多数生长发育现象都受到植物激素的调节和控制,NO与植物激素之间的关系也受到越来越多的关注。通过激素起作用可能是植物内源NO作用的机理之一。  相似文献   

10.
NO在植物中的调控作用   总被引:13,自引:0,他引:13  
一氧化氮(NO)是一种易扩散的生物活性分子,是生物体内重要的信号分子.植物细胞通过NO合酶、硝酸还原酶、或非生化反应途径产生NO.NO参与植物生长发育调控和对生物与非生物环境胁迫的应答反应,大量证据表明NO是植物防御反应中的关键信使,其信号转导机制也受到越来越多的关注.本文主要通过讨论NO的产生、对植物生长周期的影响、在植物代谢中的信号调节以及参与细胞凋亡来阐述NO在植物中的作用.  相似文献   

11.
Nitric oxide (NO) is now recognized as a key regulator of plant physiological processes. Understanding the mechanisms by which NO exerts its biological functions has been the subject of extensive research. Several components of the signaling pathways relaying NO effects in plants, including second messengers, protein kinases, phytohormones, and target genes, have been characterized. In addition, there is now compelling experimental evidence that NO partly operates through posttranslational modification of proteins, notably via S-nitrosylation and tyrosine nitration. Recently, proteome-wide scale analyses led to the identification of numerous protein candidates for S-nitrosylation in plants. Subsequent biochemical and in silico structural studies revealed certain mechanisms through which S-nitrosylation impacts their functions. Furthermore, first insights into the physiological relevance of S-nitrosylation, particularly in controlling plant immune responses, have been recently reported. Collectively, these discoveries greatly extend our knowledge of NO functions and of the molecular processes inherent to signal transduction in plants.  相似文献   

12.

Nitric oxide (NO) is an important signaling molecule that plays a pivotal role in stress tolerance. To study the role of NO in drought tolerance and elucidate the underlying mechanisms, NO (0 and 100 μM) was applied to drought-treated soybean plants. Drought stress was imposed by PEG (5% (W/V) of PEG 6000. Nitric oxide improved growth of soybean plants under drought as evidenced by enhanced dry weight (30%). Nitric oxide caused a remarkable increase in activities of catalase and superoxide dismutase (SOD) and SOD expression (14.8-fold), which led to a significant decline in malondealdehyde content under drought conditions. Nitric oxide induced proline biosynthesis due to enhancing pyrroline-5- carboxylate synthetase (P5CS) expression (43.66-fold). The growth-promoting effect of NO application in soybean plants was concomitant with change in metabolic profile (phenolic acid and flavonoid compounds). Nitric oxide up-regulated of phenylalanine ammonia-lyase (PAL) expression in drought-treated plants and may influence on the phenylpropanoid production. Nitric oxide increased salicylic acid (SA) content in soybean plants under stress. So, NO and SA are jointly responsible for boosted tolerance to drought stress in soybean plants. The decrease in unsaturated fatty acid through NO application might reflect a reduction in oxidative damage. These results propose a multifaceted contribution of NO through regulation of physiological and metabolic processes in response to drought stress.

  相似文献   

13.
Huyi He  Longfei He  Minghua Gu 《Biometals》2014,27(2):219-228
Nitric oxide (NO) emerges as signalling molecule, which is involved in diverse physiological processes in plants. High mobility metal interferes with NO signaling. The exogenous NO alleviates metal stress, whereas endogenous NO contributes to metal toxicity in plants. Owing to different cellular localization and concentration, NO may act as multifunctional regulator in plant responses to metal stress. It not only plays a crucial role in the regulation of gene expression, but serves as a long-distance signal. Through tight modulation of redox signaling, the integration among NO, reactive oxygen species and stress-related hormones in plants determines whether plants stimulate death pathway or activate survival signaling.  相似文献   

14.
Role of nitric oxide in tolerance of plants to abiotic stress   总被引:3,自引:0,他引:3  
Nitric oxide (NO) has now gained significant place in plant science, mainly due to its properties (free radical, small size, no charge, short-lived, and highly diffusible across biological membranes) and multifunctional roles in plant growth, development, and regulation of remarkable spectrum of plant cellular mechanisms. In the last few years, the role of NO in tolerance of plants to abiotic stress has established much consideration. As it is evident from the present review, recent progress on NO potentiality in tolerance of plants to environmental stresses has been impressive. These investigations suggest that NO, itself, possesses antioxidant properties and might act as a signal in activating ROS-scavenging enzyme activities under abiotic stress. NO plays an important role in resistance to salt, drought, temperature (high and low), UV-B, and heavy metal stress. Rapidly increasing evidences indicate that NO is essentially involve in several physiological processes; however, there has been much disagreement regarding the mechanism(s) by which NO reduces abiotic stress.  相似文献   

15.
Nitric oxide (NO) is a short-lived gaseous free radical that predominantly functions as a messenger and effector molecule. It affects a variety of physiological processes, including programmed cell death (PCD) through cyclic guanosine monophosphate (cGMP)-dependent and-independent pathways. In this field, dominant discoveries are the diverse apoptosis networks in mammalian cells, which involve signals primarily via death receptors (extrinsic pathway) or the mitochondria (intrinsic pathway) that recruit caspases as effector molecules. In plants, PCD shares some similarities with animal cells, but NO is involved in PCD induction via interacting with pathways of phytohormones. NO has both promoting and suppressing effects on cell death, depending on a variety of factors, such as cell type, cellular redox status, and the flux and dose of local NO. In this article, we focus on how NO regulates the apoptotic signal cascade through protein S-nitrosylation and review the recent progress on mechanisms of PCD in both mammalian and plant cells.  相似文献   

16.
一氧化氮(NO)作为一种具有生物活性的气体自由基分子,它的功能代表了生物学系统中信号传递的新途径。大量证据表明,NO在浮游植物细胞中的功能和在高等动植物中类似,具有调节生长和参与抗逆性的作用,NO和ROS可能作为信号分子参与介导浮游植物程序性死亡(PCD)过程。文章较全面地介绍了NO在浮游植物中的产生途径、测定方法、生理功能和PCD的关系及作为信号分子的作用,并对该领域今后的研究进行了展望。  相似文献   

17.

Gamma-aminobutyric acid (GABA), a non-proteinaceous amino acid, is reported in prokaryotes and eukaryotes, since ancient times. However, it has gained attention in the present time because of its rapid accumulation during stressed conditions in plants as well as in the cyanobacteria. In plants, it regulates the number of physiological processes such as pollen tube growth, root growth, TCA cycle, N2-metabolism, and osmoregulation. Several biotic and abiotic stresses prevail in the environment, which lead to enhanced accumulation of reactive oxygen species (ROS) thus causing oxidative damage. However, a rapid increase in the accumulation of GABA during stress in various plant forms like bacteria, cyanobacteria, fungi, and plants indicates its putative role in stress regulation and acclimation. This review summarizes the biosynthesis of GABA, its role in abiotic stress tolerance, and its crosstalk with ROS, nitric oxide, Ca+2 ions, phytohormones, and polyamines in stress acclimation.

  相似文献   

18.
茉莉酸及其信号传导研究进展   总被引:11,自引:3,他引:8  
朱家红  彭世清 《西北植物学报》2006,26(10):2166-2172
茉莉酸及其衍生物茉莉酸甲酯等统称为茉莉酸盐,是广泛存在于植物中的一种生长调节物质,在植物细胞中起着非常重要的作用.茉莉酸作为信号分子广泛参与调节植物的生长发育和胁迫响应过程.本文主要就茉莉酸的生物合成、茉莉酸的信号传导途径和调控机制、茉莉酸的信号传导途径与乙烯、脱落酸、水杨酸和一氧化氮信号传导途径的相互关系进行了综述.  相似文献   

19.
Nitric oxide (NO) has received much attention in the recent two decades, equally from human, animal and plant biologists. It was found to play a crucial role in human and animal physiology, immunological reactions and signal transduction. Its ubiquity and versatile properties caught the attention of plant physiologists and biochemists. This work presents an extensive review on the NO presence and action in plants. Various modes of NO synthesis are discussed and the most novel approaches to the elucidation of plant nitric oxide synthase (NOS) structure are presented. This review focuses on the physiological role of NO in regulation of plant growth and development, as well as in the process of gene expression. Special attention is given to the action of NO during abiotic stress and the antioxidant properties of the molecule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号