首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
磷空间有效性对拟南芥根形态构型的影响   总被引:6,自引:0,他引:6  
磷空间有效性显著影响拟南芥主、侧根生长。在均一的磷处理下,极度磷胁迫或过量供磷均会导致拟南芥主根变短和侧根密度降低。在分层的磷处理下,上层高磷下层低磷能明显促进主根伸长生长,提高侧根在高磷区域的密度,说明植物根系在下层低磷区感受到磷胁迫信号后,可促进上层高磷区侧根的形成和发育。  相似文献   

2.
拟南芥根系发育的分子机制研究进展   总被引:1,自引:0,他引:1  
拟南芥初生根和次生根的发育受不同遗传通路所调控,其中内源激素途径尤其是生长素途径在拟南芥主根、侧根以及根毛的发育过程中均发挥着重要作用.同时也存在一些不依赖于激素通路的遗传途径,如UPB1能通过调节根尖分生区和伸长区活性氧种类的平衡来调控根系顶端分生组织活性,进而影响根系的生长.本文对近年来国内外有关模式植物拟南芥根系发育的分子机制研究进展分别从初生根发育、侧根发育和根毛发育3个方面进行综述.  相似文献   

3.
研究对映-贝壳杉烷型二萜化合物Leukamenin E对拟南芥种子萌发、下胚轴伸长以及根生长发育的作用模式,并探讨植物激素生长素和乙烯可能介导Leukamenin E影响拟南芥主根生长、侧根和根毛发育的初步机制。结果表明:Leukamenin E浓度在10~160μmol·L~(-1)范围对拟南芥种子的萌发率无显著影响,但高浓度Leukamenin E(80~160μmol·L-1)显著抑制种子的萌发速率。Leukamenin E对拟南芥幼苗根生长的抑制作用明显高于对下胚轴的抑制效应。进一步研究表明,Leukamenin E通过阻滞根尖细胞有丝分裂和细胞伸长进而抑制主根的生长,并能促进侧根提前发生并影响其形成数量,同时减少根毛密度及降低根毛长度。Leukamenin E联合乙烯利(乙烯释放剂)处理可阻止乙烯利单独使用对拟南芥幼苗根毛生长的促进作用,与Ag+(乙烯竞争抑制剂)联合乙烯利的作用效果相一致,表明Leukamenin E可能通过干扰根细胞乙烯途径而抑制根毛发育。流动注射化学发光分析和酶联免疫检测的结果发现,Leukamenin E显著上调拟南芥幼苗根组织中生长素(IAA)水平,表明生长素可能作为主要因子介导了Leukamenin E对拟南芥幼苗根生长发育的调节作用。  相似文献   

4.
探讨了磷脂酶Dα1(PLDα1)在ABA抑制拟南芥主根伸长过程中的作用。PLOα1基因突变体pldα1主根伸长受ABA抑制小于野生型(WT);根系PLDα1活性在ABA处理下升高;拟南芥根细胞原生质体中活性氧(ROS)含量在ABA处理下升高,但是pldα1升高小于WT;根系NADPH氧化酶活性在ABA处理下升高,pldα1升高小于WT,外源加入10μmol/L^-1 PA(磷脂酸,PLD水解产物)后,前者活性显著升高;外源加入H2O2可诱导WT和pldα1主根伸长都受到抑制,且二者差异不明显。结果表明,PLDα1产生的PA通过激活NADPH氧化酶产生ROS介导ABA调控的拟南芥主根伸长过程。此外,初步探讨了PLDα1在拟南芥根毛尖端生长中的作用:pldα1突变体根毛长度小于WT,根毛尖端ROS和Ca^2+浓度低于WT。  相似文献   

5.
细叶马先蒿为玄参科多年生草本植物。年生产周期明显缩短。根系营养生长至花期为粗壮主根与纤细侧根并存,果期侧根几乎全部枯萎脱落,所存留根系皆呈乳白色。由胚根形成的初生主根根毛密集,初生木质部二原型。侧生分生组织只有形成层而无木栓形成层。根表皮细胞经解离后略呈不规则方形片状,横切面为平周长梭形,进行垂周分裂增加梭形根表皮细胞长度,以适应根的增粗生长。根表皮脱落时,外皮层以同样生长方式代替脱落的表皮。在年  相似文献   

6.
杨怡  甘立军  夏凯 《西北植物学报》2006,26(9):1832-1837
采用不同浓度的人工合成甾类激素炔雌醇、炔诺酮和左炔诺孕酮处理拟南芥幼苗,研究3种激素对其根生长和根中内源激素含量的影响.结果表明:(1)30μg?L-1炔雌醇处理显著促进主根的伸长、侧根数及侧根总长的增加,促进主根根毛数和地下部鲜重的增加,增大内源IAA和iPAs含量,以及IAA/iPAs比值;3 000μg?L-1炔雌醇处理则增加主根的弯曲度;(2)炔诺酮活性相对较弱,浓度为300μg?L-1时对主根长、侧根数、侧根总长的促进效果最大,IAA含量增加而iPAs含量降低,IAA/iPAs比值最大;3 000μg?L-1炔诺酮则引起主根弯曲,抑制根毛的生长,但促进侧根数和的地下部鲜重的增加;(3)左炔诺孕酮的活性较高,3μg?L-1时对拟南芥主根长、主根根毛数增加最为显著;300μg?L-1时对侧根数、根毛密度的增幅最大,IAA含量增加,IAA/iPAs比值最大;3 000μg?L-1时显著抑制主根的生长和侧根的生成.  相似文献   

7.
水培条件下营养元素对枳幼苗根毛发育及根生长的影响   总被引:1,自引:0,他引:1  
以柑橘砧木枳实生苗为试材,研究水培条件下N、P、K、Ca、Mg、Fe和Mn等7种营养元素分别缺乏对其根系主根长度、侧根数和主、侧根根毛密度、根毛长度及根毛直径等的影响.结果表明:水培条件下,不同缺素处理枳实生幼苗的根毛均能生长,但根毛主要集中在近根基段,根尖处分布较少;侧根的根毛密度显著大于主根,而其根毛长度显著小于主根.不同缺素处理对根毛的生长发育影响较大,主根根毛密度为55.0~174.3条·mm-2.与对照相比,缺Ca诱发主根的根毛密度、长度显著增加;缺P使主根的根基段、中段及侧根的根毛密度、长度显著增加;缺Fe使主根根尖段根毛密度显著增加,而长度显著降低;缺K使主根、侧根的根毛密度、长度及根毛直径均显著降低;缺Mg使主根根毛长度显著增加.各处理主根的生长较一致;侧根除缺N、Mg处理外,其他处理均出现脱落后再生的现象.  相似文献   

8.
水培条件下营养元素对枳幼苗根毛发育及根生长的影响   总被引:2,自引:0,他引:2  
以柑橘砧木枳实生苗为试材,研究水培条件下N、P、 K、Ca、Mg、Fe和Mn等7种营养元素分别缺乏对其根系主根长度、侧根数和主、侧根根毛密度、根毛长度及根毛直径等的影响.结果表明: 水培条件下,不同缺素处理枳实生幼苗的根毛均能生长,但根毛主要集中在近根基段,根尖处分布较少;侧根的根毛密度显著大于主根,而其根毛长度显著小于主根.不同缺素处理对根毛的生长发育影响较大,主根根毛密度为55.0~174.3 条·mm-2.与对照相比,缺Ca诱发主根的根毛密度、长度显著增加;缺P使主根的根基段、中段及侧根的根毛密度、长度显著增加;缺Fe使主根根尖段根毛密度显著增加,而长度显著降低;缺K使主根、侧根的根毛密度、长度及根毛直径均显著降低;缺Mg使主根根毛长度显著增加.各处理主根的生长较一致;侧根除缺N、Mg处理外,其他处理均出现脱落后再生的现象.  相似文献   

9.
为探讨多胺生物合成抑制剂D-精氨酸(D-arginine,D-Arg)对拟南芥根系生长的影响,首先用腐胺(0.1mmol‘L-1)和D—Arg(1.0mmol·L-1)处理种子萌发后生长2d的拟南芥幼苗。腐胺(0.1mmol·L-1)显著促进主根伸长,D-Arg(1.0mmol-L-1)显著抑制主根伸长,并对主根根尖的细胞形态有明显影响。为了进一步了解D—Arg影响拟南芥主根生长的机理,采用浓度梯度D.Arg处理幼苗根系。实验结果表明,随着D-Arg浓度增加(0.2~1.0mmol·L-1),拟南芥幼苗主根生长受抑制的程度越严重。微分干涉观察主根根尖发现,外源施加D—Arg,引起拟南芥主根根尖分生区的细胞数目减少,使拟南芥幼苗表现出主根的伸长生长变缓。当分生区数目较少时,出现主根几乎不再仲长的现象。由此推测,多胺生物合成抑制剂D-Arg对拟南芥幼苗根生长的抑制作用机制,是D-Arg影响了其根尖分生区的细胞分裂活动,使分生区细胞数目减少,从而引起分生区长度减小,最终导致拟南芥主根仲长生长受到抑制。  相似文献   

10.
在控制条件下云南松幼苗根系对低磷胁迫的响应   总被引:2,自引:0,他引:2  
磷是控制生命过程的重要元素,植物在生长过程中需要大量的磷,低磷常导致一些植物发生适应性变化。云南松(PinusyunnanensisFranch.)以云南高原为起源和分布中心,其对低磷土壤环境表现出了很强的适应能力,广泛分布并正常生长于贫瘠的低磷红壤上,研究云南松对低磷环境的适应机制,对人类探索高效利用有限的磷素资源的方法具有现实意义。本实验通过对不同磷处理水平下培养的云南松幼苗根系生物量和根冠比等的研究,分析了云南松幼苗根系对低磷胁迫的响应。实验所用云南松种子采集自云南省通海县秀山森林公园内的健壮云南松林。结果表明:当磷浓度下降到0.5mmol/L时,云南松幼苗主根长度开始随磷浓度的降低而增加,根冠比随磷浓度的降低而增大,而侧根发生数没有随磷浓度的降低而显示出显著的增减规律,根系生物量也没有随磷浓度的降低而呈现出有规律的增减,根系生物量始终保持在一定的水平。进一步的分析表明:低磷胁迫下,云南松幼苗保证了物质分配对根的优先地位,以维持其根的生物量在一定水平,进而维持整个生命;云南松幼苗主要是靠主根长度的增加而不是靠侧根数量的增加来适应低磷环境。  相似文献   

11.
The developmental response of the Arabidopsis root system to low phosphorus (P) availability involves the reduction in primary root elongation accompanied by the formation of numerous lateral roots. We studied the roles of selected redox metabolites, namely, radical oxygen species (ROS) and ascorbic acid (ASC) in the regulation of root system architecture by different P availability. Rapidly growing roots of plants grown on P-sufficient medium synthesize ROS in root elongation zone and quiescent centre. We have demonstrated that the arrest of root elongation at low P medium coincides with the disappearance of ROS from the elongation zone. P-starvation resulted in a decrease in ascorbic acid level in roots. This correlated with a decrease in cell division activity. On the other hand, feeding P-deficient plants with ASC, stimulated mitotic activity in the primary root meristem and partly reversed the inhibition of root growth imposed by low P conditions. In this paper, we discuss the idea of the involvement of redox agents in the regulation of root system architecture under low P availability.Key words: ascorbic acid, phosphate deficiency, primary root, radical oxygen species, root growth, root system architecture  相似文献   

12.
用蛭石与石英砂作为混合固体培养介质研究了低磷 (PO4 3 -)胁迫和部分根系供氮 (NO-3 )对水稻 (O ryzasativaL .)苗期根系生长的影响。结果表明 :低磷胁迫和供氮均能诱导水稻不定根和不定根上侧根的伸长。细胞分裂的进程受依赖细胞周期蛋白的蛋白激酶(CDKs)的调控 ,在缺磷和供氮条件下 ,细胞周期蛋白激酶cdc2Os 1在根系表达都增强 ,而cdc2Os 2的表达无明显变化。cdc2Os 1的这种表达模式与这两种处理下根系的加速伸长具一致性 ,表明在磷缺乏和供氮处理下 ,cdc2Os 1基因在根系表达的增强 ,可能促进了根细胞的分裂活性 ,从而加速不定根和侧根的伸长  相似文献   

13.
Background and AimsRoot proliferation is a response to a heterogeneous nutrient distribution. However, the growth of root hairs in response to heterogeneous nutrients and the relationship between root hairs and lateral roots remain unclear. This study aims to understand the effects of heterogeneous nutrients on root hair growth and the trade-off between root hairs and lateral roots in phosphorus (P) acquisition.MethodsNear-isogenic maize lines, the B73 wild type (WT) and the rth3 root hairless mutant, were grown in rhizoboxes with uniform or localized supply of 40 (low) or 140 (high) mg P kg−1 soil.ResultsBoth WT and rth3 had nearly two-fold greater shoot biomass and P content under local than uniform treatment at low P. Significant root proliferation was observed in both WT and rth3 in the nutrient patch, with the WT accompanied by an obvious increase (from 0.7 to 1.2 mm) in root hair length. The root response ratio of rth3 was greater than that of WT at low P, but could not completely compensate for the loss of root hairs. This suggests that plants enhanced P acquisition through complementarity between lateral roots and root hairs, and thus regulated nutrient foraging and shoot growth. The disappearance of WT and rth3 root response differences at high P indicated that the P application reduced the dependence of the plants on specific root traits to obtain nutrients.ConclusionsIn addition to root proliferation, the root response to a nutrient-rich patch was also accompanied by root hair elongation. The genotypes without root hairs increased their investment in lateral roots in a nutrient-rich patch to compensate for the absence of root hairs, suggesting that plants enhanced nutrient acquisition by regulating the trade-off of complementary root traits.  相似文献   

14.
Expansins are cell wall proteins implicated in the control of plant growth via loosening of the extracellular matrix, and are encoded by a large gene family. However, data linked to loss of function of single genes which support the role of expansins in root growth remain limited. In this study, we used RNA interference to examine the biological functions of the rice α-expansin gene OsEXPA8. Repression of OsEXPA8 expression in rice impaired the root system architecture and plant growth significantly, leading to shorter primary roots and fewer lateral roots. Accordingly, the cell size of the root vascular bundle reduced drastically. Notably, OsEXPA8 silencing impaired root hair elongation; moreover, plant height was clearly reduced. Transient expression of OsEXPA8-GFP in onion epidermal cells verified that OsEXPA8 is located on the cell wall. OsEXPA8 was expressed predominantly in the root and shoot of one-week-old rice seedlings, and highly induced by NaCl but suppressed by nitrate and phosphate starvation. In addition, atomic force microscopy was used to explore alterations in cell wall nanomechanics caused by OsEXPA8 protein reduction, which showed that the wall stiffness (Young’s modulus) of OsEXPA8-silenced suspension cells was increased significantly. Taken together, our results suggest that OsEXPA8 is critical for root system architecture, which supports the hypothesis that expansins are involved in enhancing plant growth by mediating cell wall loosening.  相似文献   

15.
16.
Root growth responses to lead in young maize seedlings   总被引:5,自引:0,他引:5  
Obroucheva  N.V.  Bystrova  E.I.  Ivanov  V.B.  Antipova  O.V.  Seregin  I.V. 《Plant and Soil》1998,200(1):55-61
This work was undertaken to follow the appearance and development of symptoms of lead toxicity in growing roots of seedlings. The effects of lead nitrate (10-2–105 M) were studied on the roots of maize (Zea mays) seedlings, cvs. Diamant and Sterling. The roots were grown on filter paper either on glass in trays or in large Petri dishes. The following characteristics of root growth were studied: seed germination, length of primary and seminal roots, number of seminal and lateral roots, length of branching zone, length of meristem and fully-elongated cells and the number of fully-elongated cells along the daily length increment. 10-2 M lead nitrate exerted a clear toxic effect on root elongation just after radicle emergence; its influence on shoot growth was weak. However 10-2 M Pb solution did not affect either radicle emergence itself or seminal root emergence, which can be explained by the impermeability of seed testa to lead salt. The inhibitory effect of 10-3 M lead nitrate appeared a day later and was not as toxic: the growth of primary and seminal roots proceeded at lower rate due to a partial inhibition of cell division and cell elongation in them. 10-3 M lead nitrate modified the root system morphology: it exerted no effect on the emergence of lateral roots and their number, but induced a more compact distribution of lateral roots along a shorter branching zone due to a reduced length of mature cells in the primary root. As a result of the more prominent inhibition of primary root growth, a shorter branching zone with more compactly located lateral roots occupied a position much closer to the root tip than in roots grown without the influence of lead.  相似文献   

17.
Developmental changes in the root apex and accompanying changes in lateral root growth and root hydraulic conductivity were examined for Opuntia ficus-indica (L.) Miller during rapid drying, as occurs for roots near the soil surface, and more gradual drying, as occurs in deeper soil layers. During 7 d of rapid drying (in containers with a 3-cm depth of vermiculite), the rate of root growth decreased sharply and most root apices died; such a determinate pattern of root growth was not due to meristem exhaustion but rather to meristem mortality after 3 d of drying. The length of the meristem, the duration of the cell division cycle, and the length of the elongation zone were unchanged during rapid drying. During 14 d of gradual drying (in containers with a 6-cm depth of vermiculite), root mortality was relatively low; the length of the elongation zone decreased by 70%, the number of meristematic cells decreased 30%, and the duration of the cell cycle increased by 36%. Root hydraulic conductivity ( L P) decreased to one half during both drying treatments; L P was restored by 2 d of rewetting owing to the emergence of lateral roots following rapid drying and to renewed apical elongation following gradual drying. Thus, in response to drought, the apical meristems of roots of O. ficus-indica near the surface die, whereas deeper in the substrate cell division and elongation in root apices continue. Water uptake in response to rainfall in the field can be enhanced by lateral root proliferation near the soil surface and additionally by resumption of apical growth for deeper roots.  相似文献   

18.
To investigate the relation between cell division and expansion in the regulation of organ growth rate, we used Arabidopsis thaliana primary roots grown vertically at 20°C with an elongation rate that increased steadily during the first 14 d after germination. We measured spatial profiles of longitudinal velocity and cell length and calculated parameters of cell expansion and division, including rates of local cell production (cells mm−1 h−1) and cell division (cells cell−1 h−1). Data were obtained for the root cortex and also for the two types of epidermal cell, trichoblasts and atrichoblasts. Accelerating root elongation was caused by an increasingly longer growth zone, while maximal strain rates remained unchanged. The enlargement of the growth zone and, hence, the accelerating root elongation rate, were accompanied by a nearly proportionally increased cell production. This increased production was caused by increasingly numerous dividing cells, whereas their rates of division remained approximately constant. Additionally, the spatial profile of cell division rate was essentially constant. The meristem was longer than generally assumed, extending well into the region where cells elongated rapidly. In the two epidermal cell types, meristem length and cell division rate were both very similar to that of cortical cells, and differences in cell length between the two epidermal cell types originated at the apex of the meristem. These results highlight the importance of controlling the number of dividing cells, both to generate tissues with different cell lengths and to regulate the rate of organ enlargement.  相似文献   

19.
Bhat  K. K. S.  Nye  P. H. 《Plant and Soil》1974,41(2):365-382
Summary Autoradiographs of rape (Brassica napus L.) seedlings growing in a Begbroke Sandy Loam treated to different P levels showed P accumulations near root apices of primary and lateral roots, without corresponding depletion from the adjacent soil, indicating marked translocation.Laterals less than 2 days old did not deplete the soil despite considerable P accumulations in them. Their growth and P uptake were enhanced when the growth of the primary root was checked. The length of root hairs decreased markedly with increasing P supply.The P depletion zones developed in the same way at all points along the primary axis (except for a short length behind the apex). At the highest P level the concentration of exchangeable P at the root surface was lowered by about 30% on day 2, by about 40% on day 4 and rose slowly after day 8.Whereas in P treated soils the depletion from within the root hair cylinder was fairly uniform, in the low P soil there was a continuous decrease in P concentrations toward the root surface, within the root hair zone.Soil Science Laboratory, Department of Agricultural Science, University of Oxford  相似文献   

20.
Zinc (Zn) distribution over tissues and organs of maize (Zea mays L.) seedlings and its action on root growth, cell division, and cell elongation were studied. Two-day-old seedlings were incubated in the 0.25-strength Hoagland solution containing 2 or 475 μM Zn(NO3)2. Zn toxicity was assessed after the inhibition of primary root increment during the first and second days of incubation. The content of Zn was determined by atomic absorption spectrometry in the apical (the first centimeter from the root tip) and basal (the third centimeter from the kernel) root parts. Zn distribution in various tissues was studied by histochemical methods, using a metallochromic indicator zincon and fluorescent indicator Zinpyr-1 and light and confocal scanning fluorescent light microscopy, respectively. To evaluate Zn effects on growth processes, the average length of the meristem; the length of fully elongated cells; the number of meristematic cells in the cortex row; and duration of the cell cycle were measured. When the Zn concentration in the solution was high, the Zn content per weight unit was higher in the basal root part due to its accumulation in lateral root primordial. Zn was also accumulated in both the meristem apoplast and cell protoplasts. In the basal and middle root parts, Zn was detected essentially in all tissues predominantly in the apoplast. Zn inhibited both cell division and elongation. Under Zn influence, the size of the meristem and the number of meristematic cells decreased, which was determined by an increase in the cell cycle duration. The length of the fully elongated cells was also reduced. A comparison of Zn distribution and growth-suppressing activity with other heavy metals studied earlier allows a conclusion that toxic action of heavy metals is mainly determined by physical and chemical properties of their ions and specific patterns of their transport and distribution. As a result, two basic processes determining root growth, e.g., cell division and elongation, could be affected differently.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号